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Notes 03: Separation theorems, Polar sets

1. Convex sets, closed sets

A set S ⊆ Rn is convex if for every x, y ∈ S and any 0 ⩽ λ ⩽ 1, the convex combination
λx+ (1− λ)y ∈ S. That means every line segment connecting any two points in S lies in S.

⟨x, y⟩ =
∑

1≤i⩽n xiyi denotes the inner product in Rn.
Define ∥x∥ =

√
⟨x, x⟩ is the Euclidean norm of x ∈ Rn.

A point y ∈ Rn is a limit point of S ⊆ Rn if for every ε > 0, some x ∈ S satisfies ∥x− y∥ ⩽ ε. In
other words, y is a limit point if it is arbitrarily close to (some point in) S. A set S ⊆ Rn is closed
if S contains all its limit points.

For example, the open unit disk D = {(x, y) ∈ R2 | x2+ y2 < 1} is not closed, because (1, 0) is its
limit point but does not belong to D. By contrast, the closed unit ball D = {(x, y) ∈ R2 | x2+y2 ⩽ 1}
(with non-strict inequality) is closed.

2. Separation theorems

Separation theorems are closely related to duality. In fact, some of them are equivalent to strong
duality of convex programs. We now state one version, saying a point outside a closed convex set
must be separated from the set by a hyperplane.

Theorem 2.1 (Separation theorem). Let S ⊆ Rn be a non-empty closed convex set and v /∈ S.
Then there is y ∈ Rn such that ⟨y, v⟩ > ⟨y, x⟩ for all x ∈ S.

Idea: Given v, find the unique point x∗ ∈ S closest to v. Then argue ⟨v − x∗, x− x∗⟩ ⩽ 0 for all
x ∈ S. This gives a separating hyperplane normal to the direction v − x∗.

Claim 2.2. There exists a unique point x∗ ∈ S closest to v.

Proof. (Existence) Let x be an arbitrary point in S. Let Z = {z ∈ S | ∥z − x∥2 ⩽ ∥x − v∥2}
be the set of points in S that are as close to v as x. Z is bounded and closed. A point closest to
v minimizes the continuous function f(z) = ∥z − v∥2 (squared distance between z and x) over Z.
Weierstrass’ (extreme value) theorem tells us the minimum of f is attained at some point x∗ ∈ S.

(Uniqueness) Consider any two minimizers x1, x2 of f(z) in Z. We will show that they must
in fact be the same. Indeed, consider their midpoint x = (x1 + x2)/2. x ∈ S since S is convex. Let
µ = ∥x1− v∥2 = ∥x2− v∥2 be the minimum squared distance. Then ∥x− v∥2 = ∥x1−v∥2

2 + ∥x2−v∥2
2 −

∥x1−x2∥2
4 = µ− ∥x1−x2∥2

4 (⩽ µ = ∥x1− v∥2). Since x1 is a closest point to v, the last inequality must
in fact be an equality, hence ∥x1 − x2∥2 = 0 and x1 = x2. □

Lemma 2.3. x∗ minimizes f(z) over S if and only if ⟨v − x∗, x− x∗⟩ ⩽ 0 for all x ∈ S

Proof. Consider any x ∈ S. Let z = (1− ε)x∗ + εx be a point very close to x∗ on the line segment
between X∗ and x. By convexity z ∈ S. Expand f(z) as
(1) ∥z − v∥2 = ∥(x∗ − v)− ε(x∗ − x)∥2 = ∥x∗ − v∥ − 2ε⟨x∗ − v, x∗ − x⟩+ ε2∥x∗ − x∥2.

The derivative wrt ε at ε = 0 is −2⟨x∗ − v, x∗ − x⟩, which must be nonnegative for x∗ to be a
minimizer. Conversely, if ⟨v − x∗, x − x∗⟩ ⩽ 0, then the last two terms on the right-hand-side of
Eq. (1) are nonnegative when ε = 1, so ∥x − v∥2 = ∥z − v∥2 ⩾ ∥x∗ − v∥2 (because z = x when
ε = 1). □

Proof of Theorem 2.1. Let y = v − x∗.
∥v − x∗∥2 > 0 ⇐⇒ ⟨v − x∗, v⟩ > ⟨v − x∗, x∗⟩ ⇐⇒ ⟨y, v⟩ > ⟨y, x∗⟩
For any x ∈ S, Lemma says ⟨v− x∗, x− x∗⟩ ⩽ 0 ⇐⇒ ⟨v− x∗, x⟩ ⩽ ⟨v− x∗, x∗⟩ ⇐⇒

⟨y, x⟩ ⩽ ⟨y, x∗⟩
Therefore ⟨y, v⟩ > ⟨y, x∗⟩ ⩾ ⟨y, x⟩ for any x ∈ S. □

There are other versions of separation theorems in [BV §2.5]
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3. Supporting hyperplane

Given a set S ⊆ Rn and a point x0 on the boundary of S, a hyperplane {x ∈ Rn | ⟨y, x⟩ = ⟨y, x0⟩}
is a supporting hyperplane to S at x0 if ⟨y, x⟩ ⩽ ⟨y, x0⟩ for all x ∈ S.

The supporting hyperplane theorem states that for any convex set S and any boundary point x0,
there exists a supporting hyperplane to S at x0.

It follows from the separation theorem, see [BV §2.5.2].

4. Polar sets

Support functions are an alternative representation of a convex set C.

Definition 4.1. The support function of C ⊆ Rn is SC(y) = sup{⟨y, x⟩ | x ∈ C}.

It tells us how far the set C goes along vector y.
Using separation theorem, one can show that two closed convex sets are equal if and only if they

have the same support functions [BV, Exercise 2.26].
All information about a convex set is described by its boundary!
We now define a dual object of a set, called polar.
Given a set C ⊆ Rn, the polar of C is C◦ = {y ∈ Rn | ⟨y, x⟩ ≤ 1 ∀x ∈ C}.
It is easy to check that C◦ is a closed convex set, regardless of whether C is convex.
Under an additional assumption, the polar contains all the information about the support func-

tion:
Suppose for every y ∈ Rn, SC(y) = supx∈C⟨y, x⟩ ⩾ 0.
Then given y ∈ Rn, the polar C◦ encodes the support function of C because
µ ⩾ SC(y) = sup{⟨y, x⟩ | x ∈ C} ⇐⇒ ⟨y, x⟩ ⩽ µ ∀x ∈ C ⇐⇒ ⟨ yµ , x⟩ ⩽ 1 ∀x ∈ C

(using µ ⩾ 0) ⇐⇒ y
µ ∈ C◦

If C is a closed convex set, then we can recover C from C◦.
When is the support function nonnegative?
By Separation theorem, the support function is nonnegative if and only if C contains the origin.
We can imagine the polar as (the convex hull of) the set of supporting hyperplanes of C.
For example, the polar of the polyhedron {x ∈ Rn | ⟨ai, x⟩ ⩽ bi, 1 ⩽ i ⩽ m} is the convex hull of

{a1
b1
, . . . , ambm }.

In fact, C can be recovered from C◦ as the polar of C◦ (also called the bipolar of C).

Theorem 4.2. If C is a closed convex set that contains the origin, then C◦◦ = C.

Proof. C ⊆ C◦◦: x ∈ C =⇒ ∀y ∈ C◦ ⟨y, x⟩ ⩽ 1 (by definition of C◦) ⇐⇒ x ∈ (C◦)◦

(by definition of C◦◦)
C◦◦ ⊆ C: We will show that if v /∈ C, then v /∈ C◦◦. To show v /∈ C◦◦, we need to find y′ ∈ C◦

such that ⟨y′, v⟩ > 1.
If v /∈ C, then Separation theorem gives us y ∈ Rn such that ⟨y, x⟩ < ⟨y, v⟩ for all x ∈ C. Since

C contains the origin, ⟨y, v⟩ > ⟨y, 0⟩ = 0. Let b satisfy 0 ⩽ sup{⟨y, x⟩ | x ∈ C} < b < ⟨y, v⟩ and
y′ = y/b. Then ⟨y′, x⟩ < 1 for all x ∈ C, hence y′ ∈ C◦. Also ⟨y′, v⟩ > 1. Therefore v /∈ C◦◦. □
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