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Learning to Recommend with Explicit and Implicit Social Relations
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Recommender systems have been well studied and developed, both in academia and in industry recently.
However, traditional recommender systems assume that all the users are independent and identically dis-
tributed; this assumption ignores the connections among users, which is not consistent with the real-world
observations where we always turn to our trusted friends for recommendations. Aiming at modeling recom-
mender systems more accurately and realistically, we propose a novel probabilistic factor analysis framework
which naturally fuses the users’ tastes and their trusted friends’ favors together. The proposed framework
is quite general, and it can also be applied to pure user-item rating matrix even if we do not have explicit
social trust information among users. In this framework, we coin the term social trust ensemble to repre-
sent the formulation of the social trust restrictions on the recommender systems. The complexity analysis
indicates that our approach can be applied to very large datasets since it scales linearly with the number of
observations, while the experimental results show that our method outperforms state-of-the-art approaches.
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1. INTRODUCTION

As there has been exponential growth of information generated on the World Wide
Web, information filtering techniques like recommender systems have become more and
more important and popular. Recommender systems form a specific type of information
filtering technique that attempts to suggest information items (movies, books, music,
news, Web pages, images, etc.) that are likely to interest users. Typically, recommender
systems are based on collaborative filtering, which is a technique that automatically
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predicts the interest of an active user by collecting rating information from other
similar users or items.

Although recommender systems have been widely studied in academia and deployed
in industry, such as Amazon and eBay, most of these techniques suffer several inherent
weaknesses. The first well-known challenge is the data sparsity problem. As reported
in Sarwar et al. [2001], the density of the available ratings in commercial recommender
systems is often less than 1%. Many collaborative filtering algorithms are impeded by
the sparsity problem, hence cannot handle users who have rated few items. Secondly,
traditional recommender systems ignore the social connections or trust relations among
users. But the fact is, in the real world, we always turn to friends we trust for book,
music, or restaurant recommendations, and our favors can easily be affected by the
friends we trust. Therefore, traditional recommender systems, which purely mine the
user-item rating matrix for recommendations, do not provide realistic output. Recently,
trust-aware recommender systems have drawn lots of attention [Massa and Avesani
2004; 2007], but most of these methods are based on some ad hoc heuristics, and
they still have the data sparsity and scalability problems. Moreover, the relationship
between the user-item matrix and the users’ trust network are not fully understood.

In this article, aiming at solving the preceding problems and modeling recommender
systems more accurately and realistically, we make three assumptions based on our
observations on real-world recommendation processes.

—Users have their own characteristics, and they have different tastes on different
items, such as movies, books, music, articles, food, etc.

—Users can be easily influenced by the friends they trust, and prefer their friends’
recommendations.

—One user’s final decision is the balance between his/her own taste and his/her trusted
friends’ favors.

Based on the preceding intuitions, we endow a novel understanding to all the ratings
in the user-item matrix R. We interpret the rating Rij in the user-item matrix as the
representation mixed by both the user ui ’s taste and his/her trusted friends tastes on
the item v j . This assumption naturally employs both the user-item matrix and the
users’ social trust network for the recommendations.

In terms of the users’ own tastes, we factorize the user-item matrix and learn two
low-dimensional matrices, which are the user-specific latent matrix and item-specific
latent matrix. For the social trust graph, based on the intuition that users always
prefer items recommended by friends they trust, we infer and formulate the recom-
mendation problem purely based on their trusted friends’ favors. Then, by employing
a probabilistic framework, we fuse the users and their trusted friends’ tastes together
by an ensemble parameter. Finally, by performing a simple gradient descent on the
objective function, we learn the latent low-dimensional user-specific and item-specific
matrices for the prediction of users’ favors on different items.

The proposed framework in this article is quite general, and it can also be applied
to pure user-item rating matrix even if we do not have explicit social connection in-
formation among users. By taking advantage of some well-known similarity functions,
like Vector Space Similarity (VSS) and Pearson Correlation Coefficient (PCC), we can
calculate the top-k similar users for every single user in the user-item rating matrix.
These users can be treated as implicit social connections between users, and the re-
lationships can be plugged in our framework to improve the prediction accuracy of
traditional recommender systems.

The experimental results on Epinions and MovieLens datasets show that our method
outperforms state-of-the-art collaborative filtering and social trust-based recommenda-
tion algorithms, especially when users have very few ratings. Moreover, the complexity
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analysis indicates that our approach can be applied to very large datasets, since it
scales linearly with the number of observations.

The remainder of this article is organized as follows. In Section 2, we provide an
overview of several major approaches for recommender systems and other related work.
Section 3 presents our work on recommender systems with the social trust ensemble.
In Section 4, we illustrate how to extend our work to traditional recommender systems
which do not have social network information. The results of an empirical analysis are
presented in Section 5, followed by the conclusions and future work in Section 6.

2. RELATED WORK

Recommendation techniques have been widely studied in research communities of
information retrieval [Canny 2002; Hofmann 2003; 2004; Jin et al. 2004; Liu and Yang
2008; Yu et al. 2009; Zhang and Koren 2007], machine learning [Rennie and Srebro
2005; Salakhutdinov and Mnih 2008a; 2008b; Si and Jin 2003; Zhu et al. 2009], and
data mining [Bell et al. 2007; Koren 2008; 2009]. In this section, we review several
major approaches for recommender systems, including: (1) traditional recommender
systems which are mainly based on collaborative filtering techniques, and (2) trust-
aware recommender systems which have drawn lots of attention recently.

2.1. Traditional Recommender Systems

In this section, we review several major approaches for recommender systems, espe-
cially for collaborative filtering. Two types of collaborative filtering approaches are
widely studied: memory based and model based.

Among all of these methods, memory-based approaches are the most popular methods
and they are widely adopted in commercial collaborative filtering systems [Linden
et al. 2003; Resnick et al. 1994]. These methods employ different strategies to find
similar users and items for making the predictions, which are known as user-based
approaches [Breese et al. 1998; Herlocker et al. 1999; Jin et al. 2004; Ma et al. 2007]
and item-based approaches [Deshpande and Karypis 2004; Linden et al. 2003; Sarwar
et al. 2001], respectively. To predict a rating Rij of a given item v j for an active user
ui, user-based methods search for other users similar to the user ui and utilize their
ratings to the item v j for prediction, while item-based methods leverage the ratings of
other items similar to the item v j from the user ui instead. In order to take advantage
of these two types of methods, Wang et al. [2006] and Ma et al. [2007] proposed two
fusion models to combine the user-based method with the item-based method.

In addition to memory-based methods, model-based approaches, which employ sta-
tistical and machine learning techniques to learn models from the data, also play an
important role in collaborative filtering research. Examples of model-based approaches
include the clustering model [Kohrs and Merialdo 1999], aspect models [Hofmann 2003;
2004; Si and Jin 2003], the latent factor model [Canny 2002], the Bayesian hierarchical
model [Zhang and Koren 2007], and the ranking model [Liu and Yang 2008]. Kohrs and
Merialdo [1999] presented an algorithm for collaborative filtering based on hierarchical
clustering, which tried to balance both robustness and accuracy of predictions, espe-
cially when few data were available. Hofmann [2003] proposed an algorithm based on a
generalization of probabilistic latent semantic analysis to continuous-valued response
variables.

Recently, several matrix factorization methods [Rennie and Srebro 2005; Salakhut-
dinov and Mnih 2008a; 2008b; Srebro and Jaakkola 2003] have been proposed for
collaborative filtering. These methods focus on factorizing the user-item rating matrix
using low-rank representations, and then utilize them to make further predictions. The
motivation behind a low-dimensional factorization model is that there is only a small
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number of factors that are important, and a user’s preference vector is determined by
how each factor applies to that user.

Low-rank matrix approximations based on minimizing the sum-squared errors can
be easily solved using Singular Value Decomposition (SVD), and a simple and efficient
Expectation Maximization (EM) algorithm for solving weighted low-rank approxima-
tion is proposed in Srebro and Jaakkola [2003]. In Srebro et al. [2004], the authors
proposed a matrix factorization method to constrain the norms of U and V instead
of their dimensionality. Salakhutdinov et al. presented a probabilistic linear model
with Gaussian observation noise in Salakhutdinov and Mnih [2008b]. In Salakhutdi-
nov and Mnih [2008a], the Gaussian-Wishart priors are placed on the user and item
hyperparameters. Although low-dimensional methods are proved very effective and
efficient, these methods still suffer several disadvantages that are unveiled. In the
SVD method, as well as other well-known methods such as the weighted low-rank
approximation method [Srebro and Jaakkola 2003], Probabilistic Principal Compo-
nent Analysis (PPCA) [Tipping and Bishop 1999], Probabilistic Matrix Factorization
(PMF) [Salakhutdinov and Mnih 2008b], and Constrained Probabilistic Matrix Fac-
torization [Salakhutdinov and Mnih 2008b], the latent features are uninterpretable,
and there is no range constraint bound on the latent features’ vectors. The lack of
interpretability results in the improper modeling of the latent factors, hence down-
grades the recommendation accuracy. In Zhang et al. [2006], a nonnegative constraint
is imposed on both user-specific features U and item-specific features V (nonnegative
matrix factorization), but this work is also unable to interpret the physical meanings
of the latent factors. Furthermore, low-rank approximation methods also suffer the
data sparsity problem. Hence, in this article, we propose a novel matrix factorization
method to solve the analyzed problems and remedy the aforementioned deficiencies.

2.2. Trust-Aware Recommender Systems

Recall that all the previous methods for recommender systems are based on the
assumption that users are independent and identically distributed, and ignore the
social trust relationships between users, which is not consistent with the reality
that we normally ask trusted friends for recommendations. Based on this intuition,
many researchers have recently started to analyze trust-based recommender systems
[Andersen et al. 2008; Bedi et al. 2007; Ma et al. 2008; Massa and Avesani 2004; 2007].

Andersen et al. [2008] developed a set of five natural axioms that a trust-based
recommendation system might be expected to satisfy, and then proved that no system
can simultaneously satisfy all the axioms. Apparently, this work is out of the scope of
this article since we focus on how to employ both the social trust network and user-
item matrix to provide more accurate and realistic recommendations. In Massa and
Avesani [2004; 2007], the authors studied trust-aware recommender systems. Their
work replaces the similarity finding process with the use of a trust metric which is
able to propagate trust over the trust network and to estimate a trust weight. The
experiments on a large real dataset show that this work increases the coverage (number
of ratings that are predictable) while not reducing accuracy (the error of predictions).
Bedi et al. [2007] proposed a trust-based recommender system for the semantic Web;
this system runs on a server with the knowledge distributed over the network in the
form of ontologies, and uses the web of trust to generate recommendations. Trust-based
methods have become a popular research topic recently, however, there are several
problems with previous methods. Firstly, these approaches only employ some heuristics
to generate recommendations while the relationship between the trust network and
the user-item matrix has not been studied systematically. Moreover, these methods are
not scalable to very large datasets, since they may need to calculate the pairwise user
similarities and pairwise user trust scores.
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Fig. 1. Example for trust-based recommendation.

In recent work proposed in Ma et al. [2008], the authors developed a factor analysis
method based on the probabilistic graphical model which fuses the user-item matrix
with the users’ social trust networks by sharing a common latent low-dimensional user
feature matrix. The experimental analysis shows that this method generates better
recommendations than nonsocial collaborative filtering algorithms. However, the dis-
advantage of this work is that although the users’ social trust network is integrated
into the recommender systems by factorizing the social trust graph, real, world rec-
ommendation processes are not reflected in the model. This drawback not only causes
lack of interpretability in the model, but also affects the recommendation qualities. A
more novel and realistic approach is needed to model the trust-aware recommendation
problem.

3. RECOMMENDATION WITH SOCIAL TRUST ENSEMBLE

Traditional recommender system techniques, like collaborative filtering, only utilize
the information of the user-item rating matrix for recommendations while ignoring the
social trust relations among users. As online social networks have grown exponentially,
incorporating social trust information into recommender systems is becoming more
and more important. In this section, we first describe the trust-aware recommendation
problem in Section 3.1, and then provide the solution in Sections 3.2, 3.3, and 3.4.

3.1. Problem Description

In the real world, the process of the recommendation scenario includes two central
elements: the trust network and the favors of these friends, which can essentially be
modeled by the examples of the trust graph in Figure 1(a) and the user-item rating
matrix in Figure 1(b), respectively. In the trust graph illustrated in Figure 1(a), totally,
5 users (nodes, from u1 to u5) are connected with 9 relations (edges) between users, and
each relation is associated with a weight Sij in the range (0, 1] to specify how much user
ui knows or trusts user uj . Normally, the trust relations in the online trust network
are explicitly stated by online users. As illustrated in Figure 1(b), each user also rated
some items (from v1 to v6) on a 5-point integer scale to express the extent of the favor of
each item (normally, 1, 2, 3, 4 and 5 represent “hate”, “don’t like”, “neutral”, “like” and
“love”, respectively). The problem we study in this article is how to predict the missing
values for the users effectively and efficiently by employing the trust graph and the
user-item rating matrix.

3.2. User Features Learning

In order to learn the characteristics or features of the users, we employ matrix fac-
torization to factorize the user-item matrix. The idea of user-item matrix factorization
is to derive a high-quality l-dimensional feature representation U of users and V of
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items based on analyzing the user-item matrix R. Suppose in a user-item rating ma-
trix, we have m users, n items, and rating values within the range [0, 1]. Actually, most
recommender systems use integer rating values from 1 to Rmax to represent the users’
judgements on items. In this article, without loss of generality, we map the ratings
1, ..., Rmax to the interval [0, 1] using the function f (x) = x/Rmax. Let Rij represent the
rating of user ui for item v j , and U ∈ Rl×m and V ∈ Rl×n be latent user and item feature
matrices, with column vectors Ui and Vj representing the l-dimensional user-specific
and item-specific latent feature vectors of user ui and item v j , respectively. Note that
the solutions of U and V are not unique. In Salakhutdinov and Mnih [2008b], the
conditional distribution over the observed ratings is defined as:

p(R|U, V, σ 2
R) =

m∏
i=1

n∏
j=1

[
N

(
Rij |g(U T

i Vj), σ 2
R

)]IR
ij

, (1)

where N (x|μ, σ 2) is the probability density function of the Gaussian distribution with
mean μ and variance σ 2, and IR

ij is the indicator function that is equal to 1 if user
ui rated item v j and equal to 0 otherwise. The function g(x) is the logistic function
g(x) = 1/(1 + exp(−x)), which makes it possible to bound the range of U T

i Vj within the
range [0, 1]. The zero-mean spherical Gaussian priors are also placed on user and item
feature vectors.

p(U |σ 2
U ) =

m∏
i=1

N (Ui|0, σ 2
U I), p(V |σ 2

V ) =
n∏

j=1

N (Vj |0, σ 2
V I) (2)

Hence, through a Bayesian inference, we have

p(U, V |R, σ 2
R, σ 2

U , σ 2
V ) ∝ p(R|U, V, σ 2

R)p(U |σ 2
U )p(V |σ 2

V )

=
m∏

i=1

n∏
j=1

[
N

(
Rij |g(U T

i Vj), σ 2
R

)]IR
ij

×
m∏

i=1

N (Ui|0, σ 2
U I) ×

n∏
j=1

N (Vj |0, σ 2
V I). (3)

The graphical model of Eq. (3) is shown in Figure 2(a). This equation represents the
method on how to derive the users’ latent feature space or users’ characteristics purely
based on the user-item rating matrix without considering the favors of users’ trusted
friends. In the next section, we will systematically illustrate how to recommend based
on the tastes of trusted friends.

3.3. Recommendations by Trusted Friends

In this section, we analyze how our social trust networks affect our decisions or behav-
iors, and propose a method to recommend only by using the tastes of trusted friends.

Suppose we have a directed social trust graph G = (U , E), where the vertex set
U = {ui}m

i=1 represents all the users in a social trust network and the edge set E
represents the trust relations between users. Let S = {Sij} denote the m× m matrix of
G, which is also called the social trust matrix in this article. For a pair of vertices, ui and
uj , let Sij ∈ (0, 1] denote the weight associated with an edge from ui to uj , and Sij = 0,
otherwise. The physical meaning of the weight Sij can be interpreted as how much a
user ui trusts or knows user uj in a social network. Note that social trust matrix S is
an asymmetric matrix, since in a trust-based social network, user ui trusting uj does
not necessary indicate user uj trusts ui.
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Fig. 2. Graphical models.

As analyzed in Section 1, we always turn to our friends for recommendations since
we trust our friends. We also believe that most probably we will like the items (books,
music, movies, etc.) that our trusted friends recommend. Even if the recommended
items are not the types we like, we still have a high probability to be influenced by
our trusted friends. In the real world, suppose a user wants to see the movie The Dark
Knight (suppose it is the item v1 in Figure 1(b)), which is now playing at the theaters,
but he/she knows nothing about the movie, like user u1 in Figure 1(b). What this user,
normally do is to take into account his/her trusted friends’ recommendations. Among
all of his/her trusted friends in Figure 1(a), u2 and u4 rated this movie as 4 and 5, and
u1 trusts u4 (weight 1.0) more than u2 (weight 0.6). Based on the information, there is
a very high probability that u1 will draw the conclusion that The Dark Knight is a very
good movie worth watching.

From the preceding analysis, we can generalize the preceding social process as

R̂ik =

∑
j∈T (i)

RjkSij

|T (i)| , (4)
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where R̂ik is the prediction of the rating that user ui would give item v j , Rjk is the score
that user uj gave item vk, T (i) is the friends set that user ui trusts, and |T (i)| is the
number of trusted friends of user ui in the set T (i). |T (i)| can be merged into Sij since
it is the normalization term of trust scores. Hence, Eq. (4) can be simplified as

R̂ik =
∑

j∈T (i)

RjkSij . (5)

Then the prediction of the ratings that user ui gives to all the items can be inferred as⎛⎜⎜⎝
R̂i1

R̂i2
...

R̂in

⎞⎟⎟⎠ =

⎛⎜⎝R11 R21 ... Rm1
R12 R22 ... Rm2
... ... ... ...

R1n R2n ... Rmn

⎞⎟⎠
⎛⎜⎝ Si1

Si2
...

Sim

⎞⎟⎠ . (6)

We can then infer that for all the users to obtain

R̂ = SR, (7)

where SR can be interpreted as the recommendations purely based on trusted friends’
tastes.

From the social trust network aspect, we define the conditional distribution over the
observed ratings as

p(R|S,U, V, σ 2
R) =

m∏
i=1

n∏
j=1

⎡⎣N

⎛⎝Rij |g
⎛⎝ ∑

k∈T (i)

SikU T
k Vj

⎞⎠ , σ 2
S

⎞⎠⎤⎦IR
ij

, (8)

where Sik is normalized by |T (i)|, which is the number of trusted friends of user ui in
the set T (i). IR

ij is the indicator function that is equal to 1 if user i rated item j and
equal to 0 otherwise.

Hence, similar to Eq. (3), through a Bayesian inference, we have

p(U, V |R, S, σ 2
S, σ 2

U , σ 2
V ) ∝ p(R|S,U, V, σ 2

S)p(U |S, σ 2
U )p(V |S, σ 2

V ). (9)

In Eq. (9), we can assume that S is independent with the low-dimensional matrices U
and V , then this equation can be changed to

p(U, V |R, S, σ 2
S, σ 2

U , σ 2
V ) ∝ p(R|S,U, V, σ 2

S)p(U |σ 2
U )p(V |σ 2

V ),

=
m∏

i=1

n∏
j=1

⎡⎣N

⎛⎝Rij |g
⎛⎝ ∑

k∈T (i)

SikU T
k Vj

⎞⎠ , σ 2
S

⎞⎠⎤⎦IR
ij

×
m∏

i=1

N (Ui|0, σ 2
U I) ×

n∏
j=1

N (Vj |0, σ 2
V I), (10)

where p(U |σ 2
U ) and p(V |σ 2

V ) are zero-mean spherical Gaussian priors on user and item
feature vectors. This equation specifies the method to recommend purely based on
users’ trusted friends’ tastes. The graphical model is shown in Figure 2(b).

3.4. Social Trust Ensemble

In Section 3.2, given the user-item rating matrix, the observed rating Rij is interpreted
by the user ui ’s favor on item v j , while in Section 3.3, given the user-item rating matrix
and users’ social trust network, the observed rating Rij is realized as the favors on
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item v j of user ui ’s trusted friends. Actually, both of the preceding assumptions are
partially right since in the real-world situation, every user has his/her own taste and
at the same time, every user may be influenced by his/her friends he/she trusts. Hence,
in order to define the model more realistically, every observed rating in the user-item
matrix should reflect both of these two factors. Based on this motivation, we model the
conditional distribution over the observed ratings as

p(U, V |R, S, σ 2, σ 2
U , σ 2

V )

=
m∏

i=1

n∏
j=1

⎡⎣N

⎛⎝Rij |g
⎛⎝αU T

i Vj + (1 − α)
∑

k∈T (i)

SikU T
k Vj

⎞⎠ , σ 2

⎞⎠⎤⎦IR
ij

×
m∏

i=1

N (Ui|0, σ 2
U I) ×

n∏
j=1

N (Vj |0, σ 2
V I). (11)

In Eq. (11), the users’ favors and the trusted friends’ favors are smoothed by the pa-
rameter α, which naturally fuses an appropriate amount of real-world recommendation
processes into the recommender systems. The parameter α controls how much users
trust themselves or their trusted friends. The graphical model of our method is shown
in Figure 3(c).

The log of the posterior distribution for the recommendations is given by

ln p(U, V |R, S, σ 2, σ 2
U , σ 2

V )

= − 1
2σ 2

m∑
i=1

n∑
j=1

IR
ij

⎛⎝Rij − g

⎛⎝αU T
i Vj + (1 − α)

∑
k∈T (i)

SikU T
k Vj

⎞⎠⎞⎠2

− 1
2σ 2

U

m∑
i=1

U T
i Ui − 1

2σ 2
V

n∑
j=1

V T
j Vj

−1
2

⎛⎝ m∑
i=1

n∑
j=1

IR
ij

⎞⎠ lnσ 2 − 1
2

(mllnσ 2
U + nllnσ 2

V ) + C, (12)

where C is a constant that does not depend on the parameters. Maximizing the log-
posterior over two latent features with hyperparameters (i.e., the observation noise
variance and prior variances) kept fixed is equivalent to minimizing the following
sum-of-squared-errors objective functions with quadratic regularization terms

L(R, S,U, V ) = 1
2

m∑
i=1

n∑
j=1

IR
ij

(
Rij − g

(
αU T

i Vj + (1 − α)
∑

k∈T (i)

SikU T
k Vj

))2

+λU

2
‖U‖2

F + λV

2
‖V ‖2

F , (13)

where λU = σ 2/σ 2
U , λV = σ 2/σ 2

V , and ‖ · ‖2
F denotes the Frobenius norm.
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A local minimum of the objective function given by Eq. (13) can be found by perform-
ing gradient descent in Ui, Vj ,

∂L
∂Ui

= α

n∑
j=1

IR
ij g′

⎛⎝αU T
i Vj + (1 − α)

∑
k∈T (i)

SikU T
k Vj

⎞⎠ Vj

×
⎛⎝g(αU T

i Vj + (1 − α)
∑

k∈T (i)

SikU T
k Vj) − Rij

⎞⎠
+ (1 − α)

∑
p∈B(i)

n∑
j=1

IR
pjg

′

⎛⎝αU T
p Vj + (1 − α)

∑
k∈T (p)

SpkU T
k Vj

⎞⎠
×

⎛⎝g

⎛⎝αU T
p Vj + (1 − α)

∑
k∈T (p)

SpkU T
k Vj

⎞⎠ − Rpj

⎞⎠ SpiVj + λU Ui,

∂L
∂Vj

=
m∑

i=1

IR
ij g′

⎛⎝αU T
i Vj + (1 − α)

∑
k∈T (i)

SikU T
k Vj

⎞⎠
×

⎛⎝g

⎛⎝αU T
i Vj + (1 − α)

∑
k∈T (i)

SikU T
k Vj

⎞⎠ − Rij

⎞⎠
×

⎛⎝αUi + (1 − α)
∑

k∈T (i)

SikU T
k

⎞⎠ + λV Vj, (14)

where g′(x) is the derivative of logistic function g′(x) = exp(x)/(1 + exp(x))2 and B(i)
is the set that includes all the users who trust user ui. In order to reduce the model
complexity, in all of the experiments we conduct in Section 5, we set λU = λV .

3.5. Complexity Analysis

The main computation of gradient methods is evaluating the object function L and its
gradients against variables. Because of the sparsity of matrices R and S, the compu-
tational complexity of evaluating the object function L is O(ρRl + ρRkl), where ρR is
the number of nonzero entries in the matrix R, and k is the average number of friends
that a user trusts. Since almost all of the online social networks fit the power-law dis-
tribution, a large long tail of users only have few trusted friends. This indicates that
the value of k is relatively small. The computational complexities for the gradients ∂L

∂U
and ∂L

∂V in Eq. (14) are O(ρR p l + ρR p kl) and O(ρRl + ρRkl), respectively, where p is the
average number of friends who trust a user, which is also a small value. Actually, in
a social trust graph, the value of k is always equal to the value of p, which is 9.91 in
the dataset we employ in Section 5. Therefore, the total computational complexity in
one iteration is O(ρR p l+ρR p kl), which indicates that theoretically, the computational
time of our method is linear with respect to the number of observations in the user-item
matrix R. This complexity analysis shows that our proposed approach is very efficient
and can scale to very large datasets.

ACM Transactions on Intelligent Systems and Technology, Vol. 2, No. 3, Article 29, Publication date: April 2011.



Learning to Recommend with Explicit and Implicit Social Relations 29:11

4. RECOMMENDATION WITH IMPLICIT RELATIONS

In Section 3, we illustrate how to improve recommender systems when both the user-
item rating matrix and users’ social graph are available. However, the users’ social
graph is not always available in recommender systems. Actually, our proposed frame-
work is quite general and by taking advantage of some similarity calculation functions,
we can find some “pseudo” trusted friends for every user.

4.1. Similarity Function

Since we have the rating information of all the users, the evaluation of similarities
between two users can be calculated by measuring the issued ratings of these two
users. There are two very popular methods we can borrow in the literature, which are
Vector Space Similarity (VSS) and Pearson Correlation Coefficient (PCC) [Breese et al.
1998]. VSS is employed to define the similarity between two users i and f based on the
items they rated in common. We have

Sim(i, f ) =

∑
j∈I(i)∩I( f )

Rij · Rf j√ ∑
j∈I(i)∩I( f )

R2
i j ·

√ ∑
j∈I(i)∩I( f )

R2
f j

, (15)

where j belongs to the subset of items which user i and user f both rated. Rij is the
rate user i gave item j. From the previous definition, we can see that VSS similarity
in Sim(i, f ) is within the range [0, 1], and a larger value means users i and f are more
similar.

Actually, the similarity calculation in VSS does not consider that different users may
have different rating styles. Some users may potentially give a higher ratings to all the
products while some other users probably tend to issue lower ratings. Hence, PCC is
proposed to solve this problem

Sim(i, f ) =

∑
j∈I(i)∩I( f )

(Rij − Ri) · (Rf j − Rf )√ ∑
j∈I(i)∩I( f )

(Rij − Ri)2 ·
√ ∑

j∈I(i)∩I( f )

(Rf j − Rf )2

, (16)

where Ri represents the average rate of user i. From this definition, user similarity
Sim(i, f ) is ranging from [−1, 1], and a larger value means users i and f are more
similar. For consistency with VSS similarities, we employ a mapping function f (x) =
(x + 1)/2 to bound the range of PCC similarities into [0, 1].

4.2. Implicit Friends

With the definition of similarity function, for every user in the user-item rating matrix,
we can calculate the top-k similar users as implicit trusted friends. Then, we can use
Eq. (13) to learn the latent features U and V . The weight Sik in Eq. (13) can be defined
as

Sik = Sim(i, k)∑
f ∈T (i) Sim(i, f )

. (17)

5. EMPIRICAL ANALYSIS

In this section, we conduct several experiments to compare the recommendation qual-
ities of our Recommendation with Social Trust Ensemble (RSTE) approach with other
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state-of-the-art collaborative filtering and trust-aware recommendation methods. Our
experiments are intended to address the following questions.

(1) How does our approach compare with published state-of-the-art collaborative fil-
tering and trust-aware recommendation algorithms?

(2) How does the model parameter α affect the accuracy of prediction?
(3) What is the performance comparison on users with different observed ratings?
(4) Can our algorithm achieve good performance even if users have few observed rating

records?
(5) Is our algorithm efficient when training the model?

5.1. Metrics

We use two metrics, the Mean Absolute Error (MAE) and the Root Mean Square Error
(RMSE), to measure the prediction quality of our proposed approach in comparison
with other collaborative filtering and trust-aware recommendation methods.

The metrics MAE is defined as

MAE =
∑

i, j |ri, j − r̂i, j |
N

, (18)

where ri, j denotes the rating user i gave to item j, r̂i, j denotes the rating user i gave
to item j as predicted by a method, and N denotes the number of tested ratings. The
metrics RMSE is defined as

RMSE =
√∑

i, j(ri, j − r̂i, j)2

N
. (19)

5.2. Experiments with Explicit Social Information

5.2.1. Dataset Description. We choose Epinions as the data source for our experiments on
recommendation with explicit social trust information. Epinions.com is a well-known
knowledge sharing site and review site which was established in 1999. In order to add
reviews, users (contributors) need to register for free and begin submitting their own
personal opinions on topics such as products, companies, movies, or reviews issued
by other users. Users can also assign products or reviews integer ratings from 1 to
5. These ratings and reviews will influence future customers when they are about
to decide whether a product is worth buying or a movie is worth watching. Every
member of Epinions maintains a “trust” list which presents a social network of trust
relationships between users. Epinions is thus an ideal source for experiments on social
trust recommendation.

The dataset used in our experiments is collected by crawling the Epinions.com site
on January 2009. It consists of 51,670 users who have rated a total of 83,509 different
items. The total number of ratings is 631,064. The density of the user-item rating ma-
trix is less than 0.015%. We can observe that the user-item rating matrix of Epinions is
very sparse, since the densities for the two most famous collaborative filtering datasets
Movielens (6,040 users, 3,900 movies, and 1,000,209 ratings) and Eachmovie (74,424
users, 1,648 movies, and 2,811,983 ratings) are 4.25% and 2.29%, respectively. More-
over, an important factor for why we choose the Epinions dataset is that user social
trust network information is not included in the Movielens and Eachmovie datasets.
The statistics of the Epinions user-item rating matrix is summarized in Table I. As to
the user social trust network, the total number of issued trust statements is 511,799.
The statistics of this data source is summarized in Table II.
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Table I. Statistics of User-Item Rating Matrix of Epinions

Statistics User Item
Max. Num. of Ratings 1960 7082
Avg. Num. of Ratings 12.21 7.56

Table II. Statistics of Social Trust Network of Epinions

Statistics Trust per User Be Trusted per User
Max. Num. 1763 2443
Avg. Num. 9.91 9.91

Table III. Performance Comparisons (A Smaller MAE or RMSE Value Means a Better Performance)

TrainingMetrics Dimensionality = 5
Data UserMeanItemMean NMF PMF TCF Trust SoRec RSTE

90% MAE 0.9134 0.9768 0.8738 0.8676 0.9005 0.9054 0.8442 0.8377
RMSE 1.1688 1.2375 1.1649 1.1575 1.1697 1.1959 1.1333 1.1109

80% MAE 0.9285 0.9913 0.8975 0.8951 0.9044 0.9221 0.8638 0.8594
RMSE 1.1817 1.2584 1.1861 1.1826 1.1761 1.2140 1.1530 1.1346

TrainingMetrics Dimensionality = 10
Data UserMeanItemMean NMF PMF TCF Trust SoRec RSTE

90% MAE 0.9134 0.9768 0.8712 0.8651 0.9005 0.9039 0.8404 0.8367
RMSE 1.1688 1.2375 1.1621 1.1544 1.1697 1.1917 1.1293 1.1094

80% MAE 0.9285 0.9913 0.8951 0.8886 0.9044 0.9215 0.8580 0.8537
RMSE 1.1817 1.2584 1.1832 1.1760 1.1761 1.2132 1.1492 1.1256

5.2.2. Comparison. In this section, in order to show the performance improvement of
our RSTE approach, we compare our method with the following approaches.

(1) UserMean. This method uses the mean value of every user to predict the missing
values.

(2) ItemMean. This method utilizes the mean value of every item to predict the missing
values.

(3) NMF. This method is originally proposed in Lee and Seung [1999] for image anal-
ysis. However, it is widely used in collaborative filtering recently. It only uses a
user-item matrix for recommendations.

(4) PMF. This method is proposed by Salakhutdinov and Minh [2008b]. It only uses the
user-item matrix for the recommendations, and it is based on probabilistic matrix
factorization.

(5) TCF. This method is a well-known trust-aware collaborative filtering method pro-
posed in Massa and Avesani [2004].

(6) Trust. This is the method purely using trusted friends’ tastes in making recommen-
dations. It is proposed in Section 3.3 in this article. It is also a special case of RSTE
when α = 0.

(7) SoRec. This is the method proposed in Ma et al. [2008]. It is a social trust-aware
recommendation method that factorizes the user-item rating matrix and users’
social trust network by sharing the same user latent space.

We use different amounts of training data (90%, 80%) to test the algorithms. Train-
ing data 90%, for example, means we randomly select 90% of the ratings from the
Epinions dataset as the training data to predict the remaining 10% of ratings. Random
selection was carried out 5 times independently. The experimental results using 5 and
10 dimensions to represent the latent features are shown in Table III.

The parameter settings of our approach are α = 0.4 for both 90% training data and
80% training data, λU = λV = 0.001, and in all the experiments conducted in the follow-
ing sections, we set all of the parameters λU , λV equal to 0.001. From Table III, we can
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Fig. 3. Performance comparison on different users.

observe that our approach RSTE outperforms the other methods. In general, two social
trust recommendation approaches SoRec and RSTE all perform better than the NMF
and PMF methods (only using the user-item matrix for recommendations). However,
the trust method performs worse than the NMF and PMF method, which indicates
purely utilizing trusted friends’ tastes to recommend is not applicable. Among these
three trust-aware recommendation methods, our RSTE method generally achieves bet-
ter performance than the SoRec and trust methods on both MAE and RMSE. This
demonstrates that our interpretation on the formation of the ratings is realistic and
reasonable.

5.2.3. Performance on Different Users. One challenge of the recommender systems is that
it is difficult to recommend items to users who have very few ratings. Hence, in order to
compare our approach with the other methods thoroughly, we first group all users based
on the number of observed ratings in the training data, and then evaluate prediction
accuracies of different user groups. The experimental results are shown in Figure 3.
Users are grouped into 6 classes: “1 − 10”, “11 − 20”, “21 − 40”, “41 − 80”, “81 − 160”,
and “> 160”, denoting how many ratings users have rated.

Figure 3(a) summarizes the distributions of testing data according to groups in the
training data (90% as training data). For example, there are a total 3,360 user-item
pairs to be predicted in the testing dataset in which the related users in the training
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Fig. 4. Impact of parameter α (dimensionality = 10).

dataset have rating numbers from 1 to 10. In Figure 3(b) and Figure 3(c), we observe
that our RSTE algorithm consistently performs better than other methods, especially
when few user ratings are given. When users’ rating records are ranging from 1 to 80,
our RSTE method performs much better than the trust, PMF and SoRec approaches.

5.2.4. Impact of Parameter α. In our method proposed in this article, the parameter α
balances the information from the users’ own characteristics and their friends’ favors. It
controls how much our method should trust users themselves and their friends. If α = 1,
we only mine the user-item rating matrix for matrix factorization, and simply employ
users’ own tastes in making recommendations. If α = 0, we only extract information
from the social trust graph to predict users’ preferences purely from the friends they
trust. In other cases, we fuse information from the user-item rating matrix and the
user social trust network for probabilistic matrix factorization and, furthermore, to
predict ratings for the users.

Figure 4 shows the impacts of α on MAE and RMSE. We observe that the value of
α impacts the recommendation results significantly, which demonstrates that fusing
the users’ own tastes with their friends’ favors greatly improves the recommenda-
tion accuracy. No matter whether using 90% training data or 80% training data, as α
increases, the MAE and RMSE decrease (prediction accuracy increases) at first, but
when α surpasses a certain threshold, the MAE and RMSE increase (prediction accu-
racy decreases) with further increase of the value of α. This phenomenon confirms the
intuition that purely using the user-item rating matrix or purely using the users’ social
trust network for recommendations cannot generate better performance than fusing
these two factors together.
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Fig. 5. Efficiency analysis (90% as training data).

From Figure 4(a) and Figure 4(b), when using 90% ratings as training data, we
observe that our RSTE method achieves the best performance when α is around 0.4,
while smaller values like α = 0.1 or larger values like α = 0.7 can potentially degrade
the model performance. This indicates that we need to trust more about the tastes of
users’ trusted friends than users’ own tastes, since the training data of the user-item
matrix is very sparse, which can hardly learn accurate characteristics of the users.
In Figure 4(c) and Figure 4(c), when using 80% ratings as training data, the optimal
value of α is also around 0.4. However, less ratings for users will lead to an overall
degradation of the recommendation results.

5.2.5. Training Efficiency Analysis. The complexity analysis in Section 3.5 states that
the computational complexity of our approach is linear with respect to the number of
ratings, which shows that our approach is scalable to very large datasets. Actually, our
approach is very efficient even when using a very simple gradient descent method. In
the experiments using 90% of the data as training data, our method needs less than
400 iterations for training, and each iteration only requires less than 20 seconds. All
the experiments are conducted on a normal personal computer containing an Intel
Pentium D CPU (3.0 GHz, Dual Core) and 1G memory.

Figure 5(a) and Figure 5(b) show the performance (MAE and RMSE) changes with
the iterations. We observe that when using a large value of α, such as α = 1 or α = 0.7,
at the end of the training, the model begins to overfit (especially for the RMSE), while
a relatively smaller α, such as α = 0 or α = 0.4, does not have the overfitting problem.
These experiments clearly demonstrate that in this dataset, an approach ignoring the
social trust information can cause the overfitting problem, and that predictive accuracy
can be improved by incorporating an appropriate amount of social trust information.

5.3. Experiments with Implicit Social Information

In this section, we illustrate the performance of our framework on traditional user-item
rating matrix.

5.3.1. Dataset Description. We evaluate our algorithms on the MovieLens dataset, which
is commonly used in previous work. The MovieLens dataset contains 943 users, 1,682
movies, and 100,000 ratings in the scale of one to five. We map the ratings 1,2,3,4, and
5 to the interval [0, 1] using the linear function t(x) = x/5.

5.3.2. Comparison. We compare our method with UserMean, ItemMean, NMF, and
PMF. The experimental results are shown in Table IV. In our RSTE method, we set
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Table IV. Performance Comparisons on MovieLens Dataset (A Smaller MAE or
RMSE Value Means a Better Performance)

Training Metrics Dimensionality = 10
Data UserMean ItemMean NMF PMF RSTE

80% MAE 0.839 0.827 0.770 0.745 0.732
RMSE 1.047 1.036 0.981 0.942 0.931
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Fig. 6. Impact of parameter k.

α = 0.3 and k = 80, which means we choose 80 most similar users for every user. We
can observe that our method performs better than other methods, which shows that
our method not only works well in trust-aware recommender systems, but can also
generate very good performance in traditional recommender systems.

5.3.3. Impact of Parameter k. Basically, the parameter α on the MovieLens dataset shares
a similar trend with the Epinions dataset. Hence, we do not analyze the details in this
section. Instead, we will show the impact of parameter k. Parameter k is introduced
to specify how many similar users should be selected for every user. These similar
users perform as implicit social friends for targeted users. A small value of k probably
is not enough for representing friends’ tastes while a large value of k will introduce
some noise (some computed friends are no longer similar with the targeted user). From
Figure 6, we can see that the best k value is around 80, and larger or smaller k values
will hurt the recommendation performance, which confirms our intuition.

6. CONCLUSIONS AND FUTURE WORK

This article is motivated by the fact that a user’s trusted friends on the Web will
affect this user’s online behavior. Based on the intuition that every user’s decisions on
the Web should include both the user’s characteristics and the user’s trusted friends’
recommendations, we propose a novel, effective, and efficient probabilistic matrix fac-
torization framework for recommender systems. Experimental analysis on the Epinions
and MovieLens datasets shows the promising future of our proposed method. Moreover,
the method introduced in this article, by using probabilistic matrix factorization, is not
only working in trust-aware recommender systems, but also applicable to traditional
recommender systems.

In this article, although we employ trusted friends’ opinions in the social trust net-
work to make recommendations for users, we do not consider the possible diffusions
of trust between various users. Under the circumstance that both the user-item rating
matrix and the trust relations of a social network are very sparse, the diffusions of
trust relations become inevitable, since this consideration will help to alleviate the
data sparsity problem and will potentially increase prediction accuracy. We plan to
employ the diffusion processes in our future work.
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In many popular applications on the Web, users not only can keep a list of trust rela-
tionships, but also have the rights to establish a list of distrust or block relationships.
If a user uj is in the distrust list of a user ui, most probably, it is because user ui thinks
user uj ’s taste is totally different from him/her. Actually, this information is very useful
on recommender systems. Unfortunately, to the best of our knowledge, no previous
work can employ this information well in recommender systems. The understanding
of distrust relations is still unclear to researchers: We cannot use diffusion methods to
model it due to the reason that one person’s enemy’s enemy is not necessarily the en-
emy of this person. In the future, we plan to study the formation and nature of distrust
relations, and explicitly model them in recommender systems.

As the exponential growth of online social network sites continues, the research of
social search is becoming more and more important. We also plan to develop similar
techniques to allow users’ trusted friends to influence the users’ search results or
query suggestions. The intuition behind this is that if a large number of our friends
are searching for something, it’s likely that we may be interested in that topic too. This
would be an interesting search phenomenon to explore in social networks.
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