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Abstract

Although neural machine translation (NMT)
has advanced the state-of-the-art on various
language pairs, the interpretability of NMT re-
mains unsatisfactory. In this work, we propose
to address this gap by focusing on understand-
ing the input-output behavior of NMT models.
Specifically, we measure the word importance
by attributing the NMT output to every input
word through a gradient-based method. We
validate the approach on a couple of pertur-
bation operations, language pairs, and model
architectures, demonstrating its superiority on
identifying input words with higher influence
on translation performance. Encouragingly,
the calculated importance can serve as indica-
tors of input words that are under-translated by
NMT models. Furthermore, our analysis re-
veals that words of certain syntactic categories
have higher importance while the categories
vary across language pairs, which can inspire
better design principles of NMT architectures
for multi-lingual translation.

1 Introduction

Neural machine translation (NMT) has achieved
the state-of-the-art results on a mass of language
pairs with varying structural differences, such as
English-French (Bahdanau et al., 2014; Vaswani
et al., 2017) and Chinese-English (Hassan et al.,
2018). However, so far not much is known about
how and why NMT works, which pose great chal-
lenges for debugging NMT models and designing
optimal architectures.

The understanding of NMT models has been ap-
proached primarily from two complementary per-
spectives. The first thread of work aims to under-
stand the importance of representations by analyz-
ing the linguistic information embedded in repre-
sentation vectors (Shi et al., 2016; Belinkov et al.,
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mainly done when Shilin He was interning at Tencent AI Lab.

2017) or hidden units (Bau et al., 2019; Ding et al.,
2017). Another direction focuses on understand-
ing the importance of input words by interpreting
the input-output behavior of NMT models. Pre-
vious work (Alvarez-Melis and Jaakkola, 2017)
treats NMT models as black-boxes and provides
explanations that closely resemble the attention
scores in NMT models. However, recent studies
reveal that attention does not provide meaningful
explanations since the relationship between atten-
tion scores and model output is unclear (Jain and
Wallace, 2019).

In this paper, we focus on the second thread and
try to open the black-box by exploiting the gradi-
ents in NMT generation, which aims to estimate
the word importance better. Specifically, we em-
ploy the integrated gradients method (Sundarara-
jan et al., 2017) to attribute the output to the in-
put words with the integration of first-order deriva-
tives. We justify the gradient-based approach via
quantitative comparison with black-box methods
on a couple of perturbation operations, several lan-
guage pairs, and two representative model archi-
tectures, demonstrating its superiority on estimat-
ing word importance.

We analyze the linguistic behaviors of words
with the importance and show its potential to im-
prove NMT models. First, we leverage the word
importance to identify input words that are under-
translated by NMT models. Experimental results
show that the gradient-based approach outper-
forms both the best black-box method and other
comparative methods. Second, we analyze the lin-
guistic roles of identified important words, and
find that words of certain syntactic categories have
higher importance while the categories vary across
language. For example, nouns are more important
for Chinese⇒English translation, while preposi-
tions are more important for English-French and
-Japanese translation. This finding can inspire bet-
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ter design principles of NMT architectures for dif-
ferent language pairs. For instance, a better archi-
tecture for a given language pair should consider
its own language characteristics.

Contributions Our main contributions are:

• Our study demonstrates the necessity and
effectiveness of exploiting the intermediate
gradients for estimating word importance.

• We find that word importance is useful for
understanding NMT by identifying under-
translated words.

• We provide empirical support for the design
principle of NMT architectures: essential in-
ductive bias (e.g., language characteristics)
should be considered for model design.

2 Related Work

Interpreting Seq2Seq Models Interpretability
of Seq2Seq models has recently been explored
mainly from two perspectives: interpreting in-
ternal representations and understanding input-
output behaviors. Most of the existing work fo-
cus on the former thread, which analyzes the lin-
guistic information embeded in the learned repre-
sentations (Shi et al., 2016; Belinkov et al., 2017;
Yang et al., 2019) or the hidden units (Ding et al.,
2017; Bau et al., 2019). Several researchers turn to
expose systematic differences between human and
NMT translations (Läubli et al., 2018; Schwarzen-
berg et al., 2019), indicating the linguistic proper-
ties worthy of investigating. However, the learned
representations may depend on the model imple-
mentation, which potentially limit the applicabil-
ity of these methods to a broader range of model
architectures. Accordingly, we focus on under-
standing the input-output behaviors, and validate
on different architectures to demonstrate the uni-
versality of our findings.

Concerning interpreting the input-output behav-
ior, previous work generally treats Seq2Seq mod-
els as black-boxes (Li et al., 2016; Alvarez-Melis
and Jaakkola, 2017). For example, Alvarez-Melis
and Jaakkola (2017) measure the relevance be-
tween two input-output tokens by perturbing the
input sequence. However, they do not exploit
any intermediate information such as gradients,
and the relevance score only resembles attention
scores. Recently, Jain and Wallace (2019) show
that attention scores are in weak correlation with

the feature importance. Starting from this observa-
tion, we exploit the intermediate gradients to bet-
ter estimate word importance, which consistently
outperforms its attention counterpart across model
architectures and language pairs.

Exploiting Gradients for Model Interpretation
The intermediate gradients have proven to be use-
ful in interpreting deep learning models, such as
NLP models (Mudrakarta et al., 2018; Dhamdhere
et al., 2019) and computer vision models (Sel-
varaju et al., 2017; Sundararajan et al., 2017).
Among all gradient-based approaches, the inte-
grated gradients (IG, Sundararajan et al., 2017) is
appealing since it does not need any instrumenta-
tion of the architecture and can be computed easily
by calling gradient operations. In this work, we
employ the IG method to interpret NMT models
and reveal several interesting findings, which can
potentially help debug NMT models and design
better architectures for specific language pairs.

3 Approach

3.1 Neural Machine Translation

In machine translation task, a NMT model F :
x → y maximizes the probability of a target se-
quence y = {y1, ..., yN} given a source sentence
x = {x1, ..., xM}:

P (y|x;θ) =
N∏
n=1

P (yn|y<n, x;θ)

where θ is the model parameter and y<n is a par-
tial translation. At each time step n, the model
generates an output word of the highest probabil-
ity based on the source sentence x and the partial
translation y<n. The training objective is to mini-
mize the negative log-likelihood loss on the train-
ing corpus. During the inference, beam search is
employed to decode a more optimal translation. In
this study, we investigate the contribution of each
input word xm to the translated sentence y.

3.2 Word Importance

In this work, the notion of “word importance”
is employed to quantify the contribution that a
word in the input sentence makes to the NMT
generations. We categorize the methods of word
importance estimation into two types: black-box
methods without the knowledge of the model and
white-box methods that have access to the model
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internal information (e.g., parameters and gradi-
ents). Previous studies mostly fall into the former
type, and in this study, we investigate several rep-
resentative black-box methods:

• Content Words: In linguistics, all words can
be categorized as either content or content-
free words. Content words consist mostly
of nouns, verbs, and adjectives, which carry
descriptive meanings of the sentence and
thereby are often considered as important.

• Frequent Words: We rank the relative impor-
tance of input words according to their fre-
quency in the training corpus. We do not con-
sider the top 50 most frequent words since
they are mostly punctuation and stop words.

• Causal Model (Alvarez-Melis and Jaakkola,
2017): Since the causal model is complicated
to implement and its scores closely resem-
ble attention scores in NMT models. In this
study, we use Attention scores to simulate the
causal model.

Our approach belongs to the white-box category
by exploiting the intermediate gradients, which
will be described in the next section.

3.3 Integrated Gradients

In this work, we resort to a gradient-based method,
integrated gradients (Sundararajan et al., 2017)
(IG), which was originally proposed to attribute
the model predictions to input features. It exploits
the handy model gradient information by integrat-
ing first-order derivatives. IG is implementation
invariant and does not require neural models to
be differentiable or smooth, thereby is suitable for
complex neural networks like Transformer. In this
work, we use IG to estimate the word importance
in an input sentence precisely.

Formally, let x = (x1, ..., xM ) be the input sen-
tence and x′ be a baseline input. F is a well-trained
NMT model, and F (x)n is the model output (i.e.,
P (yn|y<n, x)) at time step n. Integrated gradients
is then defined as the integral of gradients along
the straightline path from the baseline x′ to the in-
put x. In detail, the contribution of themth word in
x to the prediction of F (x)n is defined as follows.

IGnm(x) = (xm−x′m)

∫ 1

α=0

∂F (x′ + α(x− x′))n
∂xm

dα
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Figure 1: An example of (a) word importance and
(b) contribution matrix calculated by Attribution (inte-
grated gradients) on English⇒French translation task.
Input in English: “It has always taken place .” Output
in French: “Elle a toujours eu lieu .”

where ∂F (x)n
∂xm is the gradient of F (x)n w.r.t. the

embedding of the mth word. In this paper, as sug-
gested, the baseline input x′ is set as a sequence
of zero embeddings that has the same sequence
length M . In this way, we can compute the contri-
bution of a specific input word to a designated out-
put word. Since the above formula is intractable
for deep neural models, we approximate it by sum-
ming the gradients along a multi-step path from
baseline x′ to the input x.

IGnm(x) =
(xm − x′m)

S

S∑
k=0

∂F (x′ + k
S (x− x′))n
∂xm

where S denotes the number of steps that are uni-
formly distributed along the path. The IG will be
more accurate if a larger S is used. In our prelim-
inary experiments, we varied the steps and found
300 steps yielding fairly good performance.

Following the formula, we can calculate the
contribution of every input word makes to every
output word, forming a contribution matrix of size
M × N , where N is the output sentence length.
Given the contribution matrix, we can obtain the
word importance of each input word to the entire
output sentence. To this end, for each input word,
we first aggregate its contribution values to all out-
put words by the sum operation, and then normal-
ize all sums through the Softmax function. Fig-
ure 1 illustrates an example of the calculated word
importance and the contribution matrix, where an
English sentence is translated into a French sen-
tence using the Transformer model. A negative
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contribution value indicates that the input word
has negative effects on the output word.

4 Experiment

Data To make the conclusion convincing, we
first choose two large-scale datasets that are pub-
licly available, i.e., Chinese-English and English-
French. Since English, French, and Chinese all be-
long to the subject-verb-object (SVO) family, we
choose another very different subject-object-verb
(SOV) language, Japanese, which might bring
some interesting linguistic behaviors in English-
Japanese translation.

For Chinese-English task, we use WMT17
Chinese-English dataset that consists of 20.6M
sentence pairs. For English-French task, we use
WMT14 English-French dataset that comprises
35.5M sentence pairs. For English-Japanese task,
we follow (Morishita et al., 2017) to use the first
two sections of WAT17 English-Japanese dataset
that consists of 1.9M sentence pairs. Following
the standard NMT procedure, we adopt the stan-
dard byte pair encoding (BPE) (Sennrich et al.,
2016) with 32K merge operations for all language
pairs. We believe that these datasets are large
enough to confirm the rationality and validity of
our experimental analyses.

Implementation We choose the state-of-the-art
Transformer (Vaswani et al., 2017) model and the
conventional RNN-Search model (Bahdanau et al.,
2014) as our test bed. We implement the Attri-
bution method based on the Fairseq-py (Gehring
et al., 2017) framework for the above models. All
models are trained on the training corpus for 100k
steps under the standard settings, which achieve
comparable translation results. All the following
experiments are conducted on the test dataset, and
we estimate the input word importance using the
model generated hypotheses.

In the following experiments, we compare IG
(Attribution) with several black-box methods (i.e.,
Content, Frequency, Attention) as introduced in
Section 3.2. In Section 4.1, to ensure that the
translation performance decrease attributes to the
selected words instead of the perturbation oper-
ations, we randomly select the same number of
words to perturb (Random), which serves as a
baseline. Since there is no ranking for content
words, we randomly select a set of content words
as important words. To avoid the potential bias
introduced by randomness (i.e., Random and Con-

tent), we repeat the experiments for 10 times and
report the averaged results. We calculate the Atten-
tion importance in a similar manner as the Attri-
bution, except that the attention scores use a max
operation due to the better performance.

Evaluation We evaluate the effectiveness of es-
timating word importance by the translation per-
formance decrease. More specifically, unlike the
usual way, we measure the decrease of translation
performance when perturbing a set of important
words that are of top-most word importance in a
sentence. The more translation performance de-
grades, the more important the word is.

We use the standard BLEU score as the evalua-
tion metric for translation performance. To make
the conclusion more convincing, we conduct ex-
periments on different types of synthetic perturba-
tions (Section 4.1), as well as different NMT ar-
chitectures and language pairs (Section 4.2). In
addition, we compare with a supervised erasure
method, which requires ground-truth translations
for scoring word importance (Section 4.3).

4.1 Results on Different Perturbations
In this experiment, we investigate the effectiveness
of word importance estimation methods under dif-
ferent synthetic perturbations. Since the perturba-
tion on text is notoriously hard (Zhang et al., 2019)
due to the semantic shifting problem, in this exper-
iment, we investigate three types of perturbations
to avoid the potential bias :

• Deletion perturbation removes the selected
words from the input sentence, and it can
be regarded as a specific instantiation of sen-
tence compression (Cohn and Lapata, 2008).

• Mask perturbation replaces embedding vec-
tors of the selected words with all-zero vec-
tors (Arras et al., 2016), which is similar to
Deletion perturbation except that it retains
the placeholder.

• Grammatical Replacement perturbation re-
places a word by another word of the same
linguistic role (i.e., POS tags), yielding a sen-
tence that is grammatically correct but se-
mantically nonsensical (Chomsky and Light-
foot, 2002; Gulordava et al., 2018), such as
“colorless green ideas sleep furiously”.

Figure 2 illustrates the experimental results on
Chinese⇒English translation with Transformer. It
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Figure 2: Effect of three types of synthetic perturbations on Chinese⇒English translation using the Transformer.

shows that Attribution method consistently out-
performs other methods against different pertur-
bations on a various number of operations. Here
the operation number denotes the number of per-
turbed words in a sentence. Specifically, we can
make the following observations.

Important words are more influential on trans-
lation performance than the others. Under
three different perturbations, perturbing words of
top-most importance leads to lower BLEU scores
than Random selected words. It confirms the exis-
tence of important words, which have greater im-
pacts on translation performance. Furthermore,
perturbing important words identified by Attribu-
tion outperforms the Random method by a large
margin (more than 4.0 BLEU under 5 operations).

The gradient-based method is superior to com-
parative methods (e.g., Attention) in estimat-
ing word importance. Figure 2 shows that two
black-box methods (i.e., Content, Frequency) per-
form only slightly better than the Random method.
Specifically, the Frequency method demonstrates
even worse performances under the Mask pertur-
bation. Therefore, linguistic properties (such as
POS tags) and the word frequency can only par-
tially help identify the important words, but it is
not as accurate as we thought. In the meanwhile, it
is intriguing to explore what exact linguistic char-
acteristics these important words reveal, which
will be introduced in Section 5.

We also evaluate the Attention method, which
bases on the encoder-decoder attention scores at
the last layer of Transformer. Note that the Atten-
tion method is also used to simulate the best black-
box method SOCRAT, and the results show that it

is more effective than black-box methods and the
Random baseline. Given the powerful Attention
method, Attribution method still achieves best per-
formances under all three perturbations. Further-
more, we find that the gap between Attribution and
Attention is notably large (around 1.0+ BLEU dif-
ference). Attention method does not provide as ac-
curate word importance as the Attribution, which
exhibits the superiority of gradient-based methods
and consists with the conclusion reported in the
previous study (Jain and Wallace, 2019).

In addition, as shown in Figure 2, the perturba-
tion effectiveness of Deletion, Mask, and Gram-
matical Replacement varies from strong to weak.
In the following experiments, we choose Mask
as the representative perturbation operation for
its moderate perturbation performance, based on
which we compare two most effective methods At-
tribution and Attention.

4.2 Results on Different NMT Architecture
and Language Pairs

Different NMT Architecture We validate the
effectiveness of the proposed approach using a
different NMT architecture RNN-Search on the
Chinese⇒English translation task. The results are
shown in Figure 3(a). We observe that the At-
tribution method still outperforms both Attention
method and Random method by a decent mar-
gin. By comparing to Transformer, the results also
reveal that the RNN-Search model is less robust
to these perturbations. To be specific, under the
setting of five operations and Attribution method,
Transformer shows a relative decrease of 55% on
BLEU scores while the decline of RNN-Search
model is 64%.
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Figure 3: Effect of the Mask perturbation on (a) Chinese⇒English translation using the RNN-Search model, (b, c,
d, e, f) other language pairs and directions using Transformer model.

Different Language Pairs and Directions
We further conduct experiments on another
two language pairs (i.e., English⇒French,
English⇒Japanese in Figures 3(b, c)) as well as
the reverse directions (Figures 3(d, e, f)) using
Transformer under the Mask perturbation. In
all the cases, Attribution shows the best perfor-
mance while Random achieves the worst result.
More specifically, Attribution method shows
similar translation quality degradation on all three
language-pairs, which declines to around the half
of the original BLEU score with five operations.

4.3 Comparison with Supervised Erasure

There exists another straightforward method, Era-
sure (Alvarez-Melis and Jaakkola, 2017; Arras
et al., 2016; Zintgraf et al., 2017), which directly
evaluates the word importance by measuring the
translation performance degradation of each word.
Specifically, it erases (i.e., Mask) one word from
the input sentence each time and uses the BLEU
score changes to denote the word importance (af-
ter normalization).
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Figure 4: Effect of Attribution and Erasure methods on
Chinese⇒English translation with Mask perturbation.

In Figure 4, we compare Erasure method with
Attribution method under the Mask perturbation.
The results show that Attribution method is less
effective than Erasure method when only one
word is perturbed. But it outperforms the Era-
sure method when perturbing 2 or more words.
The results reveal that the importance calculated
by erasing only one word cannot be generalized to
multiple-words scenarios very well. Besides, the
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Method Top 5% Top 10% Top 15%
Attention 0.058 0.077 0.119
Erasure 0.154 0.170 0.192

Attribution 0.248 0.316 0.342

Table 1: F1 accuracy of detecting under-translation er-
rors with the estimated word importance.

Erasure method is a supervised method which re-
quires ground-truth references, and finding a bet-
ter words combination is computation infeasible
when erasing multiple words.

We close this section by pointing out that
our gradient-based method consistently outper-
forms its black-box counterparts in various set-
tings, demonstrating the effectiveness and univer-
sality of exploiting gradients for estimating word
importance. In addition, our approach is on par
with or even outperforms the supervised erasure
method (on multiple-word perturbations). This is
encouraging since our approach does not require
any external resource and is fully unsupervised.

5 Analysis

In this section, we conduct analyses on two poten-
tial usages of word importance, which can help de-
bug NMT models (Section 5.1) and design better
architectures for specific languages (Section 5.2).
Due to the space limitation, we only analyze the
results of Chinese⇒English, English⇒French,
and English⇒Japanese. We list the results on the
reverse directions in Appendix, in which the gen-
eral conclusions also hold.

5.1 Effect on Detecting Translation Errors

In this experiment, we propose to use the es-
timated word importance to detect the under-
translated words by NMT models. Intuitively,
under-translated input words should contribute lit-
tle to the NMT outputs, yielding much smaller
word importance. Given 500 Chinese⇒English
sentence pairs translated by the Transformer
model (BLEU 23.57), we ask ten human anno-
tators to manually label the under-translated in-
put words, and at least two annotators label each
input-hypothesis pair. These annotators have at
least six years of English study experience, whose
native language is Chinese. Among these sen-
tences, 178 sentences have under-translation er-
rors with 553 under-translated words in total.

Table 1 lists the accuracy of detecting under-

Type Zh⇒En En⇒Fr En⇒Ja

PO
S

Ta
gs

Noun 21.0% 1.9% 0.7%
Verb 0.3% 25.0% 0.3%
Adj. 0.4% 9.3% 0.7%
Prep. 1.3% 4.5% 26.7%
Dete. 3.0% 5.7% 2.1%
Punc. 3.5% 18.3% 30.5%
Others 0.5% 1.2% 4.7%

Fe
rt

ili
ty

≥ 2 50.2% 21.4% 21.7%
1 15.4% 7.0% 3.1%

(0, 1) 2.5% 0.4% 3.0%
0 0.0% 1.9% 3.8%

Sy
nt

ac
tic Low 1.6% 2.5% 1.2%

Middle 0.3% 0.8% 1.4%
High 0.0% 0.1% 0.1%

Table 2: Correlation between Attribution word impor-
tance with POS tags, Fertility, and Syntactic Depth.
Fertility can be categorized into 4 types: one-to-many
(“≥ 2”), one-to-one (“1”), many-to-one (“(0, 1)”), and
null-aligned (“0”). Syntactic depth shows the depth of
a word in the dependency tree. A lower tree depth in-
dicates closer to the root node in the dependency tree,
which might indicate a more important word.

translation errors by comparing words of least
importance and human-annotated under-translated
words. As seen, our Attribution method con-
sistently and significantly outperforms both Era-
sure and Attention approaches. By exploiting
the word importance calculated by Attribution
method, we can identify the under-translation er-
rors automatically without the involvement of hu-
man interpreters. Although the accuracy is not
high, it is worth noting that our under-translation
method is very simple and straightforward. This
is potentially useful for debugging NMT models,
e.g., automatic post-editing with constraint decod-
ing (Hokamp and Liu, 2017; Post and Vilar, 2018).

5.2 Analysis on Linguistic Properties

In this section, we analyze the linguistic char-
acteristics of important words identified by the
attribution-based approach. Specifically, we in-
vestigate several representative sets of linguistic
properties, including POS tags, and fertility, and
depth in a syntactic parse tree. In these analyses,
we multiply the word importance with the corre-
sponding sentence length for fair comparison. We
use a decision tree based regression model to cal-
culate the correlation between the importance and
linguistic properties.
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Type Chinese⇒English English⇒French English⇒Japanese
Count Attri. 4 Count Attri. 4 Count Attri. 4

C
on

te
nt

Noun 0.383 0.407 +6.27% 0.341 0.355 +4.11% 0.365 0.336 -7.95%
Verb 0.165 0.160 -3.03% 0.146 0.131 -10.27% 0.127 0.123 -3.15%
Adj. 0.032 0.029 -9.38% 0.076 0.072 -5.26% 0.094 0.088 -6.38%
Total 0.579 0.595 +2.76% 0.563 0.558 -0.89% 0.587 0.547 -6.81%

C
on

te
nt

-F
re

e Prep. 0.056 0.051 -8.93% 0.120 0.132 +10.00% 0.129 0.151 +17.05%
Dete. 0.043 0.043 0.00% 0.102 0.101 -0.98% 0.112 0.103 -8.04%
Punc. 0.137 0.131 -4.38% 0.100 0.091 -9.00% 0.096 0.120 +25.47%
Others 0.186 0.179 -3.76% 0.115 0.118 +2.61% 0.076 0.079 +3.95%
Total 0.421 0.405 -3.80% 0.437 0.442 +1.14% 0.413 0.453 +9.69%

Table 3: Distribution of syntactic categories (e.g. content words vs. content-free words) based on word count
(“Count”) and Attribution importance (“Attri.”). “4” denotes relative change over the count-based distribution.

Fertility Chinese⇒English English⇒French English⇒Japanese
Count Attri. 4 Count Attri. 4 Count Attri. 4

≥ 2 0.087 0.146 +67.82% 0.126 0.138 +9.52% 0.117 0.143 +22.22%
1 0.621 0.622 +0.16% 0.672 0.670 -0.30% 0.570 0.565 -0.88%

(0, 1) 0.115 0.081 -29.57% 0.116 0.113 -2.59% 0.059 0.055 -6.78%
0 0.176 0.150 -14.77% 0.086 0.079 -8.14% 0.254 0.237 -6.69%

Table 4: Distributions of word fertility and their relative change based on Attribution importance and word count.

Table 2 lists the correlations, where a higher
value indicates a stronger correlation. We find
that the syntactic information is almost indepen-
dent of the word importance value. Instead, the
word importance strongly correlates with the POS
tags and fertility features, and these features in to-
tal contribute over 95%. Therefore, in the follow-
ing analyses, we mainly focus on the POS tags
(Table 3) and fertility properties (Table 4). For bet-
ter illustration, we calculate the distribution over
the linguistic property based on both the Attribu-
tion importance (“Attr.”) and the word frequency
(“Count”) inside a sentence. The larger the rela-
tive increase between these two values, the more
important the linguistic property is.

Certain syntactic categories have higher im-
portance while the categories vary across lan-
guage pairs. As shown in Table 3, content
words are more important on Chinese⇒English
but content-free words are more important on
English⇒Japanese. On English⇒French, there
is no notable increase or decrease of the distri-
bution since English and French are in essence
very similar. We also obtain some specific find-
ings of great interest. For example, we find
that noun is more important on Chinese⇒English
translation, while preposition is more important on

English⇒French translation. More interestingly,
English⇒Japanese translation shows a substantial
discrepancy in contrast to the other two language
pairs. The results reveal that preposition and punc-
tuation are very important in English⇒Japanese
translation, which is counter-intuitive.

Punctuation in NMT is understudied since it
carries little information and often does not af-
fect the understanding of a sentence. How-
ever, we find that punctuation is important on
English⇒Japanese translation, whose proportion
increases dramatically. We conjecture that it is
because the punctuation could affect the sense
groups in a sentence, which further benefits the
syntactic reordering in Japanese.

Words of high fertility are always important.
We further compare the fertility distribution based
on word importance and the word frequency on
three language pairs. We hypothesize that a source
word that corresponds to multiple target words
should be more important since it contributes more
to both sentence length and BLEU score.

Table 4 lists the results. Overall speaking, one-
to-many fertility is consistently more important on
all three language pairs, which confirms our hy-
pothesis. On the contrary, null-aligned words re-
ceive much less attention, which shows a persis-
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tently decrease on three language pairs. It is also
reasonable since null-aligned input words con-
tribute almost nothing to the translation outputs.

6 Discussion and Conclusion

We approach understanding NMT by investigating
the word importance via a gradient-based method,
which bridges the gap between word importance
and translation performance. Empirical results
show that the gradient-based method is superior to
several black-box methods in estimating the word
importance. Further analyses show that impor-
tant words are of distinct syntactic categories on
different language pairs, which might support the
viewpoint that essential inductive bias should be
introduced into the model design (Strubell et al.,
2018). Our study also suggests the possibility of
detecting the notorious under-translation problem
via the gradient-based method.

This paper is an initiating step towards the gen-
eral understanding of NMT models, which may
bring some potential improvements, such as

• Interactive MT and Constraint Decoding
(Foster et al., 1997; Hokamp and Liu, 2017):
The model pays more attention to the de-
tected unimportant words, which are possibly
under-translated;

• Adaptive Input Embedding (Baevski and
Auli, 2019): We can extend the adaptive soft-
max (Grave et al., 2017) to the input embed-
ding of variable capacity – more important
words are assigned with more capacity;

• NMT Architecture Design: The language-
specific inductive bias (e.g., different behav-
iors on POS) should be incorporated into the
model design.

We can also explore other applications of word im-
portance to improve NMT models, such as more
tailored training methods. In general, model in-
terpretability can build trust in model predictions,
help error diagnosis and facilitate model refine-
ment. We expect our work could shed light on the
NMT model understanding and benefit the model
improvement.

There are many possible ways to implement the
general idea of exploiting gradients for model in-
terpretation. The aim of this paper is not to explore
this whole space but simply to show that some
fairly straightforward implementations work well.

Our approach can benefit from advanced exploita-
tion of the gradients or other useful intermediate
information, which we leave to the future work.
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