
Automatic Software Testing

Via Mining Software Data

ZHENG, Wujie

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Doctor of Philosophy

in

Computer Science and Engineering

The Chinese University of Hong Kong

September 2011

Thesis/Assessment Committee

Professor Patrick Pak Ching LEE (Chair)

Professor Michael Rung Tsong LYU (Thesis Supervisor)

Professor Ada Wai Chee FU (Committee Member)

Professor Shing Chi CHEUNG (External Examiner)

Abstract of thesis entitled:

Automatic Software Testing Via Mining Software Data

Submitted by ZHENG, Wujie

for the degree of Doctor of Philosophy

at The Chinese University of Hong Kong in September 2011

Software testing has been the primary way for assuring high quality of soft-

ware systems. In software testing, testers need to design a set of test cases,

including test inputs and expected outputs, to cover most of the code and find

most bugs before releasing the software. It is challenging to generate such

effective test cases manually for complex software systems nowadays. Auto-

matic software testing reduces the laborious human effort in testing. However,

the existing test input generation and test oracle generation techniques often

require manually provided specifications, which may not be available.

In this thesis, we propose to mine specifications from various kinds of

software data, such as the source code, the execution trace, and the existing

outputs, to generate test inputs and to verify test outputs automatically.

First, we mine relevant APIs from source code to guide random unit-test

generation. Given a method under test (MUT), a key component of object-

oriented unit-test generation is to find method-call sequences that create and

mutate desired inputs, including the receiver and the arguments. We present a

MUT-aware sequence recommendation approach to improve the effectiveness

of random object-oriented unit-test generation. Our approach mines relevant

APIs for the MUT, i.e. methods that may mutate object fields accessed

i

by the MUT, from the source code. It then recommends short sequences

that contain some relevant APIs as the inputs of the MUT. In this way, our

approach generates test inputs that have a high chance of exploring most

behaviors of the MUT.

Second, we mine potential rules of control branches and variables from

execution traces of unverified tests to select tests for result inspection. Our

approach collects branch coverage and data value bounds at runtime, and

then mines implication relationships between branches and constraints of data

values as potential test oracles after running all the tests. Our approach then

selects only tests that violate the mined test oracles for result inspection.

Experimental results show that our approach can more effectively reduce the

number of tests for result inspection while revealing most of the faults.

Third, we mine test oracles of Web search engines from existing inputs

(Web queries) and outputs (search results). It is labor-intensive to judge

the relevance of search results for a large number of queries, and these rele-

vance judgments may not be reusable since the Web data change all the time.

To address this problem, we propose to mine implicit relationships between

queries and search results, e.g., some queries may have fixed top 1 result while

some may not, and some Web domains may appear together in top 10 results.

We define a set of properties of queries and search results, and mine frequent

association rules between these properties as potential test oracles. Exper-

iments on major search engines show that our approach mines many high

confidence rules that help to understand search engines and detect suspicious

search results.

ii

iii

(Web) () Web

Web

Web

iv

Acknowledgement

I would like to express my greatest thanks to my supervisor, Prof. Michael R.

Lyu, for his advice, understanding, and encouragement. He taught me a lot

on research, and always provided insightful suggestions to my work. Without

his support, this thesis would not have been possible. I also appreciate all

the support and help from my mentor, Prof. Tao Xie. His great vision

and enthusiasm to the research of software testing are very impressive and

encouraging.

I would also like to thank my thesis committee members, Prof. Patrick

Lee, Prof. Ada Fu, Prof. Shing Chi Cheung, and Prof. Elisa Baniassad for

their helpful comments and suggestions on my work. I thank Prof. Steven

Hoi for his guidance and discussions on the data mining techniques.

I would like to thank my colleagues and friends. I want to thank Qirun

Zhang for his great help to my work. Thank Xiaoqi Li and Hao Ma for the

enjoyable collaborations. Thank Yangfan Zhou, Jianke Zhu, Hongbo Deng,

Xin Xin, Xinyu Chen, Zibin Zheng, Haiqin Yang, Junjie Xiong, Haixuan

Yang, Kaizhu Huang, Zenglin Xu, Chao Zhou, Yilei Zhang, Kang Yu, and

many others for their encouragement and kind help.

I am grateful to my mother, my wife, and my younger brother for their

unlimited love and strong support.

v

To my family.

vi

Contents

Abstract i

Acknowledgement v

1 Introduction 1

1.1 Overview . 1

1.2 Automatic Software Testing 3

1.2.1 Test Input Generation 3

1.2.2 Test Execution . 4

1.2.3 Test Output Inspection 5

1.3 Mining Software Data . 6

1.4 Contributions and Approaches 8

1.5 Scope . 12

1.6 Outline . 12

2 Background and Related Work 14

2.1 Test Adequacy Criteria . 14

2.1.1 Code Coverage . 14

2.1.2 Mutation Coverage . 15

2.1.3 Specification-based Coverage 16

2.2 Test Input Generation . 18

2.2.1 Random Test Input Generation 18

vii

2.2.2 Symbolic Execution . 19

2.2.3 Specification-based Test Input Generation 21

2.3 Test Output Inspection . 24

2.3.1 Specification-based Test Oracle Generation 24

2.3.2 Test Selection for Result Inspection 25

2.4 Mining Software Data . 28

2.4.1 Mining Source Code 28

2.4.2 Mining Execution Traces 30

2.4.3 Mining Other Software Data 31

3 Unit-Test Generation via Mining Relevant APIs 33

3.1 Problem and Motivation . 34

3.2 Related Work . 39

3.2.1 Object-Oriented Unit-Test Generation 39

3.2.2 API Recommendation 41

3.3 Our Approach . 42

3.3.1 Overview . 42

3.3.2 MUT-aware Sequence Recommendation 44

3.3.3 Test Oracles and Test Execution 49

3.4 Experiments . 49

3.4.1 Experimental Setup . 50

3.4.2 Results . 52

3.4.3 Threats to Validity . 61

3.5 Discussions . 61

3.5.1 Accuracy of Relevant Methods 61

3.5.2 Fault-revealing Capability of Generated Tests 62

3.5.3 Symbolic Execution with Sequence Recommendation . 62

3.6 Summary . 63

viii

4 Test Selection via Mining Operational Models 65

4.1 Problem and Motivation . 66

4.2 Related Work . 70

4.3 Mining Common Operational Models 72

4.3.1 Control Rules . 72

4.3.2 Data Rules . 74

4.4 Test Selection . 77

4.5 Empirical Studies . 77

4.5.1 Subject programs . 78

4.5.2 Measurement . 80

4.5.3 Results . 80

4.5.4 Threats to Validity . 92

4.6 Summary . 92

5 Mining Test Oracles of Web Search Engines 94

5.1 Problem and Motivation . 95

5.2 Related Work . 98

5.2.1 Search Engine Evaluation 98

5.2.2 Mining Specifications 99

5.2.3 Test Selection for Result Inspection 100

5.3 Background of Association Rule Mining 101

5.4 Our Approach . 102

5.4.1 Overview . 102

5.4.2 Extracting Items from Queries and Search Results . . . 103

5.4.3 Mining Association Rules 106

5.4.4 Detecting Violations of Mined Rules 109

5.4.5 Learning to Classify Search Results 109

5.5 Evaluation . 110

5.5.1 Data Collection . 110

ix

5.5.2 Mining Rules . 112

5.5.3 Detecting Violations 117

5.5.4 Learning Classification Models 119

5.5.5 Discussions . 121

5.6 Summary . 122

6 Conclusions 123

6.1 Summary . 123

6.2 Future Work . 125

Bibliography 128

x

List of Figures

1.1 Overview of the work in this thesis 9

2.1 An example of symbolic execution 20

2.2 Number of parameters involved in triggering software faults . . 22

3.1 The openDatabase MUT and related code 37

3.2 A desired sequence of openDatabase 38

3.3 The finishTime MUT and a desired sequence 56

3.4 Code coverage w.r.t. #tests on JScience 57

3.5 A test case generated by RecGen 59

3.6 The DatabaseEntry class in Berkeley DB 60

4.1 Faulty code of the grep program 68

4.2 Faulty code of the tcas program 74

4.3 Faulty code of the print tokens program 76

4.4 Results of test selection . 81

5.1 Declaration from the official PuTTY Website for Google’s search

result change . 96

5.2 Overview . 102

5.3 Number of rules with different thresholds 113

5.4 Numbers of queries that violate rules or change results 119

xi

List of Tables

3.1 Subject programs . 51

3.2 Statement coverage (%) on Berkeley DB (LOC: lines of code) 53

3.3 Statement coverage (%) on JDSL (LOC: lines of code) 54

3.4 Statement coverage (%) on JScience (LOC: lines of code; GEO.COOR:

geography.coordinates, MATH: mathematics) 54

3.5 The number of generated tests 57

4.1 Characteristic of the subjects 78

4.2 Results of our approach on all the faults (#T: number of tests,

%F: percentage of revealed faults) 82

4.3 Results of other approaches on all the faults (#T: number of

tests, %F: percentage of revealed faults) 83

4.4 Results of our approach on nontrivial faults (#T: number of

tests, %F: percentage of revealed faults) 84

4.5 Results of other approaches on nontrivial faults (#T: number

of tests, %F: percentage of revealed faults) 85

4.6 Efficiency of Our Approach (seconds) 90

5.1 Summary of the Items . 104

5.2 Average numbers of queries that violate rules or change results 120

5.3 Results of predicting abnormal search result changes 120

xii

Chapter 1

Introduction

1.1 Overview

Software permeates our daily life. Software failures can lead to serious con-

sequences in safety-critical systems as well as in normal business. A recent

report by National Institute of Standards and Technology found that software

failures cost the US economy about $60 billion every year [97]. Therefore, it is

critical to improve software reliability to ensure long-term software operations

without failures [86].

Software testing has been the primary way for improving software relia-

bility. Software testing typically includes three steps, generating test inputs,

running test inputs, and verifying actual outputs (or properties). However,

with the ever-growing size and complexity of software systems [60], software

testing is becoming more and more challenging and costly. It costs billions of

dollars and accounts for about 50% the cost of software development [92].

Automatic software testing reduces the laborious human effort in testing.

Many test input generation tools [28, 36, 38, 63, 74, 103] can generate test

inputs automatically from some kinds of specifications, such as finite state

machines that model software’s behaviors, or context-free grammars that de-

1

CHAPTER 1. INTRODUCTION 2

scribe the structure of inputs. Many testing frameworks can execute test

inputs automatically. For example, JUnit [13] and googletest [5] can execute

unit test inputs of Java and C++ programs, respectively. Selenium [15] and

Watir [18] can execute test inputs that interact with Web applications. In

regression testing, test selection techniques can reduce the execution time by

executing only a small subset of tests that preserve code coverage or reveal

faults previously. There are also some tools that can generate test oracles,

i.e., expected test outputs/properties, to verify actual outputs automatically.

Model-based testing tools can generate expected software states of a given

set of actions as expected properties. Valgrind [95] can check memory errors

using built-in memory usage models as test oracles.

However, the existing test input generation and test oracle generation

techniques often require manually provided specifications, which may not be

available or may be incomplete. For example, for unit testing, the specifica-

tion of the inputs of each method is often missing due to the large amount of

manual effort required. It is even more difficult to provide specifications for

deriving the expected outputs of test inputs, except for state-based systems

or for specific properties such as memory errors. When there are a large set of

test inputs (e.g., automatically generated test inputs), or when the expected

outputs change all the time (e.g., for Web search engines), it could be very

costly to verify actual outputs manually.

This thesis investigates solutions to the problem of automatic software

testing without manually provided specifications. Our research focuses on

mining specifications from various kinds of software data to generate test in-

puts and to verify test outputs automatically. We mine various kinds of speci-

fications from source code, dynamic execution traces, and test input/outputs,

targeting at different context of software testing.

In this chapter, we briefly describe the main steps and techniques in au-

CHAPTER 1. INTRODUCTION 3

tomatic software testing, present the techniques in mining software data, and

describe the contributions and the proposed approaches of the thesis, define

the scope of the research in the thesis, and list the organization of the thesis.

1.2 Automatic Software Testing

Automatic software testing reduces the laborious human effort in the three

steps of software testing: test input generation, test execution, and test out-

put inspection. We next briefly describe the main techniques in these three

steps.

1.2.1 Test Input Generation

Many test input generation tools [28, 36, 38, 63, 74, 103] can generate test

inputs automatically from some kinds of specifications. Given a specification

of the input parameters and the interesting values of each parameter, com-

binatorial test input generation techniques [36, 38] can generate test inputs

that cover specified combinations of given parameter values. Given a finite

state machine that describes some (usually functional) aspects of the software

system under test, model-based testing techniques [28, 63] can generate test

inputs in the form of traces: sequences of actions. A test suite is a collection

of related traces (test inputs). Given a context-free grammar that specifies

the input syntax of the software under test, such as compilers, grammar-

based testing techniques [103, 74] can generate sentences (test inputs) of a

given non-terminal (often the root element of the grammar) by traversing

the grammar using either top-down approaches or bottom-up approaches.

However, the specifications are often not available or may be incomplete.

Random testing uses the random mechanism to explore the possible input

space, with few specifications about the inputs. For example, given the num-

ber of characters of a command line input, random testing approaches can

CHAPTER 1. INTRODUCTION 4

generate the characters one by one randomly. For unit testing, the inputs of

a method is limited by the type system, and thus the effectiveness of random

testing could be much higher. Many approaches [34, 37, 100, 101, 115] have

been proposed to generate unit tests for object-oriented programs with dif-

ferent heuristics for exploring the input space. Although random testing is

easy to apply, it may generate a large number of meaningless test inputs.

There are also much work on symbolic execution [119, 49, 112, 128], which

generates tests based on the source code. Basically, the symbolic-execution

approaches explores the control paths of the program, collects path conditions

of the paths, and solves the constraints to create test inputs. Recent advances

of powerful constraint solvers [70, 14, 40] have made it relatively easy to solve

such path conditions. However, there are still two challenges of successful

applications of symbolic execution: the difficulty of environment modeling

(to understand the invocation of external calls for collecting path conditions)

and the large space of control paths.

1.2.2 Test Execution

Many test frameworks can execute test inputs automatically. For example,

JUnit [13] and GoogleTest [5] can execute unit test inputs of Java and C++

programs, respectively. For testing graphical user interfaces (GUIs), specific

testing frameworks such as QuickTest Professional [6], Selenium [15], Watir

[18] are required for running test inputs automatically.

In regression testing, test selection techniques can reduce the execution

time by executing only a small subset of tests that have the highest proba-

bility of revealing faults. Test case prioritization and test suite minimization

approaches share similar objectives with somewhat different handling of the

test suites. Orso et al. [98] presented a technique for Java programs that

selects every test case in a regression test suite that may behave differently

CHAPTER 1. INTRODUCTION 5

in the original and modified versions of the software, and yet scales to large

systems. Rothermel et al. [106] and Elbaum et al. [43] evaluated a set of

prioritization techniques for regression testing, focusing on the goal of in-

creasing the likelihood of revealing faults earlier in the testing process. Hsu

and Orso [58] proposed a test-suite minimization framework based on integer

linear programming. Their approach can get optimal solutions for various

minimization problems that involve any number of criteria.

1.2.3 Test Output Inspection

For inspecting the correctness of actual test outputs, we may generate test

oracles, either expected outputs or expected properties, from some kinds of

specifications. In model-based testing [28, 63], we can generate not only the

sequences of actions from the finite state machines, but also the expected

states after each action sequence. These states can be used as test oracles to

check whether the implementation passes or fails a test case. Metamorphic

testing [90, 30] relates multiple input-output pairs via well-defined relations,

called metamorphic relations. A metamorphic relation is an existing or ex-

pected relation (some kind of specification) over a set of distinct inputs and

their corresponding outputs, e.g. sin(x) = sin(x + 2π) for the method sin().

These metamorphic relations can serve as test oracles to check a set of inputs

and outputs. There are also some general specifications about the execution

of software programs. For example, it is generally true that a program should

not crash or hang for any given input [122]. The memory usage rules can also

be used to check memory errors during execution of software programs [95].

There are often not suitable test oracles to check the functional correct-

ness of general applications. To address this problem, the test selection for

result inspection techniques can be applied to select a small subset of tests

that are most likely to reveal the faults. The tests can be selected in the

CHAPTER 1. INTRODUCTION 6

way of maximizing some coverage criteria, such as code coverage criteria [59]

or specification coverage criteria [31]. Dickinson et al. [41] used clustering

analysis to partition executions based on structural profiles, and employed

sampling techniques to select tests from clusters for result inspection. There

are various approaches that mine operational models based on dynamic in-

variant detection for test selection. Xie and Notkin [127] developed an oper-

ational violation approach called Jov for unit-test selection and generation.

They mined dynamic invariants using Daikon [45] from a set of manually

written passing unit tests and selected newly generated tests that violated

the dynamic invariants for result inspection.

1.3 Mining Software Data

There are a lot of valuable information in the software data. Many researches

have mined the software data using different data mining techniques to sup-

port various software engineering tasks. The software data that are mined

include source code, execution traces, bug reports, code revision history, doc-

umentations, mailing lists, etc. The data mining techniques that are used

include classification, regression, clustering, frequent itemset mining, and so

on. The software engineering tasks that are helped include automatic docu-

mentation, static defect analysis, debugging, maintenance, etc. An overview

of the work in this direction can be found in the tutorial by Hassan and Xie

[55].

There are many approaches that mine API usage patterns from the source

code, which are then used for documentation or static defect analysis. En-

gler et al. [44] proposed an approach to extract programming rules using

programmer-specified rule templates such as “function a must be paired with

function b”. Li and Zhou [80] developed a tool named PR-Miner that uses

frequent itemset mining to extract implicit API usage patterns from source

CHAPTER 1. INTRODUCTION 7

code without any specific templates. Zhong et al. [135] proposed a tool named

MAPO that combines the frequent subsequence mining technique with the

clustering technique to mine code snippets with respect to programming con-

texts. Thummalapenta and Xie [113] developed a tool named PARSEWeb

that uses Google code search engine [10] to collect relevant code snippets and

then mines the returned code snippets to find code snippets for a given target

object type.

There are many approaches that mine specifications or locate bugs based

on execution traces. Ernst et al. [45] proposed to mine dynamic invariants

from passing tests and develop a tool named Daikon. Daikon defines a set of

templates for generating candidate dynamic invariants, e.g. a precondition

x < y at entry to a procedure f . The candidate invariants are evaluated on

dynamic traces and a candidate is immediately discarded once it is violated.

Jones et al. [68] develop the Tarantula tool that provides a mapping from

testing results to the bug-relevant probabilities of statements and visualizes

them in the source-code display. Liblit et al. [81] propose a low-overhead

sampling infrastructure for gathering predicate information and adopt regu-

larized logistic regression to locate non-deterministic bugs.

There are also many approaches that mine fault-prone module prediction

modules based on bug history. Complexity measures including lines of code,

McCabe complexity, Halstead complexity, etc. have been widely used as bug

predictors [75, 88]. Ostrand et al. [99] presented a case study and suggested

that revision history was informative for fault prediction. Nagappan [93] uses

Principal Component Analysis to combine the complexity measures and the

fault and modification history measures. In particular, their study suggested

that predictors obtained from one project can also be significant for new,

similar projects. Kim et al. [71] proposed an approach called change classifi-

cation that determine whether a new software change is more similar to prior

CHAPTER 1. INTRODUCTION 8

buggy changes, or clean changes.

It is also beneficial to mine other software data. Murphy-Hill et al.[91]

studied how programmers refactor using four data sets spanning more than

240,000 tool-assisted refactorings. Ruthruff et al. [107] built logistic regres-

sion models that predict whether a static analysis warning is accurate and

actionable. Their experience with the static defect analysis tool FindBugs

[3] showed that the models based on metrics from the warnings and impli-

cated code are effective in reducing the spurious false positive warnings of

FindBugs.

1.4 Contributions and Approaches

Automatic software testing reduces the laborious human effort in the three

steps of software testing: test input generation, test execution, and test out-

put inspection. Our research focuses on automatic test input generation and

test output inspection. Ideally, if there are specifications for valid inputs and

the expected outputs, test input generation and test oracle generation can be

done easily. However, such specifications are often not available. There are

two possible reasons for the missing of specifications. First, it could be costly

to write specifications for a large number of methods or interfaces. This fact

poses difficulties for automatic unit testing or integrated testing. Second,

it is often difficult to write general specifications to generate the expected

output of a specific input. For some software systems such as network pro-

tocols, finite state machines can be used to map a specific input (an action

sequence) to the expected state. However, for many other software systems,

the expected outputs are more complex and the mapping from an input to

the expected output is hard to describe.

The contribution of this thesis is to improve the effectiveness of automatic

software testing by mining specifications from software data. Although there

CHAPTER 1. INTRODUCTION 9

Test Input Generation
 Test Execution
 Test Output Inspection

Random Testing

Symbolic Execution

Specification-based

Testing

Test Framework

Regression Test

Selection

Specification-based

Test Oracles

Test Selection for

Result Inspection

Documents

Source

Code

Execution

Traces

Inputs/

Outputs

Bug Reports

Mining Relevant

APIs

Mining Common

Operational Models

Mining Inputs/

Outputs Rules

Automatic

Software

Testing

Software

Data

This Thesis

Figure 1.1: Overview of the work in this thesis

has been some existing work on mining specifications [23, 45, 56], these ap-

proaches do not target at using the mined specifications to help automatic

software testing. In this thesis, we consider the data available in different

scenarios of software testing, and propose new approaches to mine specifica-

tions from these data. The mined specifications are then used to generate test

inputs and to verify test outputs. Figure 1.1 presents an overview of the work

in this thesis. We have mined relevant APIs, common operational models,

and input/output rules from the source code, execution traces, and existing

inputs/outputs, respectively. We have used the mined specifications to help

the tasks of random unit-test generation and test selection for result inspec-

tion. All the proposed approaches have been implemented and evaluated on

CHAPTER 1. INTRODUCTION 10

a set of software programs [132, 134, 133].

The main contributions of this thesis can be further described as follows:

1. Mining Relevant APIs to Guide Random Unit-Test Generation

In this work, we mine relevant APIs from source code to guide ran-

dom unit-test generation. Given a method under test (MUT), a key

component of object-oriented unit-test generation is to find method-call

sequences that create and mutate desired inputs. Previous work can-

not find desired sequences effectively due to the large search space of

possible sequences. We present a MUT-aware sequence recommenda-

tion approach, called RecGen, to improve the effectiveness of random

object-oriented unit-test generation. RecGen mines relevant APIs for

the MUT, i.e., methods that may mutate object fields accessed by the

MUT, from the source code. It then recommends short sequences that

mutate object fields accessed by the MUT to generate the inputs. We

have implemented RecGen in Java and evaluated it on three libraries.

The results show that RecGen can improve the code coverage and fault-

revealing capability over previous random testing tools.

2. Mining Common Operational Models to Select Tests for Result

Inspection

In this work, we mine common operational models from execution traces

of unverified tests to select tests for result inspection. In automatic test-

ing, especially test generation in the absence of specifications, a large

amount of manual effort is spent on test-result inspection. Test selection

can reduce this effort by selecting a small subset of tests that are likely

to reveal faults. A promising test selection approach is to dynamically

mine operational models as potential test oracles and then select tests

that violate them. Existing work adopting this approach mines opera-

CHAPTER 1. INTRODUCTION 11

tional models from passing tests using dynamic invariant detection. In

this work, we propose to mine common operational models, which are

often but not always true in all observed traces, from a (potentially

large) set of unverified tests. Specifically, our approach collects branch

coverage and data value bounds at runtime and then mines implica-

tion relationships between branches and constraints of data values as

potential operational models after running all the tests. Our approach

then selects tests that violate the mined common operational models

for result inspection. We have evaluated our approach on a set of pro-

grams, compared with previous code-coverage-based, clustering-based,

dynamic-invariant-based, and random selection approaches. The exper-

imental results show that our approach can more effectively reduce the

number of tests for result inspection while revealing most of the faults.

3. Mining Test Oracles of Web Search Engines from Existing In-

puts and Outputs

In this work, we mine test oracles of Web search engines from existing

inputs (Web queries) and outputs (search results). Web search engines

have major impact in people’s everyday life. It is of great importance

to test the retrieval effectiveness of search engines. However, it is labor-

intensive to judge the relevance of search results for a large number of

queries, and these relevance judgments may not be reusable since the

Web data change all the time. In this work, we propose to mine test

oracles of Web search engines from existing search results. The main idea

is to mine implicit relationships between queries and search results, e.g.,

some queries may have fixed top 1 result while some may not, and some

Web domains may appear together in top 10 results. We define a set of

properties of queries and search results, and mine frequent association

rules between these properties as test oracles. Experiments on major

CHAPTER 1. INTRODUCTION 12

search engines show that our approach mines many high confidence rules

that help to understand search engines and detect suspicious search

results.

1.5 Scope

The approaches presented in this thesis focus on automatic software test

input generation and (pseudo) test oracle generation. We do not target at

automatic test execution or other software testing activities such as test case

management and maintenance.

Although the proposed approaches are designed to be general for a variety

of software bugs, in this thesis we limit our scope to functional correctness

or program robustness, but not other quality attributes such as performance

and security.

1.6 Outline

The rest of this thesis is organized as follows.

• Chapter 2 reviews the background and related work of automatic test

input generation, test selection for result inspection, and mining soft-

ware data. The test adequacy criteria, which are used to guide test

generation and to evaluate test suites, are also discussed.

• Chapter 3 describes the proposed techniques of mining relevant APIs

from source code to guide random unit-test generation.

• Chapter 4 presents the proposed techniques of mining common oper-

ational models, including control rules and data rules, from execution

traces of unverified tests to select tests for result inspection.

CHAPTER 1. INTRODUCTION 13

• Chapter 5 describes the proposed techniques of mining test oracles of

Web search engines from existing inputs (Web queries) and outputs

(search results).

• Chapter 6 summarizes this thesis and proposes some directions to be

explored in future work.

2 End of chapter.

Chapter 2

Background and Related Work

In this chapter, we first discuss the main test adequacy criteria that are used

to guide test generation and to evaluate test suites. We then describe the

main techniques of automatic test input generation and test selection for

result inspection.

2.1 Test Adequacy Criteria

A test adequacy criterion provides a measurement of test-suite quality and

can be used to guide test generation [136]. There are mainly three kinds of

coverage criteria: mutation coverage, code coverage, and specification based

coverage.

2.1.1 Code Coverage

Code coverage describes the degree to which the source code of a program

has been tested. Various kinds of code coverage criteria have been proposed,

such as control-flow coverage criteria [59] and data-flow coverage criteria [47].

The main control-flow coverage criteria includes:

1. Function coverage: The percentage of functions that have been called

14

CHAPTER 2. BACKGROUND AND RELATED WORK 15

by the test suite.

2. Line coverage: The percentage of lines that have been executed by

the test suite.

3. Decision coverage: The percentage of edges (such as branches in IF

and CASE statements) that have been executed by the test suite.

4. Condition coverage: The percentage of possible results of boolean

sub-expressions (each boolean sub-expression can be evaluated to true

or false) that have been evaluated by the test suite.

5. Path coverage: The percentage of paths in the program that have

been explored by the test suite. In practice, the number of possible

paths in a non-trivial program can be very large, and there is no need

to achieve 100% path coverage.

Different from control-flow coverage criteria that are based on the control-

flow graph, data-flow coverage criteria are based on the definitions and uses

of variables (more exactly, memory locations) [61]. A definition (def) of a

variable is that a variable is assigned a value. A use of a variable is that

the value of the variable is used (referenced). A def-use (DU) association for

a variable is a pair consisting of a def and a use of the variable, such that

there is a control-flow path in the code from the def to the use on which there

is no intermediate redefinition or un-definition of the variable. A test case

exercises a particular def-use association if the test case executes the def and

subsequently execute the use. The DU coverage is then the percentage of

possible def-use associations that are exercised by the test suite.

2.1.2 Mutation Coverage

The number of faults revealed by a test suite is also a good indicator of

the quality of the test suite. However, it is in general impossible to know

CHAPTER 2. BACKGROUND AND RELATED WORK 16

the exact number of faults in a software program. To evaluate the fault-

revealing capability of a test suite, people often use mutations of the original

program with seeded faults [24, 46, 110]. Typical mutation operators include

statement deletion, operator replacement, variable replacement, and so on.

A test suite is said to kill a mutant if the test suite detects the fault in the

mutant. Mutation coverage is then the percentage of faults detected by the

test suite.

2.1.3 Specification-based Coverage

Specification based coverage criteria specify the percentage of testing require-

ments identified in a specification that have been exercised by the test suite

[28, 63, 74, 103]. This kind of coverage criteria are highly related to the spec-

ification languages used, such as finite state machines, context-free gram-

mars, or more complex specifications defined using advanced specification

languages.

Model-based Coverage Criteria

In model-based testing [28, 63, 118], the specification refers to a finite state

machine (FSM) that describes the systems’ states and the changes of states.

Several model-based coverage criteria can then measure how well a test suite

covers the model. Some common coverage criteria include:

1. State coverage: The percentage of FSM states that are visited during

the test execution.

2. Transition coverage: The percentage of FSM transitions that are

traversed during the test execution.

3. Transition-pairs coverage: The percentage of pairs of adjacent tran-

sitions in the FSM that are traversed during the test execution.

CHAPTER 2. BACKGROUND AND RELATED WORK 17

4. Paths coverage: The percentage of paths that are traversed during

the test execution. The all-paths criterion corresponds to exhaustive

testing of the control structure of the FSM.

Among them, state coverage is a simple and popular coverage criterion.

However, the resulting test suite may not test many behaviors. Full transition-

pairs coverage and all-paths coverage are much expensive to achieve or even

impossible. Transition coverage is often a suitable target to aim for when

generating tests from FSM models.

Grammar-based Coverage Criteria

The inputs of many software programs are well structured, such as compiler

inputs, files of a specific format. The structure of these inputs can be specified

using context-free grammars [74]. Several grammar-based coverage criteria

can then measure how well a test suite covers the grammar.

Purdom proposed to use rule coverage as a criterion for testing grammars

[103]. A test case is said to cover a grammar rule if that rule is used at least

once in deriving that test case. While this criterion is intuitive, experimental

studies suggest that it cannot well assure fault detection capability [57]. To

address this problem, Lammel proposed to use context-dependent rule cover-

age, where the context in which a rule is covered is taken into consideration

[74]. The definitions of more kinds of grammar-based coverage criteria can

be found in [77].

Specification-language-based Coverage Criteria

While the context-free grammar can specify the syntax of many kinds of in-

puts, it cannot specify many implicit constraints that are context-sensitive,

such as the scope rules of many programming languages. Many specification

languages are designed to specify such constraints [20, 31]. Based on the ex-

CHAPTER 2. BACKGROUND AND RELATED WORK 18

pressions of a specification language, many coverage criteria can be defined.

For example, Chang and Richardson [31] developed customized coverage cri-

teria for the following constructs of Sun Microsystems’ Assertion Definition

Language (ADL): conditional expressions, implication expressions, relational

expressions, equality expressions, normally expressions, group expressions,

unchanged expressions, and quantified expressions.

2.2 Test Input Generation

2.2.1 Random Test Input Generation

Random testing uses the random mechanism to explore the possible input

space, with few specifications about the inputs. For example, given the num-

ber of characters of a command line input, random testing approaches can

generate the characters one by one randomly. But such random exploration

could generate a large number of meaningless test inputs. For unit testing,

the inputs of a method is limited by the type system, and thus the effec-

tiveness of random testing could be much higher. Csallner and Smaragdakis

[37] developed an automatic robustness testing tool named JCrasher for Java

code. JCrasher uses a parameter-graph to represent the parameter space of

the program’s methods, where there is an edge from type A to method m if

m can be used to produce a value of type A. For each method m declared by

a given class C, JCrasher generates test inputs based on the parameter graph

randomly.

It is possible to improve the effectiveness of random testing using static

analysis. Thummalapenta et al. [115] proposed an approach named MSeq-

Gen to leverage the information of how method calls are used for sequence

generation. MSeqGen extracts sequences that are relevant to the receiver

or arguments of a MUT from code bases. It then uses those sequences to

CHAPTER 2. BACKGROUND AND RELATED WORK 19

assist random test generation and systematic test generation. Although this

approach is a promising one, its performance relies on API client code, which

may not be available in testing code under development or may not be suffi-

cient enough for recommending methods or sequences for most of the MUTs.

On the other hand, there have been many approaches that improve the ef-

fectiveness of random testing using dynamic analysis. Pacheco and Ernst [100]

developed a tool named Eclat that takes execution feedback into considera-

tion. Eclat generates a method sequence randomly and classifies it as normal

operation, fault-revealing, or illegal based on dynamic invariants mined from

sample executions. Only the inputs classified as normal operation are used

for generating new sequences afterwards. Pacheco et al. [101] extended Eclat

and developed another tool named Randoop. Randoop further prunes dupli-

cate sequences and uses API contracts, e.g., o.equals(o) should return true,

as oracles to identify illegal sequences. Ciupa et al. [34] proposed an adaptive

random testing approach named ARTOO for object-oriented software. AR-

TOO defines some measure of object distance. It then generates candidate

inputs randomly, and at every step selects from them the one that is furthest

away from the already used inputs. Evolutionary testing [102, 117] uses ge-

netic algorithm to generate new test cases based on the coverage information

of previously executed test cases. In this approach, test cases are described

by chromosomes, which include information on which objects to create, which

methods to invoke and which values to use as inputs. The genetic algorithm

then mutates them with the aim of maximizing a given coverage measure.

2.2.2 Symbolic Execution

Symbolic execution [49, 112, 119, 128] is a type of automatic white-box testing

technique. Basically, the symbolic-execution approaches explores the control

paths of the program, collects path conditions of the paths, and solves the

CHAPTER 2. BACKGROUND AND RELATED WORK 20

An example program

 int m(int x, int y) {

1 if(x>5)

2 if(x*y=10)

3 printf("find it");

4 return 1;

 }

Paths Path Conditions Inputs

1, 4 !(x>5) x=0, y=0

1, 2, 4 x>5 && !(x*y=10) x=6, y=0

1, 2, 3, 4 x>5 && x*y=10 x=10, y=1

Figure 2.1: An example of symbolic execution

constraints to create test inputs. Figure 2.1 shows an example program, the

three control paths in it, the path conditions, and some possible inputs by

solving the path conditions. For example, for the control path that consists

of Lines 1 and 4, we can collect the path condition !(x > 5) automatically.

Recent advances of powerful constraint solvers [70, 14, 40] have made it rel-

atively easy to solve such path conditions, and may return x=0, y=0 as the

input (there may be many inputs that satisfy the constraints and the solvers

would randomly return one of them). We can get the inputs for exercising

the other two control paths similarly.

A major challenge of symbolic execution is that it needs to understand

every statement, including the invocation of external calls, so as to collect

the path conditions. However, it is difficult and costly to model the be-

haviors of all methods, especially when the source code of many methods is

unavailable, for large or complex programs. To address this problem, Gode-

froid et al. [49] proposed a tool named DART that incrementally generates

test inputs by combining concrete and symbolic execution. DART generates

path constraints during a concrete execution. DART then modifies the path

CHAPTER 2. BACKGROUND AND RELATED WORK 21

constraints and solves them, if feasible, to generate further test inputs that

would direct the program along alternative paths. If it is not feasible to solve

the modified constraints, DART simply substitutes the symbolic values in the

constraints with random concrete values. Similarly, Sen et al. [112] developed

a tool named CUTE to extract and solve constraints generated for a program

that has dynamic data structures using pointer operations.

2.2.3 Specification-based Test Input Generation

When there are specifications about the inputs, behaviors, and outputs of

the software systems, specification-based testing techniques can generate test

inputs based on these specifications. We next describe three kinds of such

test generation techniques: combinatorial test input generation, model-based

test input generation, and grammar-based test input generation.

Combinatorial Test Input Generation

Combinatorial test input generation is to generate test inputs that cover some

kinds of combinations of given parameter values [36, 38, 50, 73]. The assump-

tion is that many failures result from an interaction between components. The

input of combinatorial testing tools is a specification that describe the input

parameters and the interesting values of each parameter. Given some combi-

nation requirement, techniques from experimental design are used to generate

a small number of test inputs that satisfy the given requirements.

The most common combination requirement is the pair-wise coverage (also

known as 2-wise). 100% pair-wise coverage requires that every possible pair

of interesting values of any two parameters are included in some test case.

A natural extension of pair-wise (2-wise) coverage is t-wise coverage, which

requires every possible combination of interesting values of t parameters be

included in some test case in the test suite. t-wise coverage is formally defined

CHAPTER 2. BACKGROUND AND RELATED WORK 22

Figure 2.2: Number of parameters involved in triggering software faults

by Williams and Probert [124]. A special case of t-wise coverage is N-wise

coverage, where N is the number of all parameters of the inputs. N-wise

coverage requires all possible combinations of all interesting values of the N

parameters be included in the test suite. As shown in Figure 2.21, empirical

evidence suggests that most failures are triggered by the interaction of two

parameters, while many of the rest can be triggered by the interaction of three

or four parameters. Therefore, it is often sufficient to test the interactions of

two to four parameters.

Note that the same test case may cover more than one unique combina-

tion of values. Most combinatorial testing techniques exploit this properties

to generate a small number of tests that satisfy the given combination re-

quirement heuristically. Basically, the more a test input covers combinations

of values that have not been covered previously, the more likely it will be

selected into the test suite [50]. In practice, there may be some constraints of

the interactions between certain parameters. Many tools [38] also allow the

1This figure is adopted from www.csrc.nist.gov/groups/SNS/acts/ftfi.html.

CHAPTER 2. BACKGROUND AND RELATED WORK 23

testers to specify these constraints and prune invalid combinations during the

test generation.

Model Based Test Input Generation

Model-based testing generates test inputs based on a given model that de-

scribes some (usually functional) aspects of the software system under test.

The model is often (translated to) a finite state machine, which describes the

possible actions and states of the system. Based on a given model, model

based testing techniques can generate tests in the form of traces: sequences

of actions. A test suite is a collection of related traces (test inputs).

Depending on the complexity of the software under test and the corre-

sponding model, the number of possible traces (test inputs) can be very large.

For finding appropriate test cases, i.e. traces that refer to a certain model-

based coverage requirement, the exploration of the model has to be guided.

Many test generation techniques have been proposed for this purpose [63, 118].

The generated tests, however, are often in the abstract level and could

not run against the implementation of the software directly. A test harness,

which is called a test stepper [63], is used to connect the abstract tests to the

implementation.

Grammar Based Test Input Generation

Grammar-based testing generates test inputs based on a given context-free

grammar [74, 103]. As described above, context-free grammar can be used

to specify the input syntax of many software programs, such as compilers,

data files of a specific format, exchange data, etc. Given a non-terminal

(often the root element) of a context-free grammar, one way of generating

a sentence (test input) of the non-terminal is as follows: randomly pick a

production rule, generate the sentences of non-terminals/terminals used by

CHAPTER 2. BACKGROUND AND RELATED WORK 24

the production rule, and then combine these sentences into a whole sentence.

Similar to model-based test input generation, the exploration of the grammar

can be guided in the way of maximizing a given grammar-based coverage

criterion quickly.

One can also explore the grammar to generate sentences (test inputs)

of a given non-terminal systematically. Lammel [74] proposed a bottom-up

approach, called Geno, to generate sentences in the order of increasing depth.

depth denotes the largest distance from the non-terminal to a terminal in

its constructing tree. Geno first generates sentences of depth 1, and then

generates sentences of depth 2 by combining sentences of depth 1, and so on.

It also provides other control mechanisms, such as recursion control, for the

test generation.

2.3 Test Output Inspection

2.3.1 Specification-based Test Oracle Generation

Some test oracles may be generated from specifications automatically. For

example, in model-based testing [28, 63], we can generate not only the se-

quences of actions from the finite state machines, but also the expected states

after each action sequence. These states can be used as test oracles to check

whether the implementation passes or fails a test case.

A test oracle is not limited to specify the expected output (properties)

of a single input. Instead of relating an output to its input, metamorphic

testing relates multiple input-output pairs via well-defined relations, called

metamorphic relations. A metamorphic relation is an existing or expected

relation (some kind of specification) over a set of distinct inputs and their

corresponding outputs for multiple executions of the target method [30]. For

example, consider the mathematic method sine. The expected results of x

CHAPTER 2. BACKGROUND AND RELATED WORK 25

and x + 2π are the same, i.e., sin(x) = sin(x + 2π).

Despite the application specific specifications, there are also some general

specifications about the execution of software programs that can generate or

serve as test oracles. For example, it is generally true that a program should

not crash or hang for any given input [122]. There are also general rules

about the memory usages that can be used to check memory errors during

execution of software programs [95].

2.3.2 Test Selection for Result Inspection

Test selection is to select a small subset of tests from the original test suite

without reducing much of the fault-revealing capability. There are two possi-

ble objectives of test selection, to reduce the execution time and to reduce the

result inspection time. In regression test selection, the main concern is often

the test execution time. The existing approaches are based on static analysis,

fault history, and the dynamic execution traces. In test selection for result

inspection, the main concern is the time of inspecting the results, where the

expected outputs are unknown or even unstable. The existing approaches are

mainly based on dynamic execution traces.

Coverage-based Test Selection

The coverage-based approach attempts to cover as many elements (e.g. lines

of code) of a given type as the original test suite with as few test cases as

possible [76]. Selecting a minimal-size, coverage-maximizing subset of a test

suite is an instance of the set-cover problem, which is often solved using a

greedy approximation algorithm. On each of its iterations, the greedy algo-

rithm selects the test that covers the largest number of elements not covered

by the previously selected tests. This approach is based on the assumption

that many software faults and their resulting failures can be revealed simply

CHAPTER 2. BACKGROUND AND RELATED WORK 26

by exercising such elements, regardless of other factors.

Various kinds of code coverage criteria have been proposed for test se-

lection, such as control-flow testing criteria [59] and data-flow testing crite-

ria [47]. Hutchins et al. [61] reported an experimental study investigating

the effectiveness of control-flow and data-flow testing criteria. Their results

suggested that test sets achieving high code coverage levels usually showed

significantly better fault-detection capability than randomly chosen test sets

of the same size. However, the results also indicated that 100% code cover-

age alone is not a reliable indicator of the effectiveness of a test set. Leon et

al. [76] evaluated the effectiveness of complex information flow criteria, which

model indirect control/data dependencies between instructions or objects, for

test selection. Their results suggested that test sets maximizing complex in-

formation flow criteria revealed more faults than test sets maximizing block

coverage with substantial additional cost. In some subjects, the profiles could

not be generated due to memory constraints.

There also exist a number of black-box coverage criteria for test selection.

In partition testing [92], a test input domain is divided into subdomains based

on some criteria, and then developers can select one or more representative

inputs from each subdomain. When a priori specifications are provided for

a program, Chang and Richardson [31] used specification coverage criteria to

select a candidate set of test cases that exercise new aspects of the specifica-

tion.

Clustering-based Test Selection

Dickinson et al. [41] used clustering analysis to partition executions based

on structural profiles, and employed sampling techniques to select executions

from clusters for result inspection. The approach uses agglomerative hier-

archical clustering to cluster the tests, and then selects one test from each

CHAPTER 2. BACKGROUND AND RELATED WORK 27

cluster randomly. The main assumption of this approach is that a signifi-

cant number of failures are isolated in clusters of small size. Dickinson et

al. [42] further proposed a failure-pursuit sampling approach to enhance the

efficiency in finding failures. Moreover, Leon et al. [76] evaluated the ef-

fectiveness of clustering analysis based on complex information flow criteria.

Their results suggested that the effectiveness of the clustering analysis did

not depend strongly on the type of used profiling.

Behavioral-model-based Test Selection

There are various approaches that mine dynamic invariants for test selection.

A dynamic invariant is a property that holds at specific program points, e.g.,

a precondition x < y at entry to a procedure f . Ernst et al. [45] proposed to

mine dynamic invariants from passing tests and develop a tool named Daikon.

Daikon defines a set of templates for generating candidate dynamic invariants,

including preconditions, postconditions, and loop invariants. The candidate

invariants are evaluated on dynamic traces and a candidate is immediately

discarded once it is violated. Any new test that violates the mined dynamic

invariants may reveal faults and deserve manual inspection.

Harder et al. [54] proposed the operational difference approach to select

tests based on Daikon. Their approach repeatedly adds new tests if they

violate the invariants of the previously selected tests. Xie and Notkin [127]

developed an operational violation approach called Jov for unit-test selection

and generation. They mined operational models using Daikon from a set

of manually written passing unit tests and selected automatically generated

test inputs that violated the operational models. Pacheco and Ernst [100]

developed a similar tool named Eclat, which further distinguishes illegal and

fault-revealing inputs with some strategies. Hangal and Lam [52] developed

DIDUCE that extracts operational models dynamically from long-running

CHAPTER 2. BACKGROUND AND RELATED WORK 28

program executions. DIDUCE reports all detected violations at runtime and

gradually relaxes invariants to allow for new behavior. Due to the limited

number of existing passing tests or previously selected tests, the mined dy-

namic invariants of these approaches could be noisy and thus many model

violations could be false positives.

There are also some approaches that build software behavioral models and

then classify failures using both failing and passing tests. Haran et al. [53]

built behavior models of failures in-house using random forests, so as to help

classify remotely-collected execution data. Michail and Xie [89] collected bug

and “not bug” reports that consist of event histories from GUI application

users. They then built a distance weighted nearest neighbor learner to help

users avoid bugs in GUI applications. Bowring et al. [27] classified program

executions based on Markov models. They trained the models incrementally

in an active-learning paradigm to help test-plan development.

Finally, Xie and Notkin [128] developed an approach for automatically

identifying special and common unit tests based on algebraic models. Their

approach selects a test as a special test if the test exercises a certain program

behavior that is not exhibited by most of other tests. But it is applicable

only in object-oriented unit testing.

2.4 Mining Software Data

2.4.1 Mining Source Code

There are many approaches that mine information from source code, which

may come from the software under test, other related software programs, or

online code search engines. The approaches often mine API usage patterns

from the source code, which are then used for documentation or static defect

analysis.

CHAPTER 2. BACKGROUND AND RELATED WORK 29

Engler et al. [44] proposed an approach to extract programming rules

using programmer-specified rule templates such as “function a must be paired

with function b”. Li and Zhou [80] developed a tool named PR-Miner that

uses frequent itemset mining to extract implicit API usage patterns from

source code without any specific templates. Zhong et al. [135] proposed a tool

named MAPO that combines the frequent subsequence mining technique with

the clustering technique to mine code snippets with respect to programming

contexts. Thummalapenta and Xie [113] developed a tool named PARSEWeb

that uses Google code search engine [10] to collect relevant code snippets and

then mines the returned code snippets to find code snippets for a given target

object type.

Robillard [105] proposed an approach named Suade to automatically rank

program elements that are potentially interesting to a developer investigating

source code, based on the topology of structural dependencies in a program.

Saul et al. [108] extended Suade to recommend API functions using random

walks. Long et al. [85] developed a tool Altair that ranks related API meth-

ods for a given query, which is a method, according to pair-wise overlap, i.e.,

the share data that they both access. Inoue et al. [62] proposed an approach

of ranking software components, called Component Rank, based on analyzing

actual use relations among the components and propagating the significance

through the use relations. Thummalapenta and Xie [114] proposed an ap-

proach named SpotWeb to detect hotspots, i.e. API classes and methods

that are frequently reused, in a given framework by mining code examples

gathered from the web. Zhang et al. [131] augmented the call graph with

control flow analysis to capture the significance of the caller-callee linkages in

the call graph, so as to retrieve the relevant APIs more effectively.

Li et al. [79] also used frequent sequence mining to detect copy-pasted

code in large software including operating systems, and then detect copy-

CHAPTER 2. BACKGROUND AND RELATED WORK 30

paste related bugs. Thummalapenta and Xie [115] mined exception-handling

rules, which describe expected behavior when exceptions occur, as sequence

association rules in the source code.

2.4.2 Mining Execution Traces

There are many approaches that mine information from execution traces of

the software. The main tasks are mining specifications and fault localization.

Ernst et al. [45] proposed to mine dynamic invariants from passing tests

and develop a tool named Daikon. Daikon defines a set of templates for gen-

erating candidate dynamic invariants, e.g. a precondition x < y at entry to a

procedure f . The candidate invariants are evaluated on dynamic traces and a

candidate is immediately discarded once it is violated. Hangal and Lam [52]

developed DIDUCE that extracts operational models dynamically from long-

running program executions. Ammons et al. [23] proposed an approach to

summarize the frequent interaction patterns in program execution as proba-

bilistic finite state automata (PFSA). Lo and Khoo [84] improved the quality

of mining results by filtering erroneous execution traces and clustering related

traces. Yang et al. [129] proposed an approximate inference algorithm and

other heuristics to mine interesting temporal API rules effectively. Gabel and

Su [48] proposed a general specification mining framework to learn complex

temporal properties from execution traces. Henkel and Diwan [56] presented

an automatic tool for extracting algebraic specifications, e.g., for a stack s

and an object o, pop(push(s,o).state) .state=s, from Java classes.

Statistical debugging applies statistical analysis on execution traces to lo-

cate the bugs automatically. The basic idea is that the more a statement or

a predicate is covered in failing tests and the less in passing tests, the more

possible it is to be the bug. Agrawal et al. [21] use set operations of the

execution slices of different runs to determine the faulty statements. Jones

CHAPTER 2. BACKGROUND AND RELATED WORK 31

et al. [68] develop the Tarantula tool that provides a mapping from testing

results to the bug-relevant probabilities of statements and visualizes them in

the source-code display. Liblit et al. [81] propose a low-overhead sampling

infrastructure for gathering predicate information and adopt regularized lo-

gistic regression to locate non-deterministic bugs. Liu et al. [81] propose a

statistical model-based approach named SOBER that considers how frequent

a predicate is evaluated as true in each run. Nainar et al. [94] enrich the

predicates by adding compound predicates derived from two atomic predi-

cates. Jiang and Su [65] mine bug predictors from atomic predicates using

SVM and Random Forests, and then link them through clustering and con-

trol flow graph traversal. Baah et al. [25] propose a probabilistic program

dependence graph that models the behaviors of predicates conditioned on

their structural predecessors. Wong et al. [125] uses an RBF neural network

on statement coverage to locate program bugs. Wang et al. [121] refine code

coverage of test runs using control- and data- flow patterns prescribed by dif-

ferent fault types. Reps et al. [104] defines a path spectrum for application

to the Year 2000 problem. Dallmeier et al. [39] investigate the differences of

call sequences to pinpoint the defective classes.

2.4.3 Mining Other Software Data

There are many other software data that are valuable for mining, such as bug

reports, code revision history, documents.

Fault-prone module prediction approaches mine the bug history to pre-

dict faulty modules. These approaches first define specific measures that may

relate to fault-proneness, and then build prediction models based on these

measures. Complexity measures including lines of code, McCabe complex-

ity, Halstead complexity, etc. have been widely used [75, 88]. Basili et al.

[26] validated the usefulness of the object-oriented design measures (CBO,

CHAPTER 2. BACKGROUND AND RELATED WORK 32

RFC, LCOM, DIT, NOC, and WMC) [33]. Ostrand et al. [99] presented

a case study and suggested that revision history was informative for fault

prediction. Nagappan [93] uses Principal Component Analysis to combine

the complexity measures and the fault and modification history measures. In

particular, their study suggested that predictors obtained from one project

can also be significant for new, similar projects. Schroeter et al. [109] showed

that import relations in Eclipse are good for predicting bugs. Kim et al. [71]

proposed an approach called change classification that determine whether a

new software change is more similar to prior buggy changes, or clean changes.

In this manner, change classification predicts the existence of bugs in software

changes.

Example work on mining other software data is listed as follows. Murphy-

Hill et al.[91] studied how programmers refactor using four data sets spanning

more than 13,000 developers, 240,000 tool-assisted refactorings, 2,500 devel-

oper hours, and 3,400 version control commits. Ruthruff et al. [107] built

logistic regression models that predict whether a static analysis warning is

accurate and actionable. Their experience with the static defect analysis tool

FindBugs [3] showed that the models based on metrics from the warnings and

implicated code are effective in reducing the spurious false positive warnings

of FindBugs.

2 End of chapter.

Chapter 3

Unit-Test Generation via

Mining Relevant APIs

In this chapter, we describe our work on mining relevant APIs from source

code to guide random unit-test generation. Given a method under test

(MUT), a key component of object-oriented unit-test generation is to find

method-call sequences that create and mutate desired inputs, including the

receiver and the parameters. Previous work cannot find desired sequences ef-

fectively due to the large search space of possible sequences. To address this

issue, we present a MUT-aware sequence recommendation approach called

RecGen to improve the effectiveness of random object-oriented unit-test gen-

eration. Unlike existing random testing approaches that select sequences

without considering how a MUT may use inputs generated from sequences,

RecGen analyzes object fields accessed by a MUT and recommends a short

sequence that mutates these fields. RecGen first mines relevant APIs for the

MUT, i.e., methods that may mutate object fields accessed by the MUT, from

the source code. It then recommends short sequences that contain relevant

APIs of the MUT to generate the inputs. We have implemented RecGen in

Java and evaluated it on three libraries. The results show that RecGen can

33

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS34

improve the code coverage over previous random testing tools.

3.1 Problem and Motivation

Unit testing is one of the most commonly used techniques to assure high

quality of software systems. A primary objective of unit testing is to achieve

high structural coverage such as statement coverage. To this end, a method

under test (MUT) needs to be executed with specific inputs. For object-

oriented programs, the desired inputs including the receiver and arguments

of a MUT are often objects that have specific values in their fields. As directly

modifying object fields may violate class invariants, it is necessary to employ

method-call sequences (in short as sequences) to create and mutate objects

to generate desired inputs. Therefore, a key component of object-oriented

unit-test generation is to find method-call sequences that generate desired

inputs of a MUT.

There are two main approaches to generate desired method-call sequences:

random sequence generation and bounded-exhaustive sequence generation.

Random sequence generation approaches generate sequences randomly from

the whole space. Csallner and Smaragdakis [37] developed a random testing

tool called JCrasher to generate sequences randomly based on a parameter

graph, which represents the parameter space of the program’s methods. It

is challenging to find desired sequences randomly since there is a very large

space of possible sequences. Pacheco et al. [101] proposed a feedback-directed

random test generation approach and implemented it in a tool called Ran-

doop. Randoop guides random test generation by pruning out invalid or

redundant sequences, which are classified based on the execution results, for

generating new sequences. But there are still a lot of valid and unique se-

quences that are not relevant for achieving new code coverage of a MUT.

Adaptive Random Testing (ART) [35, 83] aims to select inputs evenly across

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS35

the input space. Basically, the ART approaches define some distance for val-

ues of primitive types or objects of classes. They generate candidate inputs

randomly, and then at every step select a candidate input that is the farthest

away from the already used inputs. But when applied to object-oriented

programs, the weights associated with object fields are usually not rigorous

and they are not suitable for various MUTs. Bounded-exhaustive sequence

generation approaches [111, 119, 126] generate sequences exhaustively up to

a small bound of sequence length. However, generating desired objects, in-

cluding the receiver and arguments, often requires longer sequences beyond

the small bound that can be handled by the bounded-exhaustive approaches.

To address the challenges faced by these existing sequence-generation

approaches, we propose a MUT-aware sequence recommendation approach

called RecGen to improve the effectiveness of random object-oriented unit-

test generation. Unlike existing random testing approaches that select se-

quences without considering how a MUT may use inputs generated from

sequences, RecGen analyzes object fields accessed (i.e., read and write) by

a MUT and recommends a short sequence that mutates these fields. The

rationale is that a sequence that mutates object fields accessed by a MUT

has a higher chance to explore different behaviors of the MUT. RecGen first

builds the Abstract Syntax Tree (AST) from the code under test and identifies

the methods that mutate object fields accessed by a MUT. These methods

are called relevant methods of the MUT. RecGen then recommends a short

sequence that consists of relevant methods of the MUT for generating the

receiver or an argument. In particular, RecGen assigns weights to sequences

based on the number of relevant methods they include and their sizes. The

chance of a sequence to be selected is proportional to the ratio of its weight

over the total weight of all sequences. Finally, for MUTs whose test genera-

tion keeps failing (i.e., the resulting sequence is duplicate or throws uncaught

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS36

exceptions), RecGen recommends a set of sequences, which cover the MUT’s

all relevant methods appearing in the candidate sequences, for each input of

the MUT. Such a batch-mode recommendation further improves the chance

of generating desired inputs with limited cost.

To illustrate the idea of RecGen, we present an example MUT named

openDatabase, which belongs to the Environment class in Berkeley DB Java Edi-

tion [12], in Figure 3.1. The MUT calls setupDatabase, which subsequently

calls getAllowCreate to check the field allowCreate of the DatabaseConfig ar-

gument. To achieve high structural coverage of the MUT (and the private

methods called by it) needs various inputs. In particular, to cover the code

under the true branch of dbConfig.getAllowCreate in the setupDatabase method

and create a new database, the field allowCreate of the DatabaseConfig argu-

ment of the MUT should have the true value, which by default has the false

value and can be mutated by invoking DatabaseConfig.setAllowCreate. We

also need an object of Environment for the receiver, while the Transaction ar-

gument can be null and the String argument can be any string. An example

of desired sequences is shown in Figure 3.2.

Assume that we have generated a set of sequences that produce objects of

Environment and objects of DatabaseConfig. When selecting previously gener-

ated sequences for the DatabaseConfig argument, existing random testing tools

have a low chance to select a sequence that includes the DatabaseConfig.setAllowCreate

method. On the other hand, RecGen identifies that DatabaseConfig.setAllowCreate

is a relevant method of the MUT since it mutates the field allowCreate that

is accessed by the MUT. RecGen then recommends short sequences with

the DatabaseConfig.setAllowCreate method and assigns large weights to them,

and thus improves the chance to generate desired new sequences to create

a new database. There are also other relevant methods of the MUT and

recommending a single sequence cannot guarantee the success of sequence

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS37

// Environment.java
public synchronized Database openDatabase(

Transaction txn,
String databaseName,
DatabaseConfig dbConfig)

throws DatabaseException {
checkHandleIsValid();
checkEnv();
try {

if (dbConfig == null) {
dbConfig = DatabaseConfig.DEFAULT;

}
Database db = new Database(this);

::::::::::::::::setupDatabase(txn, db, databaseName,
dbConfig,
false,
false,
envImpl.isReplicated());

return db;
} catch (Error E) {

envImpl.invalidate(E);
throw E;

}
}

private void setupDatabase(..., DatabaseConfig
dbConfig, ...)

throws DatabaseException {
...
if (databaseExists) {

...
} else {

...
/* No database.

Create if we’re allowed to. */
if (:::::::::::::::::::::::::::::::dbConfig.getAllowCreate()) {

...
}

}
...

}

// DatabaseConfig.java
public boolean getAllowCreate() {

return allowCreate;
}

public void setAllowCreate(boolean allowCreate) {
this.allowCreate = allowCreate;

}

Figure 3.1: The openDatabase MUT and related code

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS38

File home = new File(myFilePath);
EnvironmentConfig envConfig=new EnvironmentConfig();
envConfig.setAllowCreate(true);
Environment env = new Environment(home,envConfig);
DatabaseConfig dbConfig = new DatabaseConfig();
dbConfig.setAllowCreate(true);
Database newDb=env.openDatabase(null,"db",dbConfig);

Figure 3.2: A desired sequence of openDatabase

generation. If the test generation of the MUT keeps failing, RecGen recom-

mends a set of sequences that cover the MUT’s all relevant methods, includ-

ing DatabaseConfig.setAllowCreate, for the DatabaseConfig argument. Such a

batch-mode recommendation further improves the chance of generating de-

sired sequences.

We have implemented RecGen in Java. RecGen consists of two compo-

nents: a static analysis component, which identifies relevant methods of the

MUTs, and a test generation component, which generates tests for the MUTs.

The static analysis component is built upon the Eclipse JDT Compiler [2]

and the test generation component is built upon another random testing tool

Randoop [101]. RecGen accepts a set of methods under test and outputs the

generated test cases in test files for JUnit. We have evaluated RecGen on

three libraries: a database library Berkeley DB [12], a data structure library

JDSL [11], and a scientific computation library JScience [7]. The experimen-

tal results show that RecGen can improve the code coverage over previous

random testing tools [37, 83, 101]. The results also show that RecGen finds

a real bug in Berkeley DB Java Edition, which has been confirmed by its

developers.

The rest of this chapter is organized as follows. Section 3.2 reviews related

work. Section 3.3 presents the proposed random object-oriented unit-test gen-

eration approach with MUT-aware sequence recommendation. Section 3.4 de-

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS39

scribes the empirical studies and results. Section 3.5 discusses the limitations

of our approach and future work. Section 3.6 concludes the chapter.

3.2 Related Work

Our work belongs to the category of object-oriented unit-test generation and

is inspired by the API recommendation work. In this section we discuss the

related work on these two topics. More related work on automatic test input

generation can be found in Chapter 2.

3.2.1 Object-Oriented Unit-Test Generation

Object-oriented unit-test generation contains two parts: generating test in-

puts and generating test oracles. Test input generation further contains two

components: generating method-call sequences and generating primitive ar-

guments in sequences. RecGen addresses the test input generation problem

and focuses on sequence generation.

Method-call Sequence Generation

There are two main approaches to generate desired method-call sequences:

random sequence generation and bounded-exhaustive sequence generation.

Random sequence generation approaches generate sequences randomly from

the whole space. Csallner and Smaragdakis [37] developed a random testing

tool named JCrasher to generate sequences randomly. Pacheco et al. [101]

proposed a feedback-directed random test generation approach and imple-

mented it in a tool Randoop. Adaptive Random Testing (ART) [35, 83]

approaches such as ARTGen [83] select inputs evenly across the input space.

These random sequence generation approaches cannot generate desired se-

quences effectively from the large space of possible sequences. Bounded-

exhaustive sequence generation approaches [111, 119, 126] generate sequences

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS40

exhaustively up to a small bound of sequence length. However, generating

desired objects, including the receiver and arguments, often requires longer

sequences beyond the small bound that can be handled by the bounded-

exhaustive approaches.

Recently, Thummalapenta et al. [115] proposed an approach named MSeq-

Gen to generate desired sequences for a MUT using the client code. MSeqGen

extracts sequences that are relevant to the receiver or arguments of a MUT

from the client code. It then uses those sequences to enhance random test

generation and dynamic symbolic execution approaches. The performance

of MSeqGen relies on the client code, which may not be available in testing

code under development or may not be sufficient enough for recommending

sequences for most of the MUTs. Alternatively, RecGen assists random test

generation by recommending sequences based on object-field-access informa-

tion of the methods in the application under test, without requiring any client

code.

Primitive Argument Generation

The primitive arguments of a method-call sequence can be generated ran-

domly or systematically via symbolic execution. Random approaches [35, 37,

83, 101] generate primitive arguments from all possible values or a set of prede-

fined values randomly. Symbolic execution approaches [49, 111, 116, 119, 128]

generate primitive arguments systematically to cover all feasible paths in the

MUTs. The symbolic-execution approaches execute method sequences with

symbolic parameters (unspecified arguments), builds path constraints on the

parameters, and solves the constraints to create actual test inputs with con-

crete parameters. For large or complex programs, it is computationally in-

tractable to precisely maintain and solve the constraints required for test

generation. Dynamic symbolic execution approaches [111, 116] address this

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS41

issue by substituting the symbolic parameters in the constraints with random

concrete values. RecGen generates primitive arguments randomly, yet it is

possible to combine the sequence recommendation approach of RecGen with

the symbolic execution approaches. We plan to investigate this approach in

our future work.

3.2.2 API Recommendation

RecGen recommends sequences for a MUT based on its relevant methods. The

idea is inspired by the API recommendation work that helps to recommend

related APIs for a given method.

Some approaches mine API usage patterns from example code reposito-

ries. Engler et al. [44] proposed an approach to extract programming rules

using programmer-specified rule templates such as “function a must be paired

with function b”. Li and Zhou [80] developed a tool named PR-Miner that

uses frequent itemset mining to extract implicit API usage patterns from

source code without any specific templates. Zhong et al. [135] proposed

a tool named MAPO that combines the frequent subsequence mining tech-

nique with the clustering technique to mine code snippets with respect to

programming contexts. Instead of finding code snippets from a repository

(with a limited set of snippets), Thummalapenta and Xie [113] developed a

tool named PARSEWeb that uses Google code search engine [10] to collect

relevant code snippets and then mines the returned code snippets to find code

snippets for a given target object type. These approaches, however, cannot

be used for testing code under development, as we may not have example

code available.

Some other approaches recommend API methods mainly based on struc-

tural dependencies of the library code. Mandelin et al. [87] developed a tool

named Prospector that answers queries of how to create certain Java types.

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS42

It mines code snippets from both API type signatures and client code. Robil-

lard [105] proposed an approach named Suade to automatically rank program

elements that are potentially interesting to a developer investigating source

code, based on the topology of structural dependencies in a program. Saul et

al. [108] extended Suade to recommend API functions using random walks.

Long et al. [85] developed a tool called Altair to recommend APIs for C

programs. Altair recommends related API methods for a given method ac-

cording to pair-wise overlap, i.e., the shared data that they both access. Our

approach is inspired by Altair and we extend it to recommend sequences for

a given query, which contains a method under test and its receiver or one of

its arguments.

3.3 Our Approach

In this section, we present the proposed approach of random object-oriented

unit-test generation. We first present the overview of the approach. We

then describe the MUT-aware sequence recommendation technique in detail.

Finally, we describe test oracles and test execution.

3.3.1 Overview

RecGen accepts a set of methods under test, generates test inputs, adds test

oracles, and outputs the generated test cases in test files for JUnit. Alter-

natively, the users can specify a set of classes to test. RecGen adds all the

public methods in these classes into the list of methods to test. By default,

RecGen filters out subclasses of java.lang.Exception, since these classes are

often used to handle exceptional cases and may corrupt the program states

for further testing. RecGen then repeats the following steps to test the MUTs

up to a given time limit.

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS43

• Select a MUT randomly.

• For each input (the receiver or arguments) of the MUT

– If the input is a primitive value, randomly select a primitive value

from a fixed pool of values.

– If the input is an array of primitive values, randomly construct an

array with a set of primitive values selected from a fixed pool of

values.

– If the input is an object, select a sequence (or a set of sequences

for MUTs whose test generation keeps failing) from existing valid

sequences using MUT-aware sequence recommendation.

• Generates a new sequence (or a set of sequences for MUTs whose test

generation keeps failing) to test the MUT by concatenating selected

sequences with the MUT at the end.

• Add test oracles to the new sequence.

• Execute the new sequence and process it according to execution results;

only valid and unique sequences are used for further sequence generation.

Before describing the main steps in detail, we next explain a bit more on

the mechanism of object generation in RecGen. For an input that is of a

reference type, RecGen selects an existing sequence to generate an object as

the input. The pool of existing sequences is initially empty. At that time

only test generation for constructors or static methods may succeed. But as

the test generation proceeds, new valid sequences are added to the pool of

existing sequences and the size of the pool grows quickly. The number of

existing sequences that can generate objects of the desired type of an input

often becomes large. RecGen does not create objects of reference types in an

active mode, i.e., by invoking constructors of classes recursively (Note that the

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS44

arguments of constructors may also be objects). This mechanism is adopted

because if an object of a type is difficult to be generated randomly, such as

the Database class shown in Figure 3.1, there are probably some constraints

on arguments of methods that return an object of the type (including the

constructors and other classes’ methods). In this case, to create objects in an

active mode also has a low chance of success, and could take a high cost.

3.3.2 MUT-aware Sequence Recommendation

Given a MUT and its receiver or one of its arguments, RecGen first selects

previously generated sequences that produce the desired (compatible) type

of objects. This selection can be done by recording the execution results of

previously generated sequences. Among these candidate sequences, RecGen

recommends the sequences that mutate object fields accessed by the MUT.

We first describe how RecGen identifies relevant methods of a MUT, i.e.,

the methods that mutate object fields accessed by the MUT. We then de-

scribe how RecGen recommends a single sequence for most MUTs or a set

of sequences for MUTs whose test generation keeps failing, based on relevant

methods.

Identifying Relevant Methods

Various approaches [80, 85, 87, 135] recommend related APIs for a given

method. Since we target at the test-generation problem, we are interested

in methods that may affect the execution of a given MUT by mutating ob-

ject fields accessed by the MUT. RecGen identifies relevant methods for the

methods under test by analyzing all the code of the application under test.

Basically, RecGen checks whether two methods may access the same object

fields. If so, we consider the two methods relevant; otherwise, we consider

them non-relevant. Let N(f) denote the set of object fields that a method f

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS45

may access. The relevance between a method g and f is defined as follows.

relevance(f, g) =





1, if |N(f) ∩N(g)| > 0

0, otherwise

relevance(f, g) indicates whether g may affect the execution of f , and vice

versa.

To compute the set of object fields that a method may access, RecGen first

analyzes which object fields a method accesses directly in its method body.

RecGen uses the Eclipse JDT Compiler [2] to build the Abstract Syntax Tree

(AST) from the code under test, and then extracts the direct field-access

information. A method may access an object field by calling other methods,

such as the openDatabase method illustrated in Figure 3.1. Therefore, RecGen

merges the set of object fields accessed by a given method and the methods

that the given method calls. RecGen extracts the call graph of the code under

test from the AST. For a method f , RecGen searches the call graph for the

methods that are called by f or called by the methods called by f . Let M(f)

denote the search result. RecGen then merges object fields accessed directly

by f or by M(f) into the set N(f).

RecGen identifies relevant methods of all the methods in the application

under test and saves the results in advance. Given a MUT, RecGen queries

its relevant methods from the saved results. This technique allows RecGen to

identify relevant methods of the MUTs quickly during test generation.

Recommending a Single Sequence

Correlation Weights. RecGen recommends sequences for each input of a

MUT based on the relevant methods. Basically, RecGen prefers sequences

that include more relevant methods of the MUT and fewer other methods.

Therefore, we define the correlation of a sequence to a MUT as the percent-

age of relevant methods of the MUT in the sequence. More formally, the

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS46

correlation of a sequence seq to a method f is defined as follows.

weight corr(seq, f) =
n∑

i=1

relevance(seqi, f)/n

where seqi is the ith method in the sequence and n is the total number of

method calls in the sequence.

The metric indicates how likely a sequence mutates object fields that a

MUT may access. We use this metric as one kind of weights of the sequences.

The larger the weight is, the higher chance it has in exploring different be-

haviors of the MUT by using the sequence to generate the input of the MUT.

Size Weights. RecGen also prefers to use shorter sequences to generate

inputs of a MUT. In many cases, it is sufficient to use short sequences, whose

search space is much smaller than the space of all the sequences, to generate

desired objects. However, it is still possible that long sequences are necessary

to generate desired objects. Instead of setting a fix threshold of the size (i.e.,

length) of sequences to search, RecGen recommends shorter sequences by

assigning size weights to sequences as follows.

weight size(seq, f) = 1/n

where n is the total number of method calls in the sequence.

By assigning large weights to shorter sequences, RecGen searches the space

of short sequences more thoroughly. At the same time, a long sequence that

is necessary to generate desired objects could be recommended by the corre-

lation weights.

Overall Weights. RecGen normalizes the correlation weights and the

size weights of sequences separately such that each kind of weights of all

sequences sum up to 1. In particular, for the correlation weight, our approach

divides the correlation weight of each sequence for a MUT f by the sum of

all the correlation weights. RecGen employs the same normalization for the

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS47

size weights of sequences. RecGen then combines the weights equally. The

overall weight of a sequence for a MUT f is calculated as follows:

weight(seq, f) = (weight corr(seq, f) + weight size(seq, f))/2

RecGen randomly selects a sequence to generate the input of a MUT based

on the overall weights of sequences. In particular, the chance of a sequence

to be selected is proportional to the ratio of its weight over the total weights

of sequences.

Priority of Receiver Sequences. Finally, RecGen recommends to use

the receiver sequence, i.e., the sequence that is used to generate the receiver,

to generate arguments, if possible. This technique is based on the rationale

that the arguments of a MUT often have correlations with the receiver. For

example, consider the Vector.remove(Object) method in java.util.Vector. To

cover most of the code of this method, we need to generate objects that are

contained in the receiver as well as objects that are not contained in the

receiver for the Object argument. Suppose that we have selected a sequence

seq that generates a vector v as the receiver, and now we would like to select

a sequence to generate the argument. Selecting sequences for the argument

randomly has a low chance to generate an object that is contained in the

receiver v. On the other hand, the sequence seq that creates and mutates

the receiver v is more likely to produce an object contained in v. Therefore,

RecGen prefers to select the receiver sequence to generate the arguments.

In particular, given a MUT and an argument to generate, RecGen checks

whether the receiver sequence can produce objects of the argument type. If

so, RecGen selects the receiver sequence to generate the argument with a

predefined probability, which is 0.5 by default.

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS48

Recommending a Set of Sequences

Although RecGen has improved the chance of generating a desired input with

a single sequence, it cannot guarantee to generate desired inputs with only a

few attempts for some MUTs. RecGen employs a batch-mode recommenda-

tion to further improve the chance with limited cost.

If the test generation of a MUT keeps failing, i.e., returning invalid or

duplicate sequences, RecGen identifies that this MUT is difficult to test.

Given an input of such a MUT, RecGen first selects previously generated

sequences that produce the desired (compatible) type of objects as candidate

sequences. It then recommends a set of sequences, which cover all relevant

methods of the MUT appearing in the candidate sequences, for the input. In

particular, RecGen ranks the candidate sequences in the descending order of

their weights as defined earlier. From top to down, RecGen recommends a

sequence if the sequence covers a relevant method (of the MUT) that is not

covered by the previous recommended ones. For relevant methods that have

only a boolean argument, RecGen distinguishes the values (true/false) of the

argument. RecGen does not distinguish the values of other types due to the

large value space. For each argument, RecGen also recommends the receiver

sequences that can produce objects of the argument type. Finally, RecGen

explores all the combinations of the sequences for the inputs to generate new

sequences.

The set of recommended sequences cover all relevant methods of the MUT

appearing in the candidate sequences, and thus has a high chance to gener-

ate the desired inputs. In addition, the recommended sequences are only a

small portion of all candidate sequences and they cost less to run. Therefore,

the batch-mode recommendation further improves the chance of generating

desired inputs with limited cost. RecGen employs the batch-mode recom-

mendation for only the MUTs whose test generation fail k times successively

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS49

(k is 5 by default).

3.3.3 Test Oracles and Test Execution

RecGen adds test oracles to the test inputs of a MUT to form test cases. A

test oracle specifies the expected effect of a method on the program states

including invariant properties. When a test case is executed, test oracles

decide whether the test case passes or fails. RecGen employs test oracles that

express generic properties of Java programs. In particular, RecGen adopts

the contracts used in Randoop [101], which are listed as follows.

• o.equals(o) returns true

• o.equals(o) throws no exception

• o.hashCode() throws no exception

• o.toString() throws no exception

The programmers may specify additional test oracles, including domain-

specific ones. A test oracle can be added by implementing a Contract interface

and specifying the pre-conditions, post-conditions, and invariant properties.

When a new sequence is generated, it is executed immediately and checked

with the test oracles. If the execution of a new sequence returns normally

and produces new objects, the new sequence is added to the pool of existing

sequences and used for further test generation. Otherwise, it is outputted in

test files for JUnit but not used for further test generation.

3.4 Experiments

In this section, we present the experimental studies to evaluate the effective-

ness of RecGen in unit-test generation. We first describe the experimental

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS50

setup, including subjects, measurements, compared approaches, and experi-

mental environments. We then present the results, including code coverage

and the number of generated tests, of RecGen and other approaches in unit-

test generation. Finally we present an example to illustrate how RecGen

helps to find real bugs in applications.

3.4.1 Experimental Setup

Subjects

To evaluate our approach, we conduct experiments on three Java libraries: a

database library Berkeley DB [12], a data structure library JDSL [11], and a

science computation library JScience [7].

Berkeley DB (BDB) is a computer software library that provides a high-

performance embedded database. Berkeley DB can support thousands of si-

multaneous threads of control or concurrent processes manipulating databases

as large as 256 terabytes, on a wide variety of operating systems. Berkeley

DB Java Edition comprises a pure Java database.

JDSL is a data structure library in Java. It implements fundamental

data structures and algorithms such as priority queues, sorting and searching

algorithms, minimum spanning trees, and graph travels.

JScience is a Java library for scientific computing (math, physics, astron-

omy, economics, etc.). It supports symbolic calculations and analyses, quan-

tum and natural in physics, linear algebra, different types of numbers, and

many other tasks in scientific computing.

The characteristics of the three subject applications are summarized in

Table 3.1.

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS51

Table 3.1: Subject programs

Library #Classes #Methods #LOC

Berkeley DB 248 4371 96148

JDSL 102 1060 19636

JScience 65 1386 18290

Measurement

To evaluate the effectiveness of our approach in unit-test generation, we use

two metrics. The first metric is the statement coverage, i.e., the percentage

of statements that are covered by executing the generated tests. The higher

the coverage is, the more thoroughly the applications are tested and the more

confidence we can gain in the testing. The second metric is the number of

the generated tests. This metric indicates the potential efforts required to

execute and to check the results of the generated tests.

Compared Approaches

We compare RecGen with previous random test generation approaches, in-

cluding JCrasher [37], Randoop [101], and ARTGen [83]. JCrasher uses undi-

rected random testing approach, Randoop applies feedback-directed random

testing approach, and ARTGen employs adaptive random testing approach.

Randoop, ARTGen, and RecGen use a “timelimit” parameter to limit the

time for test generation. We run these tools on each subject library for two

minutes (the default time limit of Randoop). JCrasher uses a “depth” pa-

rameter to limit the space of possible sequences for test generation. We run

JCrasher on each subject library with the default depth. When testing Berke-

ley DB, which interacts with the file system, we provide a seeding sequence

that specifies an empty directory and an empty file for Randoop, ARTGen,

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS52

and RecGen. JCrasher does not provide the functionality of using seeding

sequences, so we do not provide the seeding sequence for it.

Experimental Environments

We conduct the experiments on a 2.80GHz Intel(R) Core (TM)2 PC with

3GB physical memory, running Ubuntu 9.04. We apply a Java code coverage

tool EclEmma [9] to collect the statement coverage of executing the generated

tests.

3.4.2 Results

Statement Coverage

Tables 3.2, 3.3, and 3.4 show the statement coverage results of RecGen and

other approaches on Berkeley DB, JDSL, and JScience, respectively. Only

lines that are not comments, blanks, standalone braces, or parenthesis are

counted. The tables show the statement coverage results for all packages of

the subject applications and the total statement coverage of each application,

i.e., the ratio of the number of covered statements to the total number of

statements in each application. In total, the tests generated by JCrasher

achieve 11.0%, 23.2%, and 37.7% statement coverage on Berkeley DB, JDSL,

and JScience, respectively. The tests generated by Randoop achieve 37.4%,

45.5%, and 56.1% statement coverage on Berkeley DB, JDSL, and JScience,

respectively. The tests generated by ARTGen achieve 24.2%, 35.2%, and

56.0% statement coverage on Berkeley DB, JDSL, and JScience, respectively.

The tests generated by RecGen achieve 48.4%, 58.9%, and 64.9% statement

coverage on Berkeley DB, JDSL, and JScience, respectively. Note that it is

often impractical to cover 100% of the statements. For example, it is difficult

to trigger the exception-handling code.

JCrasher achieves low statement coverage because it cannot search the

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS53

Table 3.2: Statement coverage (%) on Berkeley DB (LOC: lines of code)

Package #LOC JCrasher Randoop ARTGen RecGen

com.sleepycat.je 4755 9.8 36.6 32.5 44.3

com.sleepycat.je.cleaner 2850 1.6 30.6 8.5 52.8

com.sleepycat.je.config 764 89.1 95.9 95.5 95.2

com.sleepycat.je.dbi 4401 10.4 40.0 27.9 53.4

com.sleepycat.je.evictor 456 0.0 11.2 0.2 8.6

com.sleepycat.je.incomp 318 0.3 23.3 0.3 16.0

com.sleepycat.je.jca.ra 278 0.0 0.0 0.0 0.0

com.sleepycat.je.jmx 441 49.2 58.3 57.8 64.6

com.sleepycat.je.latch 215 27.0 74.9 67.4 76.7

com.sleepycat.je.log 3789 9.6 36.3 15.1 49.6

com.sleepycat.je.log.entry 366 15.0 47.5 29.8 65.6

com.sleepycat.je.recovery 1954 7.0 33.9 7.8 34.4

com.sleepycat.je.tree 4398 9.3 34.8 22.0 47.4

com.sleepycat.je.txn 2608 6.6 37.6 22.1 52.5

com.sleepycat.je.util 1564 5.9 22.9 22.5 34.6

com.sleepycat.je.utilint 678 19.3 63.7 50.7 64.5

Total 29835 11.0 37.4 24.2 48.4

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS54

Table 3.3: Statement coverage (%) on JDSL (LOC: lines of code)

Package #LOC JCrasher Randoop ARTGen RecGen

jdsl.core.algo.sorts 91 24.2 48.4 24.2 48.4

jdsl.core.algo.traversals 26 0.0 0.0 0.0 0.0

jdsl.core.api 62 69.4 93.5 90.3 25.8

jdsl.core.ref 2497 26.1 49.4 39.4 67.4

jdsl.core.util 60 30.0 6.7 6.7 1.7

jdsl.graph.algo 602 8.7 40.0 20.1 41.4

jdsl.graph.api 46 47.8 89.1 82.6 37.0

jdsl.graph.ref 541 15.7 29.6 25.9 51.9

Total 3925 23.2 45.5 35.2 58.9

Table 3.4: Statement coverage (%) on JScience (LOC: lines of code; GEO.COOR:

geography.coordinates, MATH: mathematics)

Package #LOC JCrasherRandoopARTGenRecGen

org.jscience. 396 3.0 4.5 4.8 4.8

org.jscience.economics.money 55 43.6 87.3 85.5 96.4

org.jscience.GEO.COOR 667 17.4 61.9 60.9 21.9

org.jscience.GEO.COOR.crs 198 52.5 64.1 61.6 61.1

org.jscience.MATH.function 692 32.8 32.7 37.3 39.6

org.jscience.MATH.number 1683 68.1 83.1 79.3 86.1

org.jscience.MATH.vector 1551 22.0 39.8 46.1 82.8

org.jscience.physics.amount 614 36.5 67.4 57.8 70.5

org.jscience.physics.model 60 58.3 96.7 96.7 100

Total 5916 37.7 56.1 56.0 64.9

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS55

whole space of possible sequences effectively. In particular, JCrasher excludes

void-returning methods, e.g., the DatabaseConfig.setAllowCreate method, to

reduce the search space. But void-returning methods, which may mutate ob-

jects, are critical in generating desired inputs. Randoop improves the state-

ment coverage much over JCrasher by using execution feedback to prune

illegal and duplicate sequences. The feedback information helps to reduce

the search space without excluding any methods. ARTGen performs com-

parably with Randoop on JScience, but worse than Randoop on Berkeley

DB and JDSL. The poor performance of ARTGen may be caused by non-

rigorous weights associated with object fields. ARTGen also generates fewer

tests within the time limit due to the high cost of calculating the distances be-

tween objects that are complex data structures. In addition, ARTGen prefers

to use different objects of each argument for different tests. But for some ar-

guments of the MUTs, similar objects may be required and combined with

different objects of other arguments. RecGen improves the statement cover-

age much over Randoop. By focusing on relevant methods, RecGen improves

the chance of generating desired sequences for each attempt and further im-

proves the chance by covering all relevant methods. In some cases, RecGen

improves the statement coverage by both focusing on sequences containing

relevant methods and preferring the receiver sequences, the latter of which is

important for testing data structures such as collections. We next provide an

example to illustrate such scenarios.

Figure 3.3 shows a MUT, called finishTime, in the DFS class of the jdsl.graph.algo

package. The DFS class implements the depth-first search (DFS) algorithm for

graphs. After invoking a method execute to perform the DFS algorithm on a

graph, a record called FINISH TIME is set for each vertex that has been visited.

The finishTime MUT is to get the FINISH TIME record for a given vertex. To

test the functionality of getting the FINISH TIME record of a vertex that has

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS56

// a MUT
public Integer finishTime(Vertex v) {

return (Integer)v.get(FINISH TIME);
}

// a desired sequence for the MUT
jdsl.graph.algo.DirectedDFS var0 =

new jdsl.graph.algo.DirectedDFS();
jdsl.graph.ref.IncidenceListGraph var1 =

new jdsl.graph.ref.IncidenceListGraph();
java.lang.String var2 = "";
jdsl.graph.api.Vertex var3 =

var1.insertVertex((java.lang.Object)var2);
var0.execute((jdsl.graph.api.InspectableGraph)var1);
java.lang.Integer var5 = var0.finishTime(var3);

Figure 3.3: The finishTime MUT and a desired sequence

been visited, the depth-first search should be performed on some graph and

then a vertex in the graph should be taken as the argument of the MUT. Fig-

ure 3.3 shows one of the desired sequences (DirectedDFS is a subclass of DFS).

RecGen identifies execute as a relevant method of the finishTime MUT, and

recommends a sequence that includes execute for the receiver of finishTime.

RecGen also prefers to use an object of Vertex that is produced by the se-

quence that generates the receiver for the Vertex argument. Such an object

of Vertex is more likely to have been visited by the execute method. Thus

RecGen successfully generates a desired sequence that helps to test the func-

tionality of the finishTime MUT.

For some packages, RecGen achieves lower code coverage than Randoop.

For example, the package jdsl.core.api of JDSL consists of mainly simple

classes that are subclasses of java.lang.Exception. RecGen filters out the

methods of these classes by default, and thus achieves lower code coverage

for the package.

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS57

Table 3.5: The number of generated tests

Library JCrasher Randoop ARTGen RecGen

Berkeley DB 100077 10061 12267 13805

JDSL 99964 13957 2409 12806

JScience 99977 4362 3607 13413

0 1000 2000 3000 4000 5000

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

#Tests

S
ta

te
m

en
t C

ov
er

ag
e

RecGen
Randoop

Figure 3.4: Code coverage w.r.t. #tests on JScience

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS58

Number of Generated Tests

We list the number of generated tests for the three subjects in Table 3.5. As

shown in the table, JCrasher generates a very large number of tests which,

however, achieve low code coverage. Such a result is due to that JCrasher does

not use execution feedback to guide sequence generation. It could generate

a lot of sequences quickly but most of them are invalid. Randoop generates

much fewer tests than JCrasher and improves the code coverage by pruning

invalid sequences. ARTGen generates fewer tests than Randoop in JDSL,

but at the cost of lower code coverage. RecGen generates similar numbers of

tests as Randoop in Berkeley DB and JDSL, but generates much more tests

than Randoop in JScience. To execute and to check the results of more tests

require more efforts. This issue of a large number of tests, however, can be

addressed by test selection techniques [61, 132]. We plan to investigate this

issue in our future work. In any case, using the same number of tests as those

generated by Randoop, RecGen can achieve a statement coverage of 60.7%,

which is still higher than that of Randoop in JScience. Figure 3.4 shows the

code coverage of executing the first k number of tests generated by RecGen

and Randoop on JScience. The results show that the tests generated by

RecGen are more effective in increasing the code coverage, since they contain

sequences that mutate the object fields accessed by the MUTs.

A Bug Found

We have described the statement coverage results of RecGen. We next present

an example to illustrate how our approach helps to find real bugs in the

applications.

Figure 3.5 shows a test case generated by RecGen for Berkeley DB. The

test case creates an object of the DatabaseEntry class, sets the data field of

the object, and then sets the size field of the object. Finally, a test oracle is

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS59

com.sleepycat.je.DatabaseEntry var0 =
new com.sleepycat.je.DatabaseEntry();

java.lang.Byte var1=new java.lang.Byte((byte)1);
java.lang.Byte var2=new java.lang.Byte((byte)123);
java.lang.Byte var3=new java.lang.Byte((byte)122);
byte[] var4 = new byte[] var1, var2, var3;
var0.setData(var4);
java.lang.Integer var6 = new java.lang.Integer(100);
var0.setSize(var6);
// Checks var0.equals(var0)
var0.equals(var0);

Figure 3.5: A test case generated by RecGen

added to check whether the object is equal to itself. Executing this test case

throws an unexpected exception ArrayIndexOutOfBoundsException.

Figure 3.6 shows the code of the DatabaseEntry class. Checking the code of

the equals method, we can find that the exception is caused by crossing the

bound of the data field. While size is 100, data contains only 3 elements. The

equals method does not expect such an inconsistency between data and size,

and it contains no checks when accessing the elements of data. Therefore,

there is a bug either in the setSize method or in the equals method. On

one hand, if size is intended to represent the number of elements in data, it

should be updated with data simultaneously. In this case, the class should

not provide the setSize method, or at least, should not declare it as a public

method. On the other hand, if size is allowed to have other meanings (which

is confusing since in the setData method, size is always set as the number of

the elements in data), the equals method (and possibly many other methods)

should not use size to access the elements in data. We have reported the bug

to the developers of Berkeley DB and the bug has been confirmed.

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS60

public class DatabaseEntry {
private byte[] data;
private int size = 0;
...

public void setData(byte[] data) {
this.data = data;
offset = 0;
size = (data == null) ? 0 : data.length;

}

public void setSize(int size) {
this.size = size;

}

@Override
public boolean equals(Object o) {

if (!(o instanceof DatabaseEntry)) {
return false;

}
DatabaseEntry e = (DatabaseEntry) o;
if (partial || e.partial) {

if (partial != e.partial ||
dlen != e.dlen ||
doff != e.doff) {

return false;
}

}
if (data == null && e.data == null) {

return true;
}
if (data == null || e.data == null) {

return false;
}
if (size != e.size) {

return false;
}
for (int i = 0; i < size; i += 1) {

if (data[offset + i] !=
e.data[e.offset + i]) {
return false;

}
}
return true;

}
}

Figure 3.6: The DatabaseEntry class in Berkeley DB

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS61

3.4.3 Threats to Validity

The threats to external validity primarily include the degree to which the

subject programs are representative of true practice. We have evaluated our

approach on only three libraries that are of medium to large size. These

threats could be reduced by more experiments on wider types of subjects in

future work. The threats to internal validity are instrumentation effects that

can bias our results. Faults in our implementation and other random testing

tools might cause such effects.

3.5 Discussions

3.5.1 Accuracy of Relevant Methods

Our current implementation of identifying relevant methods may not be to-

tally accurate. For example, we have not distinguished read and write op-

erations. Therefore, RecGen may identify a method that reads an object

field accessed by a MUT as a relevant method of the MUT. Recommending

sequences that consist of such a method does not help to improve the chance

of generating desired inputs. We plan to reduce such noisy methods using

finer-grained analysis. In addition, a method that is relevant to a MUT may

forbid some object fields from being accessed by the MUT. For example, the

method close of the java.io.InputStream closes an input stream and then the

method read cannot read any data from the input stream. To avoid gener-

ating invalid sequences that invoke methods on an object after the object

is “destroyed”, we may identify such destroying methods using heuristics of

naming conventions or manual annotations and assign negative weights to

them.

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS62

3.5.2 Fault-revealing Capability of Generated Tests

We have shown that RecGen can generate test cases automatically to improve

the structural coverage. Test cases that achieve high structural coverage often

have a higher chance to reveal more bugs and improve the software reliability

[32]. However, due to the difficulty of manually checking the results of a large

number of tests and the lack of application-specific test oracles, we cannot

fully exploit the fault-revealing capability of the generated tests currently. We

can address this issue by using test selection approaches [61, 132] to reduce

the number of tests for result inspection and adding application-specific test

oracles. We plan to investigate the effectiveness of these two approaches in our

future work. In addition, the current implementation of RecGen organizes

the generated test cases in the order of time of test generation. We plan

to improve the organization by putting test cases generated for the same

methods or classes together. It is easier for programmers to check and modify

test cases in this way.

3.5.3 Symbolic Execution with Sequence Recommendation

Our current approach integrates MUT-aware sequence recommendation with

random test generation. It is also possible to integrate sequence recommen-

dation with symbolic execution approaches [49, 111, 116, 119, 128]. While

random test generation approaches sparsely sample a large portion of the

state space, symbolic execution approaches often thoroughly sample a tiny,

localized portion of the space. In particular, symbolic execution approaches

are effective in finding suitable primitive arguments of a sequence skeleton

(a method-call sequence with primitive arguments unspecified) to improve

structural coverage of a MUT. But there is no approach that provides an ef-

fective guidance to the choice of sequence skeletons, which can greatly affect

the performance of symbolic execution approaches. Our sequence recommen-

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS63

dation technique can help symbolic execution approaches by recommending

sequence skeletons that contain the MUT and its relevant methods. We plan

to investigate this direction in our future work.

3.6 Summary

Given a method under test (MUT), a key component of object-oriented unit-

test generation is to find method-call sequences that create and mutate desired

receiver or arguments. In this chapter, we propose a MUT-aware sequence

recommendation approach, called RecGen, to improve the effectiveness of

random object-oriented unit-test generation. Unlike existing random testing

approaches that select inputs without considering how the MUT may use

the inputs, RecGen recommends a short sequence that mutates object fields

accessed by the MUT to generate the inputs. The rationale is that a sequence

is more likely to exercise new behaviors of a MUT if it mutates object fields

accessed by the MUT. In addition, for MUTs whose test generation keeps

failing, RecGen recommends a set of sequences to cover all the methods that

mutate object fields accessed by the MUT. This technique further improves

the chance of generating desired inputs. We have implemented RecGen as

an open source tool in Java. We also evaluate RecGen on three libraries.

The results show that RecGen can improve the code coverage over previous

random testing tools and it finds a real bug in Berkeley DB.

We plan to pursue several future directions for improving our approach.

First, we plan to improve the accuracy of identifying relevant methods. Sec-

ond, we plan to improve the fault-revealing capability of generated test suites.

Third, we plan to conduct experiments on wider types of subjects. Finally,

we plan to combine our sequence recommendation approach with symbolic

execution approaches.

CHAPTER 3. UNIT-TEST GENERATION VIA MINING RELEVANT APIS64

2 End of chapter.

Chapter 4

Test Selection via Mining

Operational Models

In automated testing, especially test generation in the absence of specifica-

tions, a large amount of manual effort is spent on test-result inspection. Test

selection for result inspection helps to reduce this effort by selecting a small

subset of tests that are likely to reveal faults. A promising test-selection

approach is to dynamically mine operational models as potential test ora-

cles and then select tests that violate them. Existing work adopting this

approach mines operational models based on dynamic invariant detection. In

this chapter, we propose to mine common operational models, which are often

but not always true in all observed traces, from a (potentially large) set of

unverified tests. Specifically, our approach collects branch coverage and data

value bounds at runtime and then mines implication relationships between

branches and constraints of data values as potential operational models after

running all the tests. Our approach then selects tests that violate the mined

common operational models for result inspection. We have evaluated our ap-

proach on a set of programs, compared with previous code-coverage-based,

clustering-based, dynamic-invariant-based, and random selection approaches.

65

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS66

The experimental results show that our approach can more effectively reduce

the number of tests for result inspection while revealing most of the faults.

4.1 Problem and Motivation

It is labor-intensive to manually generate a large set of test inputs and verify

their outputs. Recently, there have been various practical approaches on

automatic test-input generation [101, 112, 119, 123]. However, test-result

inspection still remains a largely manual task. Given a priori specification,

developers can reduce this manual effort by selecting test inputs (in short as

tests) using specification coverage criteria [31]. But it is uncommon to have

a priori specification in practice. Sometimes developers may use general test

oracles based on memory monitoring tools such as Valgrind [96]. But these

oracles are limited in checking specific kinds of faults. It is highly demanded

to develop practical test-selection techniques, which can select a small subset

of tests that are likely to reveal faults.

A promising test-selection approach is to dynamically mine operational

models as potential test oracles and then select tests that violate them. Ex-

isting approaches such as Jov [127] and Eclat [100] mine dynamic invariants

using Daikon [45] from a set of manually written passing unit tests whose

results are verified with manually written assertions. Due to nontrivial effort

for writing the assertions, the number of these existing passing unit tests is

often limited. Therefore, the mined dynamic invariants could be noisy and

thus many model violations could be false positives. The operational differ-

ence approach [54] starts with an empty test suite and repeatedly adds new

tests if they violate the invariants mined from the previously selected tests.

As the number of previously selected tests is also limited, this approach faces

the same problem of producing many false positives. DIDUCE [52] mines

operational models from normal execution of long-running applications and

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS67

relaxes the models gradually. At the beginning of a program run, many pre-

sumed operational models may be violated and a violation that reveals a fault

can be overwhelmed by the false-positive noise.

In this chapter, we propose to mine common operational models, which

are often but not always true in all observed traces, from a (potentially large)

set of unverified tests. A program that is not of poor quality should pass

most of the tests. So the common operational models mined from a large

set of unverified tests may be similar to the true operational models and

their violations are likely to reveal faults. By using the information of all the

unverified tests at hand, our approach can avoid the noise caused by a small

number of data samples, without requiring a large set of verified tests. As a

common operational model is not always true over the whole set of tests, the

type of Daikon inference techniques does not work anymore. Alternatively,

we may generate and collect all the potential models at runtime (instead

of immediately discarding any violated potential models) and evaluate them

after running all the tests. However, such an approach can incur high runtime

overhead if Daikon-like operational models, which are in a large number, are

used.

To mine common operational models efficiently, we propose an approach

based on mining control rules and data rules. A control rule is an implication

relationship between branches, and a data rule is an implicit constraint of the

variable values. Specifically, our approach collects branch coverage and data

value bounds at runtime using the Cooperative Bug Isolation (CBI) tools [82].

Our approach then mines control rules and data rules as potential operational

models after running all the tests. The likelihood of a common operational

model to be a true oracle is evaluated using the concept of confidence, i.e.,

the ratio of the number of tests that satisfy the model over the number of

tests that can evaluate the model. When a model’s confidence is not equal

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS68

1 not_text = (! (always_text | out_quiet)

 && memchr(bufbeg,’\0’, buflim-bufbeg));

2 done_on_match += not_text;

3 out_quiet += not_text;

4 for (;;)

5 {

6 ...

7 nlines += grepbuf (beg, lim);

8 ...

9 if (nlines && done_on_match && !out_invert)

10 goto finish_grep;

11 ...

12 }

13 finish_grep:

 /* missing code: done_on_match -= not_text;

 out_quiet -= not_text; */

14 if ((not_text & ~out_quiet) && nlines != 0)

15 printf(_("Binary file %s matches\n"),filename);

Figure 4.1: Faulty code of the grep program

to 1, the higher the model’s confidence is, the more suspicious its violations

are in revealing a fault. Finally, our approach selects a small subset of tests

that violate the mined common operational models for result inspection.

To illustrate what a common operational model may look like and how its

violation is useful for indicating faults, we present an example in Figure 4.1.

The example is a faulty version of grep 2.3, which is downloaded from the

Software Infrastructure Repository (SIR) [8]. grep is a GNU utility that

searches the input files for lines containing a match to a given pattern list.

When grep finds a match in a line of a text file, it copies the line to the

standard output. But if the input file is a binary file, it normally1 outputs

either a one-line message saying that a binary file matches, or no message if

there is no match. Furthermore, given the option “–quiet”, grep should not

write anything to the standard output.

In Line 1, always text is 0 by default, out quiet is 0 when the option “–

quiet” is not specified, memchr(bufbeg, ’0’,buflim-bufbeg) returns a non-null

1By default, binary files are not treated as text files

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS69

pointer if the input is a binary file. In Line 3, out quiet should be set to be

positive if not text is 1, so as to suppress the normal outputs of matchings. In

Line 7, nlines records the number of found matches. Finally, in Line 14, the

program checks whether the input is a binary file, the “–quiet” option is not

specified, and there are some matches found. If so, the program should output

a one-line message saying that a binary file matches. However, since out quiet

may be changed in Line 3, the checking in Line 13 may not work as expected.

When the input is a binary file, the “–quiet” option is not specified, and there

are some matches found, the checking in Line 14 is expected to return true.

In this case, out quiet is originally 0 and then is changed to be 1 in Line

3. Without restoring the original value of out quiet, the checking in Line 14

returns false and no message would be output. Because returning no message

is not the desired result, we call the test a failing test.

Without knowing the fault a priori, how can we identify such a test to be a

suspicious one among a large number of tests? Our insight is that we may get

some guidance from the (unverified) executions of the program. We run the

grep programs on 809 tests that are also downloaded from SIR. Among the 809

tests, 667 tests cover the branch that nlines is true (Line 9), among which only

8 tests cover the branch that memchr(bufbeg,’0’,buflim-bufbeg) is true (Line 1).

Therefore, we can uncover a common operational model from the executions:

“nlines > 0 is ever true ⇒ memchr(bufbeg,’0’,buflim-bufbeg) is never true (in

a test)”. Although this model is not always true, it reflects the fact that we

search more often in a text file than in a binary file, and a binary file is less

likely to contain a match to a given pattern. The violations of this model are

corner cases that may require special handling. Yet such corner cases are often

neglected by programmers or their handling is too tedious to be fault free.

Therefore, it is valuable to check the result of a test that violates the model,

i.e., satisfying “nlines > 0 is ever true ∧ memchr(bufbeg,’0’,buflim-bufbeg) is

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS70

ever true”. We then find the selected test to be a failing test that reveals the

fault.

We have implemented the proposed approach and conducted a compre-

hensive experimental study of the effectiveness and efficiency of the approach.

The experimental results, compared with previous code-coverage-based, clustering-

based, dynamic-invariant-based, and random selection approaches, show that

our approach can more effectively reduce the number of tests for result in-

spection while revealing most of the faults.

The rest of this chapter is organized as follows. Section 4.2 reviews related

work. Section 4.3 presents the proposed approach to mine common opera-

tional models. Section 4.4 presents the test selection approach. Section 4.5

describes the empirical studies and results. Section 4.6 concludes the work

with future directions.

4.2 Related Work

In this section, we briefly review the existing work in test selection for result

inspection, which can be classified into three main categories.

Coverage-based Test Selection. There exist a number of specification-

coverage-based approaches for test selection. In partition testing [92], a test

input domain is divided into subdomains based on some criteria, and then

developers can select one or more representative inputs from each subdomain.

When a priori specifications are provided for a program, Chang and Richard-

son [31] used specification coverage criteria to select a candidate set of test

cases that exercise new aspects of the specification.

Moreover, various kinds of code coverage criteria have been proposed for

test selection, such as control-flow testing criteria [59] and data-flow testing

criteria [47]. Hutchins et al. [61] reported an experimental study investigating

the effectiveness of control-flow and data-flow testing criteria. Their results

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS71

suggested that test sets achieving high code coverage levels usually showed

significantly better fault-detection capability than randomly chosen test sets

of the same size. However, the results also indicated that 100% code coverage

alone is not a reliable indicator of the effectiveness of a test set. Leon et al.

[76] evaluated the effectiveness of complex information flow criteria, which

model indirect control/data dependencies between instructions or objects,

for test selection. Their results suggested that test sets maximizing complex

information flow criteria revealed more faults than test sets maximizing block

coverage with substantial additional cost, and in some subjects the profiles

could not be generated due to memory constraints.

Clustering-based Test Selection. Dickinson et al. [41] used clustering

analysis to partition executions based on structural profiles, and employed

sampling techniques to select executions from clusters for result inspection.

They further proposed a failure-pursuit sampling approach [42] to enhance

the efficiency in finding failures. Moreover, Leon et al. [76] evaluated the

effectiveness of clustering analysis based on complex information flow criteria.

Their results suggested that the effectiveness of the clustering analysis did not

depend strongly on the type of used profiling.

Dynamic-invariant-based Test Selection. There are many approaches

that mine dynamic invariants for test selection. A dynamic invariant is a

property that holds at specific program points, e.g., a precondition x < y at

entry to a procedure f . Ernst et al. [45] proposed to mine dynamic invari-

ants from passing tests and develop a tool named Daikon. Daikon defines a

set of templates for generating candidate dynamic invariants, including pre-

conditions, postconditions, and loop invariants. The candidate invariants are

evaluated on dynamic traces and a candidate is immediately discarded once

it is violated. Any new test that violates the mined dynamic invariants may

reveal faults and deserve manual inspection.

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS72

Harder et al. [54] proposed the operational difference approach to select

tests based on Daikon. Their approach repeatedly adds new tests if they

violate the invariants of the previously selected tests. Xie and Notkin [127]

developed an operational violation approach called Jov for unit-test selection

and generation. They mined operational models using Daikon from a set

of manually written passing unit tests and selected automatically generated

test inputs that violated the operational models. Pacheco and Ernst [100]

developed a similar tool named Eclat, which further distinguishes illegal and

fault-revealing inputs with some strategies. Hangal and Lam [52] developed

DIDUCE that extracts operational models dynamically from long-running

program executions. DIDUCE reports all detected violations at runtime and

gradually relaxes invariants to allow for new behavior. Due to the limited

number of existing passing tests or previously selected tests, the mined dy-

namic invariants of these approaches could be noisy and thus many model

violations could be false positives.

4.3 Mining Common Operational Models

In this section, we propose two kinds of common operational models that are

potentially fault-revealing, including control rules and data rules. A control

rule is an implication relationship between branches. A data rule is an implicit

constraint of the variable values. We mine common operational models from

all the unverified tests. A program that is not of poor quality should pass

most of the tests. Therefore, the common operational models mined from a

set of unverified tests may be similar to the real models in passing tests.

4.3.1 Control Rules

Many faults can be revealed only when specific control paths are executed.

Such control paths may have special branch combinations that the program-

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS73

mers do not expect. Therefore, we can mine common relationships between

branches and isolate their violations as suspicious tests.

Given a branch condition C, let us denote its then-branch and else-branch

as C=true and C=false. In a loop, a branch may be executed multiple times.

We use two branch predicates Ct and Cf to denote that the branch C=true

is ever covered (satisfied) and C=false is ever covered, respectively. Corre-

spondingly, ¬Ct means that C=true is never covered and ¬Cf means that

C=false is never covered. Note that ¬Ct is not equivalent to Cf . It is possi-

ble that one of them is true and the other is false. The evaluations of a branch

predicate x may be implied by other predicates. To model such implication

relationships, we consider two kinds of rules y ⇒ x and y ⇒ ¬x, where y is

another branch predicate. We call y ⇒ x and y ⇒ ¬x control rules.

We have shown an example of the rule y ⇒ ¬x in Figure 4.1. Here

we show an example of the rule y ⇒ x in Figure 4.2. The example pro-

gram is a faulty version of the tcas program, which is an altitude separation

controller, in the Siemens suite [61]. In Line 4, a > operator is wrongly

implemented as ≥. Let x and y be two branch predicates for denoting that

the branch upward preferred=true in Line 12 is ever covered and the branch

upward preferred=true in Line 5 is ever covered, respectively. Running 1608

tests on the program, we can find that y is true in 514 tests, among which

x is true 478 times. Therefore, we can uncover a common operational model

“y ⇒ x”. This model reflects the real assumption of the programmers. Its

violations cause errors that may finally become observable failures.

There may be a large number of control rules. We are interested only in

the control rules that are likely to be true oracles and are violated by some

tests. To evaluate the likelihood of a control rule to be a true oracle, we use

the concept of confidence. The confidence of y ⇒ x is defined as the ratio of

the number of tests that satisfy y ∧ x over the number of tests that satisfy y.

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS74

1 bool Non_Crossing_Biased_Climb()

2 {

3 ...

4 upward_preferred = Inhibit_Biased_Climb()

>=Down_Separation;

/* >= should be > */

5 if(upward_preferred)

6 ...

7 }

8 bool Non_Crossing_Biased_Descend()

9 {

10 ...

11 upward_preferred = Inhibit_Biased_Climb()

>Down_Separation;

12 if(upward_preferred)

13 ...

14 }

Figure 4.2: Faulty code of the tcas program

The confidence of y ⇒ ¬x is defined as the ratio of the number of tests that

satisfy y ∧ ¬x over the number of tests that satisfy y. If a rule’s confidence

is 1, it can be omitted since there is no violation of this rule. Our approach

then selects a subset of rules with high confidences. More specifically, for

each predicate x, our approach selects the most confident rule y ⇒ x and

the most confident rule y ⇒ ¬x. Another possible way is to select the rules

whose confidences are higher than a preset threshold, whose value may be

application-dependent.

4.3.2 Data Rules

The values of a variable may have some implicit constraints. A failure may

require or result in suspicious data values, i.e., violating the value constraints.

Therefore, we can mine implicit constraints of variable values and isolate their

violations as suspicious tests.

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS75

Given a variable V, we use Vmax and Vmin to denote the maximum value

and minimum value ever assigned to V in a test. The values of a variable may

be within an expected range. To model such potential constraints of variable

values, we consider two kinds of rules Vmax ≤ c1 and Vmin ≥ c2, where c1

and c2 are constants (different variables have different c1 and c2). We call

Vmax ≤ c1 and Vmin ≥ c2 data rules.

Unlike control rules, data rules have some parameters c1 and c2 to be

determined. Let us first consider the rule Vmax ≤ c1. Assume Vmax follows

the normal distribution. We can get the estimations of the mean value µ1

and the standard deviation σ1 based on the values of Vmax in the observed

but unverified tests. We would like to select a c1 such that there is a high

probability, say 0.9, that Vmax is no more than c1. Let Z = (Vmax − µ1)/σ1,

then Z follows the standard normal distribution, i.e., having a mean of 0

and a standard deviation of 1. The problem Prob(Vmax ≤ c1) = 0.9 is

equivalent to the problem Prob(Z ≤ (c1 − µ1)/σ1) = 0.9. Querying the

cumulative probabilities of the standard normal table [19], we can get the

solution (c1−µ1)/σ1 = 1.28, i.e., c1 = 1.28∗σ1 +µ1. For example, if the set of

values of Vmax is {1,2,3,4,5}, we can estimate µ1 = 3 and σ1 = 1.58. We then

have c1 = 5.02. There is no violation of the rule Vmax ≤ c1. Alternatively, if

the set of values of Vmax is {1,2,3,4,10}, we can estimate µ1 = 4 and σ1 = 3.54.

We then have c1 = 8.53. There is a violation of the rule Vmax ≤ c1. Similarly,

we would like to select a c2 such that there is a high probability, say 0.9, that

Vmin is no less than c2. We can get c2 = −1.28 ∗ σ2 + µ2, where µ2 and σ2 are

the mean value and the standard deviation of Vmin.

Figure 4.3 shows an example of the data rule Vmax ≤ c1. The example

program is a faulty version of the print tokens program, which is a lexical

analyzer, in the Siemens suite [61]. In the loop, token ind is increased by

1 each time. When next st = 30, token ind should be reset to 0, which is

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS76

1 while(!token_found)

2 {

3 if(token_ind<80)

4 {

5 token_str[token_ind++] = ch;

6 next_st = next_state(cu_state,ch);

7 }

8 ...

9 switch(next_st)

10 {

11 ...

12 case 30:

13 skip(tstream_ptr->ch_stream);

14 next_st = 0;

 /* missing code: token_ind = 0; */

15 break;

16 }

17 }

Figure 4.3: Faulty code of the print tokens program

wrongly omitted. The omission of this assignment may make token ind get

unusually large values. Running the program on 4130 tests, the assignment

of token ind in Line 5 is executed in 4070 tests. Its maximum value has a

mean value of 11 and a standard deviation of 13. So we can get a data rule

Vmax ≤ c1 = 1.28 ∗ σ1 + µ1 = 28, where V is token ind in Line 5. Violations

of this model may be caused by an omission fault and indicate failures.

To evaluate the likelihood of a data rule to be a true oracle, we also use

the concept of confidence. The confidence of Vmax ≤ c1 is defined as the ratio

of the number of tests that satisfy Vmax ≤ c1 over the number of tests where

V is ever assigned. The confidence of Vmin ≥ c2 is defined as the ratio of the

number of tests that satisfy Vmin ≥ c2 over the number of tests where V is

ever assigned. If a rule’s confidence is 1, it can be omitted since there is no

violation of this rule.

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS77

4.4 Test Selection

Given a set of control rules and data rules, selecting all the tests that violate

any of the rules may result in a large subset of the tests. Instead, our approach

selects only a small subset of the tests that violate all these rules at least once,

in a way that the most confident rules are violated by the selected tests first.

Since the control rules and the data rules have different definitions of the

confidence, we deal with them separately. The process of test selection based

on the control rules is as follows. Initially, the set of selected tests is empty.

Our approach sorts the control rules in descending order of confidence. From

the top to bottom, if a rule is not violated by any of the previously selected

tests, our approach randomly selects a test that violates the rule. Finally, in

a greedy way each of the control rules is violated by the selected tests. Our

approach also selects a subset of tests that violate all the data rules in the

similar way. We merge together the selected tests based on the control rules

and those based on the data rules as the final subset of selected tests.

4.5 Empirical Studies

In this section, we present a set of empirical studies to evaluate the effec-

tiveness of our approach in test selection. In particular, we investigate three

main research questions:

• RQ1: Can our approach select a small subset of tests that have high

fault-detection capability? What is the effectiveness of violating differ-

ent kinds of rules?

• RQ2: How does our approach compare with the existing approaches, in-

cluding the code-coverage-based, clustering-based, and dynamic-invariant-

based approaches?

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS78

Table 4.1: Characteristic of the subjects

Program LOC Test Faulty Failed Tests Faulty Versions Failed Tests

Cases Versions (Avg.) (Nontrivial) (Nontrivial)

print tokens 539 4130 7 69 7 69

print tokens2 489 4115 10 224 4 109

replace 507 5542 31 106 29 93

schedule 397 2650 9 88 6 21

schedule2 299 2710 9 33 9 33

tcas 174 1608 41 39 36 28

tot info 398 1052 23 83 11 24

Siemens suite 404 3115 130 92 102 54

Space 9564 13585 34 2111 17 164

grep 13358 809 20 177 9 12

• RQ3: What is the efficiency of our approach?

We next describe the subjects and measurements. We then present the re-

sults of our approach in test selection, compared with the existing approaches.

4.5.1 Subject programs

We have implemented the proposed approach and applied it to select tests in

three subjects, including the Siemens suite [61], the Space program [106], and

the grep program. All the three subjects are downloaded from the Subject

Infrastructure Repository [8]. The first two subjects were also used in previous

study of dynamic-invariant-based test selection [54].

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS79

The first subject is the Siemens suite [61], which was created by Siemens

researchers. The Siemens researchers created 132 faulty versions of 7 pro-

grams that range in size from 170 to 540 lines. The Siemens researchers

generated tests automatically from test-specification scripts, then augmented

those tests with manually-constructed white-box tests such that each exer-

cisable coverage unit was covered by at least 30 test cases. The numbers of

tests range from 1052 to 5542. There are 130 faults that can be detected by

the test suite in our environment.

The second subject is the Space program [106], which interprets Array

Definition Language inputs. The Space program was developed at the Eu-

ropean Space Agency. It has 9564 lines of C code. The test suite of Space

contains 13585 test cases, where 10000 were randomly generated and the re-

mainder were added to cover every statement or branch at least 30 times.

There are 38 seeded faults, among which 34 faults can be detected by the

test suite in our environment.

The third subject is the grep program, which is a GNU utility that searches

the input files for lines containing a match to a given pattern list. It has 13358

lines of C code. There are 809 test cases, which were generated based on

informal specifications and then augmented to increase statement coverage [8].

There are five original versions of the grep program, each of which was seeded

by a number of faults. In our environment, there are in total 20 faults that

can be detected by the test suite.

The characteristic of the subject programs is shown in Table 4.1. In these

subjects, there are many trivial faults that fail on more than 5% of the tests.

Such faults are less likely to be seen in practical setting. To better evaluate

the potential effectiveness of test selection approaches in practice, we conduct

additional experiments on only the nontrivial faults.

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS80

4.5.2 Measurement

To evaluate the effectiveness of an approach in test selection, we use two met-

rics. The first metric is the size of the selected test suite, i.e., the number of

the selected tests. This metric indicates the amount of human effort required

to check the results of the selected tests. The second metric is the percent-

age of faults that can be revealed by the selected tests. A set of tests are

said to reveal a fault if the faulty program fails on one or more of the tests.

We would like to reveal as many faults as possible. A good test-selection

algorithm should select a small number of tests that can reveal most of the

faults.

4.5.3 Results

Figure 4.4 shows the results of our approach and the existing test selection ap-

proaches, including the code-coverage-based, clustering-based, and dynamic-

invariant-based approaches. The x-axis is the number of selected tests and

the y-axis is the percentage of faults revealed by the selected tests. We also

present the results of random selection as the comparison baseline. Because

the three subjects are quite different in the program size and the original test

suite size, we present the results in these three subjects separately. Tables 4.2,

4.3, 4.4, and 4.5 show some of the detailed results, including the number of

selected tests and the percentage of revealed faults in each subject program.

To reduce the potential effect of random noise, we run all of the experiments

50 times and then report the averaged results.

Effectiveness of Our Approach

We observe that our approach is effective in reducing the number of tests while

revealing most of the faults. In the Siemens suite (all faults), our approach

selects only 37 tests for the programs on average, which can still reveal 82%

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS81

0 50 100 150
0

0.2

0.4

0.6

0.8

1

#Tests

%
P

er
ce

nt
ag

e
of

 R
ev

ea
le

d
F

au
lts

Random
Our Approach
Control Rules
Data Rules
Coverage
Clustering
Operational
Difference

0 50 100 150
0

0.2

0.4

0.6

0.8

1

#Tests

%
P

er
ce

nt
ag

e
of

 R
ev

ea
le

d
F

au
lts

Random
Our Approach
Control Rules
Data Rules
Coverage
Clustering

All faults, the Siemens suite Nontrivial faults, the Siemens suite

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

#Tests

%
P

er
ce

nt
ag

e
of

 R
ev

ea
le

d
F

au
lts

Random
Our Approach
Control Rules
Data Rules
Coverage
Clustering
Operational
Difference

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

#Tests

%
P

er
ce

nt
ag

e
of

 R
ev

ea
le

d
F

au
lts

Random
Our Approach
Control Rules
Data Rules
Coverage
Clustering

All faults, the Space program Nontrivial faults, the Space program

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

#Tests

%
P

er
ce

nt
ag

e
of

 R
ev

ea
le

d
F

au
lts

Random
Our Approach
Control Rules
Data Rules
Coverage
Clustering

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

#Tests

%
P

er
ce

nt
ag

e
of

 R
ev

ea
le

d
F

au
lts

Random
Our Approach
Control Rules
Data Rules
Coverage
Clustering

All faults, the grep program Nontrivial faults, the grep program

Figure 4.4: Results of test selection

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS82

Table 4.2: Results of our approach on all the faults (#T: number of tests, %F:

percentage of revealed faults)

Program Original Test Suite Our Approach Control Rules Data Rules

#T %F #T %F #T %F #T %F

print tokens 4130 100 25 89 17 88 8 50

print tokens2 4115 100 41 100 30 100 10 61

replace 5542 100 75 80 60 73 16 37

schedule 2650 100 31 86 24 70 7 49

schedule2 2710 100 32 62 24 61 9 25

tcas 1608 100 26 74 15 68 12 23

tot info 1052 100 29 84 21 71 9 74

Siemens suite 3115 100 37 82 27 76 10 46

Space 13585 100 345 100 242 94 109 84

grep 809 100 218 98 178 96 75 96

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS83

Table 4.3: Results of other approaches on all the faults (#T: number of tests, %F:

percentage of revealed faults)

Program Original Random Coverage Clustering Operational

Test Suite Selection (k=1) Difference

#T %F #T %F #T %F #T %F #T %F

print tokens 4130 100 37 39 6 61 40 84 9 37

print tokens2 4115 100 37 78 4 90 40 100 6 51

replace 5542 100 37 45 12 33 40 57 18 45

schedule 2650 100 37 48 7 26 40 60 10 33

schedule2 2710 100 37 34 5 26 40 47 13 30

tcas 1608 100 37 46 11 31 40 84 26 55

tot info 1052 100 37 75 5 53 40 82 9 72

Siemens suite 3115 100 37 52 7 46 40 73 13 46

Space 13585 100 345 89 102 80 400 87 63 80

grep 809 100 219 90 100 91 250 89 - -

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS84

Table 4.4: Results of our approach on nontrivial faults (#T: number of tests, %F:

percentage of revealed faults)

Program Original Test Suite Our Approach Control Rules Data Rules

#T %F #T %F #T %F #T %F

print tokens 4130 100 25 89 17 88 8 50

print tokens2 4115 100 42 100 32 100 10 38

replace 5542 100 75 78 60 71 16 35

schedule 2650 100 32 87 25 84 7 35

schedule2 2710 100 32 62 24 61 9 25

tcas 1608 100 26 72 15 65 12 18

tot info 1052 100 30 69 21 50 9 55

Siemens suite 3115 100 37 80 28 74 10 37

Space 13585 100 376 99 265 89 118 77

grep 809 100 224 95 183 90 76 92

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS85

Table 4.5: Results of other approaches on nontrivial faults (#T: number of tests,

%F: percentage of revealed faults)

Program Original Random Coverage Clustering

Test Suite Selection (k=1)

#T %F #T %F #T %F #T %F

print tokens 4130 100 37 39 6 61 40 84

print tokens2 4115 100 37 54 5 76 40 100

replace 5542 100 37 42 12 32 40 60

schedule 2650 100 37 26 7 26 40 80

schedule2 2710 100 37 34 5 26 40 47

tcas 1608 100 37 40 11 25 40 82

tot info 1052 100 37 51 5 23 40 67

Siemens suite 3115 100 37 41 7 38 40 74

Space 13585 100 376 79 110 63 400 87

grep 809 100 225 77 103 83 250 81

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS86

of the faults. In the Space and the grep programs (all faults), our approach

selects 345 and 219 tests on average, which can reveal 100% and 97% of

the faults, respectively. We note that randomly selecting the same number

of tests as our approach can also reveal 52%, 89% and 90% of the faults

in these subjects. This result is due to two main factors: (1) many trivial

faults can be easily revealed and (2) the probability of finding no failures of

a fault decreases exponentially with the number of selected tests. Checking

the results in nontrivial faults, we can see that our approach is still effective

while the effectiveness of random selection decreases much. For example, in

the Siemens suite (nontrivial faults), our approach selects only 37 tests for

the programs on average, which can still reveal 80% of the faults. Randomly

selecting the same number of tests can reveal only 41% of the faults.

We also evaluate the effects of the two kinds of common operational models

that we proposed, i.e., control rules and data rules, separately. The results are

plotted in Figure 4.4, and shown in Tables 4.2 and 4.4. We observe that both

these two kinds of rules are helpful in revealing faults. Among them, violating

all the control rules can reveal more faults than violating all the data rules, but

also requires much more tests. The data rules are better for some programs

such as tot info, which is an information measure program that deals with

data tables. In summary, these two kinds of rules are complementary to each

other as they reflect different aspects of program behaviors. When combined

together, they are able to help select quite a good subset of tests.

Comparison with the Code-coverage-based Approach

We compare our approach with the code-coverage-based approach. The code-

coverage-based approach attempts to cover as many program elements of a

given type as the original test suite with as few test cases as possible [76].

Selecting a minimal-size, coverage-maximizing subset of a test suite is an

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS87

instance of the set-cover problem, which is often solved using a greedy ap-

proximation algorithm. On each of its iterations, the greedy algorithm selects

the test that covers the largest number of elements not covered by the pre-

viously selected tests. This approach is based on the assumption that many

software faults and their caused failures can be revealed simply by exercising

such elements, regardless of other factors. To evaluate the potential capa-

bility of finding more faults using the code-coverage-based approach, we also

extend the basic code-coverage-based approach by increasing the number of

times each program element should be covered. We say a program element is

covered k times if there are k different tests that cover it. We use the branch

coverage and we experiment with k from 1 to 10. The results are plotted in

Figure 4.4, and shown in Tables 4.3 and 4.5.

We observe that the basic code-coverage-based approach, in which each

branch is covered at least once, is good in selecting a small subset of tests

that can reveal many faults. However, it misses many other faults, e.g., it

misses more than half of the faults in the Siemens suite. Our approach

can select a test suite with a much higher fault-revealing capability, and the

number of selected tests is only a few times larger than that of the basic

code-coverage-based approach. Increasing the number of the times that each

branch should be covered helps reveal more faults, but is less cost-effective

than our approach. Sometimes increasing k may decrease the percentage of

revealed faults. Such an observation is due to that the smallest subset of tests

that covers each program element at least k times may not be a subset of the

smallest subset of tests that covers each program element at least k+1 times.

Comparison with the Clustering-based Approach

We next compare the results of our approach with the results of the clustering-

based approach [41]. The clustering-based approach uses agglomerative hi-

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS88

erarchical clustering to cluster the tests, and then selects one test from each

cluster. The main assumption of the clustering-based approach is that a

significant number of failures are isolated in clusters of small size. Besides

one-per-cluster sampling, there are other possible sampling schemes that aim

at finding more failing tests for each fault [42]. As our concern is to increase

the likelihood of finding at least one failing test for each fault, we do not

compare our approach with these other sampling schemes. We use the bi-

nary branch profiles for clustering. We do not use the variable-value profiles

since a variable may not be observed in all the tests. We experiment with

10 different values of the number of the clusters. The values are 10 to 100,

100 to 1000, and 50 to 500 in the Siemens suite, the Space program, and the

grep program, respectively. We select these values based on the program sizes

and the numbers of tests selected by the code-coverage-based approach. The

results are plotted in Figure 4.4, and shown in Tables 4.3 and 4.5.

We observe that the clustering-based approach performs better than ran-

dom selection in the Siemens suite (all faults), the Siemens suite (nontrivial

faults), and the Space program (nontrivial faults), but not better than ran-

dom selection in the other experiments. There are two main reasons for such

results. First, there is a large number of tests in the Siemens and the Space

program. The tests could be highly redundant, especially for the common

execution paths. The clustering-based approach may then help to cover more

different execution paths. However, there are not a large number of tests

in the grep program, and these tests are not redundant. In this case, the

clustering-based approach may not help cover more different execution paths

or isolate the most suspicious tests. Second, there are many trivial faults in

the Space program and the grep program, which may violate the assump-

tion of the clustering-based approach that a significant number of failures

are isolated in clusters of small size. Our approach can isolate tests that are

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS89

suspicious in some program elements. It is more stable in different cases and

is better than the clustering-based approach in general.

Comparison with the Dynamic-Invariant-based Approach

Finally, we compare our approach with the dynamic-invariant-based approach.

Harder et al. [54] proposed the operational difference approach to select tests

based on Daikon. It starts with an empty test suite and repeatedly adds new

tests if they violate the invariants of the previously selected tests. To control

the number of tests, the algorithm terminates when n (n=50 in their exper-

iments) consecutive tests are considered and rejected. They also conducted

experiments on the Siemens suite and the Space program that we used2. We

adopt the experimental results from their original paper directly, which are

shown in Table 4.3 and plotted in Figure 4.4. No result of the operational

difference approach in the grep program or on the nontrivial faults is available

(Daikon cannot be scalable to deal with the grep program and therefore poses

barriers for us to re-implement and apply the operational difference approach

on the grep program).

We observe that the operational difference approach performs similarly to

the basic code-coverage-based approach. It works well in selecting a small

subset of tests that can reveal many faults. However, it misses many other

faults at the same time. The operational difference approach may be able

to reveal more faults if the termination condition is removed. However, it

may then select much more tests due to the false positives in the detected

invariants. By using the information of all the unverified tests at hand, our

approach can reduce the noise of mined operational models and thus select a

reasonably sized subset of tests that can reveal most of the faults.

2In their experiments, they only have 30 faulty versions for the replace program (31 in our

experiments). But this difference can be negligible.

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS90

Table 4.6: Efficiency of Our Approach (seconds)

Program LOC #Tests Our Approach Coverage Clustering

print tokens 539 4130 1.4 0.4 366.2

print tokens2 489 4115 5.4 0.7 82.5

replace 507 5542 7.8 1.0 390

schedule 397 2650 1.0 0.2 65.1

schedule2 299 2710 1.3 0.2 93.8

tcas 174 1608 0.7 0.1 38.8

tot info 398 1052 0.8 0.1 14.7

Siemens suite 400 3115 2.6 0.4 150.2

Space 9564 13585 598.8 5.4 1364

grep 13358 809 92.9 4.9 6.8

Efficiency

To evaluate the efficiency of our approach, we measure the time cost of our ap-

proach on the three subjects, compared with that of the basic code-coverage-

based approach and that of the clustering-based approach. The result is

shown in Table 4.6.

Among the three approaches, the basic code-coverage-based approach is

the fastest. It takes at most a few seconds in each of the subject programs.

The clustering-based approach is fast in the grep program but is not fast

in other programs. Basically, the more tests there are, the longer time the

clustering-based approach takes. However, there is no clear polynomial rela-

tionships between the time cost and the number of tests. The time cost of the

clustering approach can be greatly affected by the distribution of the tests.

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS91

Our approach is fast in the Siemens suite and takes reasonable time in the

Space program and the grep program. More specifically, our approach takes

about 10 minutes in the Space program, which contains about 9564 lines of

code and 13,585 tests. However, our approach may not be efficient enough

for large programs with large test suites. The main cost of our approach is

the time of mining the control rules, which is proportional to the number of

tests and to the square of the number of branches. For a large program with

100,000 lines of code and a large test suite that has 13,585 tests, our approach

may take about 20 hours. In this case, a possible improvement is to mine

only the control rules between the branches in the same modules. We can

then greatly reduce the number of candidate control rules and thus the time

cost of our approach.

Summary and Discussions

Our results suggest the following observations:

• Our approach is effective in reducing the number of tests while revealing

most of the faults. Control rules and data rules are complementary to

each other as they reflect different aspects of program behaviors.

• Our approach can select a test suite with a much higher fault-revealing

capability than those of the code-coverage-based approach and the dynamic-

invariant-based approach, and is more robust and cost-effective than the

clustering-based approach. But we note that there are some issues to be

considered. The code-coverage-based approach may reveal more faults

if more complex coverage profiles are used, which however are more

difficult to collect. The clustering-based approach is more flexible for

selecting different numbers of tests.

• Our approach takes reasonable time for small to medium sized programs

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS92

with large test suites. However, it may not be efficient enough for large

programs with large test suites. This issue may be alleviated by mining

only the control rules between the branches in the same modules. We

need to conduct further experiments to investigate this technique.

4.5.4 Threats to Validity

The threats to external validity primarily include the degree to which the

subject programs, faults, and test cases are representative of true practice.

The Siemens programs are small and the Space program is of medium size.

Most of the faulty versions involve simple, one or two-line manually seeded

faults. Moreover, the tests are manually or randomly generated, while in

automated testing, a number of test generation approaches generate tests

systematically. These threats could be reduced by more experiments on wider

types of subjects with systematically generated tests in future work. The

threats to internal validity include the fact that different approaches select

different numbers of tests. This fact may make the comparison of fault-

revealing effectiveness bias to the approaches that select larger number of

tests. To reduce this bias, we present the results of random selection as the

baseline. We also evaluate the fault-revealing capabilities of other approaches

with different numbers of selected tests.

4.6 Summary

We have proposed an approach for test selection without a priori specifica-

tions. We propose to mine common operational models, which are often but

not always true in all observed traces, from a set of unverified tests. Specif-

ically, we collect branch coverage and data value bounds at runtime and

then mine implication relationships between branches and constraints of data

values as common operational models after running all the tests. We then

CHAPTER 4. TEST SELECTION VIA MINING OPERATIONAL MODELS93

select tests that violate all these common operational models greedily. We

have evaluated our approach on the Siemens suite, the Space program, and

the grep program, compared with code-coverage-based, clustering-based, and

dynamic-invariant-based approaches. The experimental results show that our

approach can select a test suite with a much higher fault-revealing capability

than those of the code-coverage-based approach and the dynamic-invariant-

based approach, and is more robust and cost-effective than the clustering-

based approach.

We plan to pursue several future directions for improving our approach.

First, we plan to combine our approach with automatic test generation tools.

Our current experiments are based on existing test suites whose tests are

manually or randomly generated. It is valuable to investigate how our ap-

proach can work on automatically generated test sets. Second, we plan to

conduct experiments on large programs with large test suites. Our current

implementation may not be efficient enough for such cases. We would like to

evaluate some possible improvements, such as mining only the control rules

between the branches in the same modules. Third, we plan to propose com-

mon operational models for specific applications based on domain knowledge.

2 End of chapter.

Chapter 5

Mining Test Oracles of Web

Search Engines

Web search engines have major impact in people’s everyday life. It is of great

importance to test the retrieval effectiveness of search engines. However, it

is labor-intensive to judge the relevance of search results for a large number

of queries, and these relevance judgments may not be reusable since the Web

data change all the time. In this chapter, we propose to mine test oracles of

Web search engines from existing search results. The main idea is to mine

implicit relationships between queries and search results, e.g., some queries

may have fixed top 1 result while some may not, and some Web domains may

appear together in top 10 results. We define a set of properties of queries and

search results, and mine frequent association rules between these properties

as test oracles. Experiments on major search engines show that our approach

mines many high confidence rules that help to understand search engines and

detect suspicious search results.

94

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 95

5.1 Problem and Motivation

Web search engines are becoming more and more important for people to

search for information in the World Wide Web. Given a query, a good search

engine should return desired search results that possess various properties

such as relevance, authority, and freshness. Providing inadequate search re-

sults could mislead or dissatisfy users. As an example, Figure 5.1 shows the

clarification message put in the official PuTTY (a free telnet/ssh client) Web

page due to the unexpected change of Google’s search results.

However, it is difficult to test search engines due to the lack of test ora-

cles. In particular, since the Web data and the information need of users keep

changing, the desired search results may change along the time, even when

the search engines do not change. Existing approaches on search engine test-

ing/evaluation rely on relevance judgments of search results, collected either

explicitly [69] or implicitly [67, 120]. It is labor-intensive to manually label

a large number of relevance judgments of search results, i.e., test oracles for

the queries, and these relevance judgments may not be reusable due to the

dynamic nature of the Web. On the other hand, clickthrough data can be

used as implicit judgments of search results [67, 120]. But clickthrough data

suffer from various biases such as the position bias and summary bias [130].

In particular, if a desired result is not found by a search engine, there is no

clickthrough data for it.

In this work, we propose to mine test oracles of Web search engines from

existing search results. Previous work on specification mining [23, 45, 56]

suggests that one can mine likely invariants or frequent patterns as test oracles

from the execution of existing tests. Violations of these mined test oracles

are suspicious and may reveal potential bugs of the systems under test. Using

such approaches, we may mine test oracles of search engines to help testers

understand and examine search engines’ behaviors, or detect suspicious search

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 96

Figure 5.1: Declaration from the official PuTTY Website for Google’s search result

change

results automatically. We can then increase the cost-effectiveness of finding

defects of search engines significantly.

However, there are two challenges of applying existing specification mining

approaches on Web search engines. First, many interesting patterns of search

engines may need to be mined from search results of multiple days or multiple

search engines. We need to integrate all these search results for mining,

regardless of the changes in a search engine’s implementation or the differences

in different search engines’ implementations. Existing specification mining

approaches often mine patterns with regard to the implementation and are

thus not suitable for this task. To address this problem, we define a set

of properties of queries, search results, matches between queries and search

results, and search engine identities. These properties reveal many aspects of

the search results and are not affected by differences of the implementations.

We can then map search results of different search engines in different time

to itemsets of these properties for mining.

Second, it could be difficult to mine all interesting specifications from a

large set of search results effectively. The invariant detection approach [45]

can mine invariants from passing tests quickly by discarding any violated can-

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 97

didates. But it is difficult to get a large set of passing tests for search engines.

On the other hand, the frequent pattern mining approaches [23] often assume

the existence of a suitable threshold of the frequency of patterns. However,

different kinds of specifications of search engines may have great differences

in the frequency. For example, a query’s best top 1 search result (recently)

may have only a few supporting itemsets, while implications between two

Web domains may have a large number of supporting itemsets. Given a large

set of search results, there may be not a good frequency threshold that can

finish in a reasonable time without missing many important specifications.

To ease the mining of different kinds of specifications, we apply the associa-

tion rule mining technique, and design a set of controlling schemes for rule

generation. The schemes include stop words, left-hand-side (LHS) patterns,

and right-hand-side (RHS) patterns. These schemes can help the testers offer

more guidance to generate the desired kinds of rules effectively.

To evaluate our apporach, we have collected the search results of Google

and Bing for 4232 queries in 4 months. We choose Google and Bing to test

as they are the most popular search engines nowadays. These two search

engines, together with many other search engines powered by them (e.g., Ya-

hoo! Search is now powered by Bing and AOL Search is powered by Google),

possess more than 90 percent search market share in U.S. [1]. The queries

consist of 800 common queries used in the KDD-Cup 2005 competition task

[78] and 3432 hot queries of Google and Yahoo1. We collected the search re-

sults of the queries from December 25, 2010 to April 21, 2011. Our approach

mines many high confidence rules that help to understand search engines.

Our approach also detects suspicious search results, which are much less than

the queries that change search results, for manual investigation.

The rest of this chapter is organized as follows. Section 5.2 reviews related

1Bing used to have a service of hot queries named Bing xRank, which however has been shut

down.

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 98

work. Section 5.3 provides the background of the association rule mining

technique that our approach is based on. Section 5.4 presents the proposed

approach for mining test oracles of search engines. Section 5.5 describes the

data collection and the evaluation of the proposed approach. Section 5.6

concludes the chapter.

5.2 Related Work

5.2.1 Search Engine Evaluation

There are a number of approaches evaluating the retrieval effectiveness of

information retrieval systems including Web search engines. The basic pro-

cedure includes constructing a set queries (and a set of documents), running

information retrieval systems on the queries, collecting relevance judgments

for the search results, and calculating well-defined measurements such as Pre-

cision, MAP, and NDCG [64, 29] to estimate the retrieval effectiveness of

different information retrieval systems.

A main issue in evaluating the retrieval effectiveness is how to reduce the

manual efforts of collecting relevance judgments. An approach is to use the

pooling process [69], which is widely employed in TREC evaluation [16]. In

TREC, different information retrieval systems submit the top K results per

topic to NIST. NIST then forms pools of unique documents from all submis-

sions, in which the assessors judge for relevance. Systems are then evaluated

using the relevance judgments. For Web search engines, clickthrough data can

be used as implicit feedback to evaluate the retrieval effectiveness of search

engines [66, 67, 120]. But clickthrough data suffer from various biases such

as the position bias and summary bias [130]. Therefore, manual investigation

are still needed for a large amount of search results.

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 99

5.2.2 Mining Specifications

Our approach is also related to the work of mining specifications dynamically,

which mines specifications from the execution of existing tests. These work

mainly mines three kinds of specifications: temporal models [23], algebraic

models [56], and operational models [45].

A temporal model is a requirement on the ordering of specific actions or

events that are often function calls, e.g., fopen should be followed by fclose.

Ammons et al. [23] proposed an approach to summarize the frequent inter-

action patterns in program execution as probabilistic finite state automata

(PFSA). Lo and Khoo [84] improved the quality of mining results by filtering

erroneous execution traces and clustering related traces.

An algebraic model is an axiom that describes the observable behavior

of a class without revealing implementation details, e.g., for a stack s and

an object o, pop(push(s,o).state).state=s. Henkel and Diwan [56] presented

an automatic tool for extracting algebraic specifications from Java classes.

Their tool maps a Java class to an algebraic signature and then uses the

signature to generate a large number of terms. The tool evaluates these

terms, proposes equations, and generalizes equations to axioms. Xie and

Notkin [128] proposed an approach to mine statistical algebraic abstractions,

each of which is associated with the counts of its satisfying and violating

instances during test executions.

An operational model is a property that holds at specific program points,

e.g., a precondition x < y at entry to a procedure f . Ernst et al. [45] pro-

posed to mine dynamic invariants from passing tests and develop a tool named

Daikon. Daikon defines a set of templates for generating candidate dynamic

invariants, including preconditions, postconditions, and loop invariants. The

candidate invariants are evaluated on dynamic traces and a candidate is im-

mediately discarded once it is violated.

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 100

All of these approaches focus on mining properties of a specific implemen-

tation in some specific time. Instead, our approach designs a set of properties

for the inputs and outputs of search engines, so as to integrate the search

results of different search engines in different time for mining. Moreover, our

approach provides a set of controlling schemes for rule generation, including

stop words, left-hand-side (LHS) patterns, and right-hand-side (RHS) pat-

terns. These schemes can help the testers offer more guidance to generate the

desired kinds of rules effectively.

5.2.3 Test Selection for Result Inspection

Using the mined test oracles, our approach can reduce the efforts of manually

investigating search results, which is essentially a test selection for result

inspection task. Many approaches [54, 100, 127] select tests that violate mined

specifications, as described above. Moreover, various kinds of code coverage

criteria have been proposed for test selection, such as control-flow testing

criteria [59] and data-flow testing criteria [47]. Hutchins et al. [61] reported

an experimental study investigating the effectiveness of control-flow and data-

flow testing criteria. Their results suggested that 100% code coverage alone is

not a reliable indicator of the effectiveness of a test set. Dickinson et al. [41]

used clustering analysis to partition executions based on structural profiles,

and employed sampling techniques to select executions from clusters for result

inspection. They further proposed a failure-pursuit sampling approach [42]

to enhance the efficiency in finding failures. These approaches select tests

based on the information related to the implementation, while our approach

mines frequent patterns in the system level and thus can easily integrate the

tests of different systems in different time.

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 101

5.3 Background of Association Rule Mining

Our approach is based on a data mining technique called association rule

mining [51], which originates from data mining problems of market basket

transactions [22]. For the ease of discussion, we briefly review some basic

terminologies of association rules.

Let I = {i1, i2, . . . , im} denote a set of items. Let D be a database of

transactions, where each transaction T is a set of items such that T ⊆ I.

A collection of zero or more items is called an itemset. A transaction T

contains an itemset X if X ⊆ T . The support of an itemset X, denoted

as sup(X), is the number of transactions in D that contain X. We call an

itemset X a frequent itemset if its support is large, i.e., sup(X)> minsup,

where minsup is a threshold of support. For example, consider a datebase

{{a, b, c}, {a, d, e}, {a, b}}. The support of the itemset {a} is 3 and the sup-

port of the itemset {a,b,c} is 1. If minsup = 2, the frequent itemsets are {a},
{b}, and {a,b}.

An association rule is an implication expression between two itemset. For-

mally, an association rule is defined as follows: An association rule is an

implication expression of the form X ⇒ Y , where X ⊆ I and Y ⊆ I are two

disjoint itemsets, i.e., X ∩ Y = ∅.
We can measure the importance of an association rule X ⇒ Y using the

support and the confidence. The support of X ⇒ Y is equal to the support

of the union set X ∪ Y . The confidence of the rule X ⇒ Y , denoted as

conf(X ⇒ Y), is the percentage of transactions containing X that also contain

Y . For example, in the example database described above, the support and

confidence of the rule a ⇒ b is 2 and 2/3, respectively.

For a database of itemsets, the problem of mining association rules is

to find all association rules having support ≥ minsup and confidence ≥
minconf , where minsup and minconf are the corresponding support and con-

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 102

Extracting
 Input/Output

Properties
 as
Items

Queries and Search

Results for Mining

Mining Association Rules

Examined
 by
Testers

Association
 Rules

between Properties

Violations
 of
Mined

Association
 Rules

Detecting Violations

Queries and Search

Results for Testing

Itemset Database

Figure 5.2: Overview

fidence thresholds. Generally, the association rule mining problem consists of

two main subtasks: mining frequent itemsets and generating rules from the

frequent itemsets.

5.4 Our Approach

5.4.1 Overview

Figure 5.2 presents an overview of our approach. The main idea of our ap-

proach is to extract rules between properties of queries and search results

automatically. We use items to represent certain properties. An item can be

a word in the query, the domain of a top 10 search result, whether the URLs

contain the words of the query, and so on. In general, we consider items of

four broad categories: (i) items based on the query, (ii) items based on the

results, (iii) items based on the matching between the query and the results,

and (iv) search engine identities. Section 5.4.2 describes the design of these

items in detail. Given a set of search results (and their queries), our approach

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 103

will extract the items and build a database of itemsets for the search results.

The set of search results for mining could be the current or previous search

results of a search engine or multiple search engines.

There may be implicit rules between different items. For example, some

domain may always be ranked high for some query in a series of time. In

order to mine these rules efficiently, our approach employs the association

rule mining technique on the database of itemsets. Our approach first mines

frequent itemsets from the database of itemsets. It then mines association

rules from the mined frequent itemsets. In particular, our approach designs

a set of schemes for controlling the generation of rules. Testers may examine

the mined rules to learn and examine search engines’ behaviors. If there is any

rule that seems unreasonable, there may be design pitfalls in some modules

of the search engine. Section 5.4.3 describes the mining approach in detail.

After mining association rules, our approach automatically detects viola-

tions of these rules in any given search results. It groups and ranks violations

based on the violated rules. Testers can examine the top violations together

with the violated rules. Section 5.4.4 describes the procedure of detecting

violations in detail.

5.4.2 Extracting Items from Queries and Search Results

Our approach extracts items based on the query, the results, the matching

between the query and the results, and search engine identities. We next

describe the items of different categories in detail. Table 5.1 provides an

summary of the items.

Query Items

A natural kind of items in the query phrase are the query words. For example,

a query “ase 2011” contains two words “ase” and “2011”. The classes of

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 104

Table 5.1: Summary of the Items

Category Item Description (Example) Items

Query the query. Q:ase 2011

Query A word in the query. QW:ase

Query A common query. CommonQ

Query A hot query. HotQ

Query The number of words in the query. OneWord

Query The number of words in the query. TwoWords

Query The number of words in the query. ManyWords

Search Result The domain of the top 1 search result. top1:continuinged.ku.edu

Search Result The domain of a top 10 search result. top10:continuinged.ku.edu

Search Result The Alexa Ranks of the top 10 results’ top ALLGE1K

private domains are all greater than 1,000.

Search Result The Alexa Rank of some top 10 result’ domain SOMEGE100K

is greater than 100,000.

Search Result None of the Alexa Rank of the top 10 results’ NOGE100K

domains is greater than 100,000.

Match The whole query phrase does not appear in NoTitleHasQ

the title of any top 10 search result.

Match The whole query phrase does not appear in NoSummaryHasQ

the summary of any top 10 search result.

Match The whole query phrase appears in the ALLTitleHasQ

title of all top 10 search result.

Match The whole query phrase appears in the ALLSummaryHasQ

summary of all top 10 search result.

Search Engine The search engine that returns the search results. SE:google

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 105

queries are also important items. For example, search results of hot queries

may have different characteristics from those of common queries. Other items

can also be derived from query properties, such as the length of the query,

etc. Note that some items are annotated with their types, e.g., “Q:ase 2011”

means a query “ase 2011”. This choice is to make the meaning of items more

clear and make it easier to specify constraints on a set of items.

Search Result Items

The output of a query is actually a ranked list of search results, where each re-

sult contains a title, a URL, and a summary, etc. Our approach focuses on the

URL of the top 10 search results. A URL is often too specific to have implica-

tions with other items. Therefore, our approach uses the domains of the URLs

as items. For example, the URL “http://www.continuinged.ku.edu/programs/ase/”

comes from the domain “continuinged.ku.edu”. Our approach also exam-

ines the Alexa Rank of the top private domains of search results. A top

private domain is a public suffix, under which Internet users can directly

register names, plus its first child. For example, the top private domain

of the URL “http://www.continuinged.ku.edu/programs/ase/” is “ku.edu”.

Our approach uses Guava (Google Core Libraries for Java 1.5+) [4] to extract

the top private domain of a given URL, based on the Mozilla Foundation’s

Public Suffix List [17]. Our approach then extract items such as ALLGE1K

(the Alexa Ranks of the top 10 results’ domains are all greater than 1,000)

and SOMEGE1M (the Alexa Rank of some top 10 result’ domain is greater

than 1,000,000).

Match Items

Our approach also extracts items about how well the search results match

the query. An example item is that whether the whole query phrase appears

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 106

in the title of any search result. Similar items include whether the query

phrase appears in the title of all search results, and whether the query phrase

appears in the summary of all search results. One can expect that the titles

and the summaries of top search results often contain matches of the query,

while few or no matches likely correspond to a less relevant result.

Search Engine Identities

When there are search results of multiple search engines, there may be rules

specific for certain search engines. Therefore, our approach also extract items

to describe which search engine returns the search results. For example,

“SE:google” means that the search results are returned by Google.

5.4.3 Mining Association Rules

Based on the definition of items, our approach maps each output (a ranked

list of search results) of a query into a transaction, i.e., a set of items. A set

of queries and their search results are then mapped to a database of itemsets

(actually, our approach further maps the items to integer values to mine rules

effectively). The task is then to mine frequent association rules from the

database. Our approach first mines frequent itemsets from the database, and

then generates rules with high confidences from the frequent itemsets. Our

approach also designs a set of controlling schemes to guide the rule generation.

We next describe these three techniques separately.

Frequent Itemset Mining with Length Constraint

In practice, we may not be interested in rules containing too many items,

because they are too complex to understand and the implications are more

likely to be coincidences. Therefore, our approach uses another threshold for

the length of rules (i.e., the number of items in rules), denoted as maxL. Given

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 107

a length threshold maxL, our approach adopts the Apriori algorithm [22] to

generate frequent itemsets up to length maxL iteratively. Apriori employs an

iterative approach known as a level-wise search, where k-itemsets are used to

explore (k + 1)-itemsets. First, the set of frequent 1-itemsets, denoted L1, is

found by scanning the database to accumulate the count for each item, and

collecting those items that satisfy minimum support. L1 is then used to find

L2, the set of frequent 2-itemsets, which is then used to find L3, and so on.

The Apriori property “all nonempty subsets of a frequent itemsets must also

be frequent” is used to generate and prune candidates of L(k + 1) based on

Lk, which greatly improves the efficiency.

Generating Rules

Given a frequent itemset x1, x2, ..., xn, we can generate 2n − 2 association

rules from it. However, these rules could be highly redundant. In partic-

ular, many rules whose righthand side has more than two items may not

provide more information than rules whose righthand side has just one item,

especially when used for detecting violations. For example, consider the rule

x1, x2, ..., xn−2 ⇒ xn−1, xn. Any violation of this rule must also violate the

rules x1, x2, ..., xn−2 ⇒ xn−1 and x1, x2, ..., xn−2 ⇒ xn, which have higher or

equal support and confidence. Therefore, our approach generates only rules

whose righthand side has just one item from the frequent itemsets. The al-

gorithm is described as follows.

for each mined frequent itemset X,
for each item xi in X

generate a rule X − xi ⇒ xi

if the rule’s confidence is greater than minconf ,
store the rule to the rule list,

rank the rules in descending order of confidence and support.

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 108

Controlling Rule Generation

While our approach can mine association rules between various kinds of items,

one may want to offer more guidance to the procedure of rule generation. Our

approach provides several schemes for this purpose, including stop words, left-

hand-side (LHS) patterns, and right-hand-side (RHS) patterns.

Stop words are items that are filtered out for mining association rules.

One may specify some kinds of items as stop words for certain scenarios or

for experiments. For example, suppose we have only the search results of one

search engine X, the “SE:X” item can then be filtered out as stop words.

Otherwise, we may get many uninteresting rules that say some items imply

“SE:X”.

Our approach also allows to specify the left-hand-side patterns, i.e., what

kind of items can be employed in the left-hand-side of rules. A pattern can

represent many possible items, e.g., a “top10:” pattern represents all possible

items for top 10 search results. In this way, we do not need to enumerate all

possible items in advance. In general, any item could be interesting to be

part of the left-hand-side itemset, while sometimes one may want to check

the rules with specific left-hand-side items.

Similarly, our approach allows to specify the right-hand-side patterns. One

may be more interested in what properties of the search results hold, other

than what properties of the queries hold, under certain conditions. For this

purpose, one can specify all items except the items of the query category as

the right-hand-side patterns.

Our approach also consists of an implication checker is to filter out rules

whose the left-hand-side itemsets imply the right-hand-side itemsets by na-

ture. For example, consider a rule whose left-hand-side contains “top1:X”

and the right-hand-side is “top10:X”, where X is some URL. The confidence

of the rule is definitely 1.0. Such a rule is uninteresting and can be pruned,

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 109

because it does not provide any information of the search results. However,

if one is only interested in checking the violations, it is fine to keep such rules

as they do not have any violations to check.

5.4.4 Detecting Violations of Mined Rules

The mined rules can be applied to detect violations in any given set of search

results automatically, including the set of search results where the rules are

mined.

Our approach ranks the mined rules in descending order of confidence and

support. Given a set of search results, our approach maps them to a database

of itemsets, and then check the rules as follows. From the top to bottom, our

approach picks a rule and check it against all the itemsets. If the rule is

violated by any itemset, which represents a query and its search results, our

approach outputs the rule as well as the violations. The testers can then

examine the violated rule and the violations together.

5.4.5 Learning to Classify Search Results

Because the expected search results may change, testers need to check the

search results repeatedly. In the result inspection process, we can get a lot

of labels about the search results, i.e., whether the search fail or pass. In

this case, the mining approach cannot utilize these labels effectively. Instead,

we can use classification techniques such as Decision Tree to learn models to

classify the search results. The approach consists of two steps: training and

testing.

In the training step, we suppose the testers have collected a set of failing

and passing labels of the search results. The exact meaning of failing and

passing should be determined by the testers. Given a set of queries, search

results, and the labels, we can extract items (i.e., features) from queries and

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 110

search results, and apply machine learning techniques such as Decision Tree

and Logistic Regression to learn classification models.

In the testing step, we use the learnt classification models to classify new

search queries and search results. A search query and its search results also

need to be transformed into vectors of items (features), and the classification

model will classify the search query and its search results as failing or passing

directly.

Using the classification techniques, we can learn classification models of

failing tests and find suspicious search results automatically. The classifica-

tion models of failing tests can help to identify the important factors that

lead to poor performance of the search engine under test. Moreover, testers

can manually examine the suspicious search results to get failing tests for

debugging.

5.5 Evaluation

In this section, we describe the process of collecting a set of queries and search

results of different search engines in several months. We then describe the

results of applying our approach on the collected data to mine test oracles

and find suspicious search results automatically.

5.5.1 Data Collection

Queries

We collect two sets of queries for the evaluation. The first set of queries come

from the dataset of KDD-Cup 2005 Competition [78]. The KDD-Cup 2005

Competition is in the area of search query categorization. In the competition,

800,000 search queries were randomly selected from MSN search logs with

some preliminary filtering. Among them, 800 non-junk queries were further

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 111

randomly selected by the organizers for evaluation. We use the 800 queries as

a representative set of common queries, which may cover a more wide range

of topics.

The second set of queries are collected from Google Trends and Yahoo!

Buzz. These two indexes provide the hottest queries submitted to the cor-

responding search engine everyday. A hot query is a query in which people

searches most often in a period of time. Different from common queries, hot

queries often refer to recent important events. We have collected the hot

queries from November 25, 2010 to April 21, 2011. There are in total 3432

unique hot queries.

Search Results

We collect the search results of the prepared queries from December 25, 2010

to April 21, 2011. We applied the Web services of Google and Bing to collect

the top 10 search results of each query every day. We employed these Web

services because using them to monitor a large number of queries is more

friendly to search engines. But the number of queries that can be submitted

every day is still limited by the policies of search engines. Because a hot query

may not be hot after some days, in each day we collect search results of only

the recent hot queries, i.e. hot queries that appeared not later than 30 days

before. In this way, we can capture the trends of search results of hot queries

in the very beginning of the associated hot events, without violating search

engines’ policies. In total, we collect 390797 ranked lists of search results

(each list contains the top 10 search results of a query).

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 112

5.5.2 Mining Rules

Mining from One Search Engine’ Results in One Day

We first apply our approach to the simplest scenario, where only one search

engine’s search results in one day is available. We mine rules from Google’s

search results on December, 25, 2010. We set minsup = 20, minconf = 0.95,

and maxL = 3 (the maximum length of rules). We also specify that all items

that are not of query types are interesting right-hand side patterns, and the

items of “SE:” are stop words (since there is only a search engine).

The mining results contain 2 rules, as shown below.

1.top10:starpulse.com,HotQ, => top10:imdb.com, : 22/22=1.0
2.top10:starpulse.com,TwoWords, => top10:imdb.com, : 22/23=0.96

Rule 1 says that there are 22 itemsets (queries and results) where the top

10 search results contain starpulse.com (an entertainment Website) and the

query is a hot query. In all these 22 itemsets, the top 10 search results always

contains imdb.com (an online movie database). The first condition of the

rule may imply that the query is related to entertainment, and the second

condition means that the query is about something popular recently. Under

these two conditions, imdb.com has a high chance to have relevant content

for the query. Besides, imdb.com is an authoritative Website. Therefore,

it is reasonable for imdb.com to be ranked in top 10 for the query. Rule 2

is also about the implication between starpulse.com and imdb.com, but the

causality is less clear and there is a violation for this rule.

If we relax the constraints by setting minsup = 10, the results will contain

24 rules. All these rules describe the implications between different Web

domains. Some other examples rules are shown below. Because there are

only search results of one search engine in one day, other potential rules such

as rules about the top 1 search results are not frequent enough to be mined.

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 113

3.TwoWords,top10:last.fm, => top10:youtube.com, : 18/18=1.0
4.top10:rotoworld.com,TwoWords, => top10:sports.espn.go.com, : 14/14=1.0
5.TwoWords,top10:nfl.com, => top10:sports.yahoo.com, : 10/10=1.0

5 10 15 20
0

50

100

150

200

250

300

The Threshold of Support

N
um

be
r

of
 M

in
ed

 R
ul

es

(a) Different threshold of support

0.8 0.85 0.9 0.95
0

2

4

6

8

10

The Threshold of Confidence
N

um
be

r
of

 M
in

ed
 R

ul
es

(b) Different threshold of confidence

Figure 5.3: Number of rules with different thresholds

Figure 5.3(a) shows the effects of adjusting the thresholds of support while

fixing minconf=0.95. Figure 5.3(b) shows the effects of adjusting the thresh-

olds of confidence while fixing minsup=20. We observe that reducing the

minsup could significantly increase the number of mined rules, while reduc-

ing the minconf has a relatively small effect.

Mining from Multiple Search Engines’ Results in One Day

We next apply our approach to the search results of multiple search engine,

i.e., Google and Bing, in one day. Again, we mine rules from search results

on December, 25, 2010. We use the same settings as previous experiments

except that we do not specify “SE:” items as stop words.

The mining results contain 24 rules, some of which are shown below. Rules

6-8 show three kinds of general changes of the mined rules. First, Rule 6 is the

same pattern as Rule 1, but the number of its supporting itemsets increases

from 22 to 24. Second, the previous Rule 2 “top10:starpulse.com,TwoWords,

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 114

⇒ top10:imdb.com,” is removed because of the decrease in its confidence.

Third, Rules 7 and 8 are added due to the increase of their supporting item-

sets.

6.top10:starpulse.com,HotQ, => top10:imdb.com, : 24/24=1.0
7.HotQ,top10:movies.yahoo.com, => top10:imdb.com, : 20/20=1.0
8.TwoWords,top10:tvguide.com, => top10:imdb.com, : 23/24=0.96
9.top10:absoluteastronomy.com, => SE:bing, : 63/63=1.0
10.top10:thirdage.com, => SE:bing, : 40/40=1.0
11.TwoWords,top10:youtube.com, => SE:google, : 137/143=0.95
12.OneWord,top10:twitter.com, => SE:google, : 28/29=0.97

Perhaps more importantly, mining from the results of the two search en-

gines help to discover a new kind of rules, i.e., rules whose right-hand side is

an “SE:” item. Rules 9-12 belong to this kind of rules. They show the differ-

ent opinions of search engines to certain Websites. Rules 9 and 10 say that if

the top 10 results contain “absoluteastronomy.com” or “thirdage.com”, the

search engine is likely to be Bing (the confidence is 1.0). In other words,

Google seldom ranks the Website as one top 10 result for queries. Oppo-

sitely, Rules 11 and 12 show that while Google often ranks “youtube.com”

and “twitter.com” as a top 10 result for queries, Bing seldom does it. When

a search engine SE1 often gives a high rank for a Web domain W while an-

other search engine SE2 does not, there are two possible reasons. One is that

W is a good Web site that SE2 does not notice or has difficulties in crawl-

ing. The other is that W is not that good but SE1 shows bias towards W,

either intentionally or being cheated. In either cases, such rules are helpful

for understanding the differences of search engines, and may help testers find

drawbacks of search engines’ spiders or ranking functions.

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 115

Mining from One Search Engine’ Results in Multiple Days

We next apply our approach to the search results of one search engine in

multiple days. We mine rules from Google’s search results from December,

25, 2010 to March 31, 2011. There are much more search results and thus

much more itemsets for mining rules. We thus use stricter constraints by

setting minsup = 200, minconf = 0.95, and maxL = 2 for general rules.

Note for rules that indicate the best top 1 search results of queries, there

may still be few supporting documents. Therefore, we mine this kind of rules

separately. In particular, we specify that the left-hand side should be some

query (“Q:” items) and the right-hand side should be some top 1 search result

(“top1:” items), and set minsup = 20, minconf = 0.95, and maxL = 2.

The mining results contain 58 general rules, mainly describing the impli-

cations between Web domains with higher number of supporting documents.

We have shown some examples of this kind of rules previously and further

examples are omitted here.

13.Q:hulu, => top1:hulu.com, : 91/91=1.0
14.Q:facebook, => top1:facebook.com, : 91/91=1.0
15.Q:youtube, => top1:youtube.com, : 91/91=1.0
16.Q:rosenbluth, => top1:rvacations.com, : 91/91=1.0
17.Q:espn picks, => top1:espn.go.com, : 91/91=1.0
18.Q:stock futures, => top1:bloomberg.com, : 91/91=1.0

The mining results contain 1597 top 1 rules. We next describe some ex-

amples as shown above. Rule 13 shows that for the query “hulu”, “hulu.com”

(a famous video Website) is always ranked top 1 by the search engines in the

collected search results. Similarly, the queries in Rules 14 and 15 have well-

known meanings and the most suitable top 1 search results. Rules 16-18 show

queries whose meaning are more ambiguous. However, from search results in

a series of time, one can have a high confidence that the corresponding search

results are suitable to be ranked top 1. Violations of such rules, which might

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 116

be caused by spamming or phishing websites, can confuse users and cause user

dissatisfaction. On the other hand, many queries may not have stable top 1

results since their meanings are ambiguous and the Web data keep changing.

Therefore, it is important to identify whether a query has the most suitable

top 1 search result automatically.

Mining from Multiple Search Engines’ Results in Multiple Days

Finally, we apply our approach to search results of two search engines in

multiple days. We mine rules from search results of Google and Bing during

December, 25, 2010 to March 31, 2011. The settings are the same as those of

mining from Google’s search results in many days, i.e., minsup = 20 for top

1 rules and minsup = 200 for other rules, except that “SE:” items are not

specified as stop words.

The mining results contain 1341 top 1 rules and 275 other general rules.

The number of top 1 rules is smaller than that of top 1 rules mined from only

search results of Google. This is because when mining from search results of a

search engine, a rule has a high confidence once the search engine agrees with

it, no matter whether other search engines agree or not. But when mining

from search results of both search engines, a rule has a high confidence only if

both search engines agree with it. Therefore rules mined from search results

of multiple search engines are more reliable. The number of other general

rules is larger than that of general rules mined from only search results of

Google. This is because in this case there are many meaningful rules whose

right-hand side is an “SE:” item.

19.top10:absoluteastronomy.com, => SE:bing, : 7657/7657=1.0
20.top10:quotes.nasdaq.com, => top10:finance.yahoo.com, : 314/314=1.0
21.top10:finapps.forbes.com, => top1:finance.yahoo.com, : 262/262=1.0
22.Q:facebook, => top1:facebook.com, : 182/182=1.0

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 117

Some examples of the mined rules are shown as above. Most of the rules

belong to the types that we have described, which describe implications be-

tween Web domains, different opinions of search engines to certain Web do-

main, and the best top 1 search results of queries. But mining from multiple

search engines in multiple days can further reduce false positives of rules and

generate more reliable rules.

5.5.3 Detecting Violations

In this section, we examine the effectiveness of the mined rules for finding sus-

picious search results. We use the rules mined from search results of multiple

search engines in multiple days, as described in Section 5.5.2. Our approach

checks the mined rules against the search results of Google and Bing between

April 1, 2011 to April 22, 2011. We next describe an example violation of

the mined rules. We then check the number of queries that violate rules,

compared with those of queries that change results.

Example Violations

When checking search results of Bing on April 1st, 2011, our approach finds

that search results of Bing violate a rule as follows:

Q:where to login to john carroll university email, =>
top1:mirapoint.jcu.edu, : 172/180=0.96

The high confidence of this rule suggests that for the query “where to

login to john carroll university email”, the URL “mirapoint.jcu.edu” is often

the best answer. Both Google and Bing agree on this result for most of the

time. We check this url manually, and find that it is the entrance of the

webmail system of the John Carroll University. The investigation confirms

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 118

that “mirapoint.jcu.edu” is the best top 1 result for the query in these days.

But on April 1st, 2011, Bing violates this rule. We check the search

results of the query of Bing in that day. The top 1 search result of Bing is

the URL “http://www.jcu.edu/index.php”. Although this URL points to the

homepage of the John Carroll University, it is not easy to get the answer of

the query, i.e., the entrance of the mail system, from this URL. Therefore,

the change of the top 1 search result for this query is inadequate.

There are various factors that affect the ranks of the two URLs above.

Since we are not aware of the exact ranking algorithm of Bing, we cannot

figure out what the exact problem is. However, we believe that collecting such

suspicious cases automatically can help search engine developers in examining

the ranking algorithm, either in the experimental stage or in the deployment

stage.

Number of Queries Violating Rules

Figure 5.4 shows the number of queries, which violate some rules, for Google

and Bing in different days. As shown in Figure 5.4, Bing has more queries

that violate some rules than Google. Figure 5.4 also shows the number of

queries that change results. We say a query changes results if at least one

top 10 search result has a different rank from its previous rank. It is the

basic approach for regression testing to check changed outputs. However, we

can see that there are too many queries that change results to be manually

investigated. On the other hand, the number of queries that violate mined

rules is much smaller for both Google and Bing.

Table 5.2 shows the average numbers of common and hot queries that

violate rules, compared with numbers of queries that change results. We can

see that the number of queries that violate rules is often less than 11% of the

number of queries that change results. There are more hot queries that change

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 119

0 5 10 15 20
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Days

N
um

be
r

of
 Q

ue
rie

s

Google, Queries violate rules
Bing, Queries violate rules
Google, Queries change results
Bing, Queries change results

Figure 5.4: Numbers of queries that violate rules or change results

results than common queries, but the number of hot queries that violate rules

is smaller than that of common queries. The reason may be that the Web

data of hot queries keep changing, and there are few established rules for

these queries to be violated. We also note that Bing have more queries that

change results, i.e., Bing’s search results are more unstable.

5.5.4 Learning Classification Models

We also conduct experiments to evaluate the approach of learning classifica-

tion models. We do not have the real labeling of the search results. To check

the feasibility of the classification approach, we experiment with the following

classes: for a query, if the top 1 search result of the search engine under test

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 120

Table 5.2: Average numbers of queries that violate rules or change results

#Queries #Queries The ratio

that have that change of violations

violations results to changes

Google, Common Queries 14 319 4.4%

Google, Hot Queries 14 480 2.9%

Bing, Common Queries 50 453 11.0%

Bing, Hot Queries 31 682 4.5%

Table 5.3: Results of predicting abnormal search result changes

Models Data Abnormal Data Accuray Precision Recall

Decision Tree 3429 921 0.72 0.47 0.42

Naive Bayes 3429 921 0.66 0.36 0.38

changes, but the other search engines do not agree with the change (they

returned the same top 1 result and do not change), we say the search result’s

change is unexpected, otherwise, it is normal. The classification task is: given

a query, the previous top 1 search result, and the current top 1 result, predict

whether the search result’s change is unexpected.

We use the items described previously as the features. Each query with

changed top 1 search result yields an instance x, which consists of the features

of the query, the previous top 1 search result, and the new top 1 search result.

We use the data between December 26, 2010 to March 31, 2011 as the training

data, and use the data between April 1, 2011 to April 22, 2011 as the testing

data.

We use two classification models: Decision Tree and Naive Bayes. The

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 121

classification results are shown in Table 5.3. As shown in the table, both the

two models can improve the chance of finding abnormal search results (the

precision of random classification should be 921/3429=27%). The Decision

Tree model is more effectively than the Naive Bayes model. This may be

because the different features of the data are not independent, which violates

the assumption of the Naive Bayes model. However, both the precision and

recall of the models are not high enough. A possible solution is to provide

more training data and to utilize more features for learning. We also note

that the Naive Bayes model runs much faster than the Decision Tree model,

and thus can be applied to large scale data easily. The experiments show

the feasibility of applying the classification models to find abnormal search

results automatically.

5.5.5 Discussions

The evaluation results suggest the following observations:

• Our approach is effective in mining high confidence rules, which de-

scribe different implications between queries, search results, and search

engines.

• Our approach can be applied to different scenarios. It can mine mean-

ingful rules even when there are only search results of one search engine

in one day. It can mine more reliable rules and more kinds of rules when

more information is available.

• The mined rules help to detect suspicious results that may help analyze

potential defects of search engines.

However, the current design of properties about queries and search results

can be further improved. Search engines tend to produce more outputs for a

query other than the traditional ranked list of search results. For example,

CHAPTER 5. MINING TEST ORACLES OF WEB SEARCH ENGINES 122

the outputs of a query often contain advertisements and query suggestions.

There are also embedded search results for News, images, videos, messages

in the twitter Web site, and airticket information. That is, for News queries,

some News link may be returned as well as the top 10 Web page results [72].

These kinds of search results also affect the retrieval effectiveness perceived by

the users. We plan to extend our design of properties about search results for

these more general outputs. More over, search engines may provide person-

alized rankings. We need to incorporate properties about the personalized,

anonymous information into our approach.

5.6 Summary

It is of great importance to test the retrieval effectiveness of search engines.

However, it is challenging to test search engines due to the lack of test oracles.

In this work, we propose to mine test oracles of Web search engines from

existing search results. We define a set of properties of queries and search

results, and mine frequent association rules between these properties as test

oracles. We also design a set of controlling schemes for rule generation to

ease the mining of different kinds of specifications. We collect a data set

that contains the search results of two major search engines, namely Google

and Bing, for 4232 queries in a period of 4 months. Evaluation on this data

set shows that our approach mines many high confidence rules that describe

different implications between queries and search results. The mined rules

also help to detect suspicious results that may help analyze potential defects

of search engines.

2 End of chapter.

Chapter 6

Conclusions

In this chapter, we summarize the key research results presented in this thesis,

and discuss some possible future research work.

6.1 Summary

The contribution of this thesis is to improve the effectiveness of automatic

software testing by mining specifications from software data. Although there

has been some existing work on mining specifications [23, 45, 56], these ap-

proaches do not target at using the mined specifications to help automatic

software testing. In this thesis, we consider the data available in different

scenarios of software testing, and propose new approaches to mine specifica-

tions from these data. The mined specifications are then used to generate test

inputs and to verify test outputs. Figure 1.1 presents an overview of the work

in this thesis. We have mined relevant APIs, common operational models,

and input/output rules from the source code, execution traces, and existing

inputs/outputs, respectively. We have used the mined specifications to help

the tasks of random unit-test generation and test selection for result inspec-

tion. All the proposed approaches have been implemented and evaluated on

a set of software programs.

123

CHAPTER 6. CONCLUSIONS 124

This thesis aims to improve the effectiveness of automatic software testing

by mining specifications from software data. In particular, we focus on two

tasks: automatic test input generation and test output inspection. We con-

sider the data available in different scenarios of software testing, and propose

new approaches to mine specifications from these data. The mined specifi-

cations are then used to generate test inputs and to select tests for result

inspection. The major achievements and contributions are concluded in the

following.

First, we mine relevant APIs from source code to guide random unit-test

generation. Given a method under test (MUT), a key component of object-

oriented unit-test generation is to find method-call sequences that create and

mutate desired inputs. We present an approach, called RecGen, to mine

relevant APIs to guide method-call sequence generation. We develop a static

analysis module based on Eclipse JDT Compiler [2] to mine relevant APIs

that may access the same object fields from the source code under test. Based

on these relevant APIs, RecGen recommends short sequences that mutate

object fields accessed by a method under test (MUT) to generate the inputs.

Evaluation results show that RecGen can improve the code coverage and

fault-revealing capability over previous random testing tools.

Second, we mine common operational models from execution traces of un-

verified tests to select tests for result inspection. Previous work on mining

operational models for test selection is based on dynamic invariant detec-

tion, which relies on a set of existing passing tests. Differently, our approach

mines common operational models, which are often but not always true in all

observed traces, from a (potentially large) set of unverified tests. In particu-

lar, our approach collects branch coverage and data value bounds at runtime

and then mines implication relationships between branches and constraints of

data values as potential operational models after running all the tests. Our

CHAPTER 6. CONCLUSIONS 125

approach then selects tests that violate the mined common operational mod-

els for result inspection. The experimental results, compared with previous

test selection approaches, show that our approach can more effectively reduce

the number of tests for result inspection while revealing most of the faults.

Third, we mine pseudo test oracles of Web search engines from existing

inputs (Web queries) and outputs (search results). Unlike previous work of

mining specifications that focuses on properties of the implementation, our

approach focuses on the functionalities of the search engines. We define a set

of properties of queries, search results, matches between queries and search

results, and search engine identities. We then mine frequent association rules

between these properties as test oracles. To facilitate the mining process, we

also propose a set of controlling schemes for rule generation. Experiments

on major search engines show that our approach mines many high confidence

rules that help to understand search engines and detect suspicious search

results.

6.2 Future Work

In this thesis, we have proposed several approaches to mine specifications

from software data to guide automatic software testing in the absence of

specifications. Despite of the initial achievements, there are still numerous

open issues that need to be further explored in future work.

First, there could be many ways to mine software data for improving the

effectiveness of specification-based testing. For example, we may mine the

“interesting” values of input parameters from the source code and existing

executions (existing tests or users’ feedback report). These parameter values

can then be used for combinatorial testing. We may also mine the transition

probability between different states of the system under test from existing

executions. We can then build a probabilistic finite state machines that re-

CHAPTER 6. CONCLUSIONS 126

flect the usage profiles to generate new tests. Similarly, we may mine the

probability of using different production rules and the typical sentences of

each non-terminal. These information can help to generate new tests that

represent the potential usage patterns automatically. Moreover, different ap-

plications may share some kinds of basic inputs, such as regular expressions,

databases, web pages of some format. We may build a common repository

of such common inputs and select representative ones from them for multiple

applications.

Second, we may improve the applicability of symbolic execution by pre-

dicting the benefit (e.g. improvement of code coverage) of exploring a node

of the control flow graph in a given context. One of the major challenges

of symbolic execution is the large search space of control paths of nontrivial

programs. We may build a prediction model of the benefit of exploring a sub-

graph, so as to guide the exploration of symbolic executions. The candidate

factors could include the previous exploration results of the node in other

contexts, the distance of the node to a uncovered code entity, etc. The train-

ing data could be the exploration history of the program, or the exploration

results of other programs.

Third, we may build classifiers that predict failures of software programs

based on the program’s properties and the manual labels. As shown in our

work of search engine testing, there are some kinds of applications that need

to be tested continuously and the expected results are unstable. Patterns

mined from program’s properties can help to identify the most suspicious

tests for manual inspection. However, due to the consideration of mining

efficiency, the patterns are often in a simple form such that they may not be

flexible enough and could result in many false positives. The labels collected

during the manual inspection can help to build more accurate classification

models to identify suspicious tests. As the testing proceeds, this approach

CHAPTER 6. CONCLUSIONS 127

could leverage the more and more collected labels for effective test output

inspection.

2 End of chapter.

Bibliography

[1] comscore. http://comscore.com/Press Events/Press Releases/2010/10/

comScore Releases September 2010 U.S. Search Engine Rankings.

[2] Eclipse Java development tools (JDT).

http://www.eclipse.org/jdt/index.php.

[3] FindBugs: Find Bugs in Java Programs.

http://findbugs.sourceforge.net/.

[4] Google’s core libraries.

http://code.google.com/p/guava-libraries/.

[5] googletest: Google C++ Testing Framework.

http://code.google.com/p/googletest/.

[6] HP QuickTest Professional.

http://en.wikipedia.org/wiki/HP_QuickTest_Professional.

[7] http://jscience.org/.

[8] http://sir.unl.edu/php/index.php.

[9] http://www.eclemma.org/.

[10] http://www.google.com/codesearch.

[11] http://www.jdsl.org/.

128

BIBLIOGRAPHY 129

[12] http://www.oracle.com/technology/products/berkeley-db/index.html.

[13] Junit testing framework. http://www.junit.org/.

[14] Minisat sat solver. http://minisat.se/.

[15] Selenium web application testing system. http://seleniumhq.org/.

[16] Text REtrieval Conference.

http://trec.nist.gov/.

[17] The Public Suffix List.

http://publicsuffix.org/.

[18] Watir: Web application testing in ruby. http://watir.com/.

[19] www.math.unb.ca/ knight/utility/NormTble.htm.

[20] J.-R. Abrial, S. A. Schuman, and B. Meyer. Specification language. In

On the Construction of Programs, pages 343–410. 1980.

[21] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong. Fault localiza-

tion using execution slices and dataflow tests. In ISSRE, pages 143–151,

1995.

[22] R. Agrawal and R. Srikant. Fast algorithms for mining association rules

in large databases. In J. B. Bocca, M. Jarke, and C. Zaniolo, editors,

VLDB’94, Proceedings of 20th International Conference on Very Large

Data Bases, September 12-15, 1994, Santiago de Chile, Chile, pages

487–499. Morgan Kaufmann, 1994.

[23] G. Ammons, R. Bod́ık, and J. R. Larus. Mining specifications. In

POPL, pages 4–16, 2002.

[24] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropri-

ate tool for testing experiments? In ICSE, pages 402–411, 2005.

BIBLIOGRAPHY 130

[25] G. K. Baah, A. Podgurski, and M. J. Harrold. The probabilistic program

dependence graph and its application to fault diagnosis. In ISSTA,

pages 189–200, 2008.

[26] V. R. Basili, L. Briand, and W. L. Melo. A validation of object-oriented

design metrics as quality indicators. IEEE Transactions on Software

Engineering, 22:751–761, 1995.

[27] J. F. Bowring, J. M. Rehg, and M. J. Harrold. Active learning for

automatic classification of software behavior. In ISSTA, pages 195–205,

2004.

[28] C. Campbell, W. Grieskamp, L. Nachmanson, W. Schulte, N. Tillmann,

and M. Veanes. Testing concurrent object-oriented systems with spec

explorer. In FM, pages 542–547, 2005.

[29] B. Carterette, E. Kanoulas, and E. Yilmaz. Low cost evaluation in

information retrieval. In SIGIR, page 903, 2010.

[30] W. Chan, S. Cheung, and K. R. Leung. A metamorphic testing ap-

proach for online testing of service-oriented software applications. Spe-

cial Issue on Services Engineering of International Journal of Web Ser-

vices Research, pages 60–80, 2007.

[31] J. Chang and D. J. Richardson. Structural specification-based testing:

Automated support and experimental evaluation. In ESEC/SIGSOFT

FSE, pages 285–302, 1999.

[32] M. Chen, M. R. Lyu, and E. Wong. Effect of code coverage on software

reliability measurement. IEEE Trans. on Reliability, 50(2):165–170,

2001.

[33] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented

design. IEEE Trans. Software Eng., 20(6):476–493, 1994.

BIBLIOGRAPHY 131

[34] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Artoo: adaptive random

testing for object-oriented software. In 30th International Conference

on Software Engineering, pages 71–80, 2008.

[35] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Artoo: adaptive random

testing for object-oriented software. In ICSE, pages 71–80, 2008.

[36] D. Cohen, I. C. Society, S. R. Dalal, M. L. Fredman, and G. C. Patton.

The aetg system: An approach to testing based on combinatorial design.

IEEE Transactions on Software Engineering, 23:437–444, 1997.

[37] C. Csallner and Y. Smaragdakis. Jcrasher: an automatic robustness

tester for java. Softw., Pract. Exper., 34(11):1025–1050, 2004.

[38] J. Czerwonka. Pairwise testing in the real world: Practical

extensions to test-case scenarios. http://msdn.microsoft.com/en-

us/library/cc150619.aspx, February 2008.

[39] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight defect localization

for java. In ECOOP, pages 528–550, 2005.

[40] L. M. de Moura and N. Bjørner. Z3: An efficient smt solver. In TACAS,

pages 337–340, 2008.

[41] W. Dickinson, D. Leon, and A. Podgurski. Finding failures by cluster

analysis of execution profiles. In ICSE, pages 339–348, 2001.

[42] W. Dickinson, D. Leon, and A. Podgurski. Pursuing failure: the distri-

bution of program failures in a profile space. In ESEC/SIGSOFT FSE,

pages 246–255, 2001.

[43] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case prior-

itization: A family of empirical studies. IEEE Trans. Software Eng.,

28(2):159–182, 2002.

BIBLIOGRAPHY 132

[44] D. R. Engler, D. Y. Chen, and A. Chou. Bugs as inconsistent behavior:

A general approach to inferring errors in systems code. In Symposium

on Operating Systems Principles, pages 57–72, 2001.

[45] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynami-

cally discovering likely program invariants to support program evolu-

tion. IEEE Trans. Software Eng., 27(2):99–123, 2001.

[46] P. G. Frankl, S. N. Weiss, and C. Hu. All-uses vs mutation testing:

An experimental comparison of effectiveness. Journal of Systems and

Software, 38(3):235–253, 1997.

[47] P. G. Frankl and E. J. Weyuker. An applicable family of data flow

testing criteria. IEEE Trans. Software Eng., 14(10):1483–1498, 1988.

[48] M. Gabel and Z. Su. Javert: fully automatic mining of general temporal

properties from dynamic traces. In SIGSOFT FSE, pages 339–349,

2008.

[49] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated

random testing. In Proceedings of the ACM SIGPLAN 2005 Conference

on Programming Language Design and Implementation, pages 213–223,

2005.

[50] M. Grindal, J. Offutt, and S. F. Andler. Combination testing strategies:

a survey. Softw. Test., Verif. Reliab., 15(3):167–199, 2005.

[51] J. Han and M. Kamber. Data Mining: Concepts and Techniques, 2nd

ed. Morgan Kaufmann Publishers, 2006.

[52] S. Hangal and M. S. Lam. Tracking down software bugs using automatic

anomaly detection. In ICSE, pages 291–301, 2002.

BIBLIOGRAPHY 133

[53] M. Haran, A. F. Karr, A. Orso, A. A. Porter, and A. P. Sanil. Applying

classification techniques to remotely-collected program execution data.

In ESEC/SIGSOFT FSE, pages 146–155, 2005.

[54] M. Harder, J. Mellen, and M. D. Ernst. Improving test suites via

operational abstraction. In ICSE, pages 60–73, 2003.

[55] A. E. Hassan and T. Xie. Mining software engineering data. In Pro-

ceedings of the 32nd International Conference on Software Engineering

(ICSE 2010), Companion Volume, Tutorial, pages 503–504, May 2010.

[56] J. Henkel and A. Diwan. Discovering algebraic specifications from java

classes. In ECOOP, pages 431–456, 2003.

[57] M. Hennessy. An analysis of rule coverage as a criterion in gener-

ating minimal test suites for grammar-based software. In In Proc.

20th IEEE/ACM International Conference on Automated Software En-

gineering, pages 104–113, 2005.

[58] H.-Y. Hsu and A. Orso. Mints: A general framework and tool for

supporting test-suite minimization. In ICSE, pages 419–429, 2009.

[59] J. C. Huang. An approach to program testing. ACM Comput. Surv.,

7(3):113–128, 1975.

[60] W. Humphrey. The future of software engineering: I. March,2001.

[61] M. Hutchins, H. Foster, T. Goradia, and T. J. Ostrand. Experiments

of the effectiveness of dataflow- and controlflow-based test adequacy

criteria. In ICSE, pages 191–200, 1994.

[62] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M. Matsushita, and

S. Kusumoto. Component rank: Relative significance rank for software

component search. In ICSE, pages 14–24, 2003.

BIBLIOGRAPHY 134

[63] J. Jacky, M. Veanes, C. Campbell, and W. Schulte. Model-based Soft-

ware Testing and Analysis with C#. Cambridge University Press, 2008.

[64] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir

techniques. ACM Trans. Inf. Syst., 20(4):422–446, 2002.

[65] L. Jiang, Z. Su, and E. Chiu. Context-based detection of clone-related

bugs. In ESEC/SIGSOFT FSE, pages 55–64, 2007.

[66] T. Joachims. Optimizing search engines using clickthrough data. In

KDD, pages 133–142, 2002.

[67] T. Joachims. Evaluating retrieval performance using clickthrough data.

In Text Mining, pages 79–96. 2003.

[68] J. A. Jones, M. J. Harrold, and J. T. Stasko. Visualization of test

information to assist fault localization. In ICSE, pages 467–477, 2002.

[69] K. S. Jones and C. van Rijsbergen. Report on the need for and provision

of an “ideal” information retrieval test collection.

[70] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst.

Hampi: a solver for string constraints. In ISSTA, pages 105–116, 2009.

[71] S. Kim, E. J. W. Jr., and Y. Z. 0001. Classifying software changes:

Clean or buggy? IEEE Trans. Software Eng., 34(2):181–196, 2008.

[72] A. C. König, M. Gamon, and Q. Wu. Click-through prediction for news

queries. In SIGIR, pages 347–354, 2009.

[73] R. Kuhn, R. Kacker, Y. Lei, and J. Hunter. Combinatorial software

testing. IEEE Computer, 42(8):94–96, 2009.

[74] R. Lämmel and W. Schulte. Controllable combinatorial coverage in

grammar-based testing. In TestCom, pages 19–38, 2006.

BIBLIOGRAPHY 135

[75] F. Lanubile, A. Lonigro, and G. Visaggio. Comparing models for iden-

tifying fault-prone software components. In IN PROCEEDINGS OF

THE 7TH INTERNATIONAL CONFERENCE ON SOFTWARE EN-

GINEERING AND KNOWLEDGE ENGINEERING, pages 312–319,

1995.

[76] D. Leon, W. Masri, and A. Podgurski. An empirical evaluation of test

case filtering techniques based on exercising complex information flows.

In ICSE, pages 412–421, 2005.

[77] H. Li, M. Jin, C. L. 0002, and Z. Gao. Test criteria for context-free

grammars. In COMPSAC, pages 300–305, 2004.

[78] Y. Li, Z. Zheng, and H. K. Dai. Kdd cup-2005 report: facing a great

challenge. SIGKDD Explorations, 7(2):91–99, 2005.

[79] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: A tool for finding

copy-paste and related bugs in operating system code. In OSDI, pages

289–302, 2004.

[80] Z. Li and Y. Zhou. Pr-miner: automatically extracting implicit pro-

gramming rules and detecting violations in large software code. In

Proceedings of the 10th European Software Engineering Conference held

jointly with 13th ACM SIGSOFT International Symposium on Founda-

tions of Software Engineering, pages 306–315, 2005.

[81] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via

remote program sampling. In PLDI, pages 141–154, 2003.

[82] B. R. Liblit. Cooperative Bug Isolation. PhD thesis, University of

California, Berkeley, Dec. 2004.

BIBLIOGRAPHY 136

[83] Y. Lin, X. Tang, Y. Chen, and J. Zhao. A divergence-oriented approach

to adaptive random testing of java programs. In ASE, pages 221–232,

2009.

[84] D. Lo and S.-C. Khoo. Smartic: towards building an accurate, robust

and scalable specification miner. In SIGSOFT FSE, pages 265–275,

2006.

[85] F. Long, X. Wang, and Y. Cai. Api hyperlinking via structural overlap.

In ESEC/SIGSOFT FSE, pages 203–212, 2009.

[86] M. R. Lyu. Handbook of Software Reliability Engineering. McGraw-Hill,

1996.

[87] D. Mandelin, L. Xu, R. Bod́ık, and D. Kimelman. Jungloid mining:

helping to navigate the api jungle. In Proceedings of the ACM SIG-

PLAN 2005 Conference on Programming Language Design and Imple-

mentation, Chicago, IL, USA, June 12-15, 2005, pages 48–61, 2005.

[88] T. Menzies, J. Greenwald, and A. Frank. Data mining static code at-

tributes to learn defect predictors. IEEE Trans. Software Eng., 33(1):2–

13, 2007.

[89] A. Michail and T. Xie. Helping users avoid bugs in gui applications. In

ICSE, pages 107–116, 2005.

[90] C. Murphy, K. Shen, and G. E. Kaiser. Automatic system testing of

programs without test oracles. In ISSTA, pages 189–200, 2009.

[91] E. R. Murphy-Hill, C. Parnin, and A. P. Black. How we refactor, and

how we know it. In ICSE, pages 287–297, 2009.

[92] G. J. Myers. Art of Software Testing. John Wiley & Sons, Inc., 1979.

BIBLIOGRAPHY 137

[93] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict compo-

nent failures. In ICSE, pages 452–461, 2006.

[94] P. A. Nainar, T. Chen, J. Rosin, and B. Liblit. Statistical debugging

using compound boolean predicates. In ISSTA, pages 5–15, 2007.

[95] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight

dynamic binary instrumentation. In PLDI, pages 89–100, 2007.

[96] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight

dynamic binary instrumentation. In PLDI, pages 89–100, 2007.

[97] N. I. of Standards and Technology. The economic impacts of inadequate

infrastructure for software testing. 2002.

[98] A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing to large

software systems. In SIGSOFT FSE, pages 241–251, 2004.

[99] T. J. Ostrand and E. J. Weyuker. The distirubtion of faults in a large

industrial software system. In ISSTA, pages 55–64, 2002.

[100] C. Pacheco and M. D. Ernst. Eclat: Automatic generation and classi-

fication of test inputs. In ECOOP, pages 504–527, 2005.

[101] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed

random test generation. In ICSE, pages 75–84, 2007.

[102] R. P. Pargas, M. J. Harrold, and R. R. Peck. Test-data generation

using genetic algorithms. Software Testing, Verification And Reliability,

9:263–282, 1999.

[103] P. Purdom. A sentance generator for testing parsers. BIT, 12(3):366–

375, 1972.

BIBLIOGRAPHY 138

[104] T. W. Reps, T. Ball, M. Das, and J. R. Larus. The use of program

profiling for software maintenance with applications to the year 2000

problem. In ESEC / SIGSOFT FSE, pages 432–449, 1997.

[105] M. P. Robillard. Automatic generation of suggestions for program in-

vestigation. In Proceedings of the 10th European Software Engineering

Conference held jointly with 13th ACM SIGSOFT International Sym-

posium on Foundations of Software Engineering, pages 11–20, 2005.

[106] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prioritizing test

cases for regression testing. IEEE Trans. Software Eng., 27(10):929–948,

2001.

[107] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. G. Elbaum, and

G. Rothermel. Predicting accurate and actionable static analysis warn-

ings: an experimental approach. In ICSE, pages 341–350, 2008.

[108] Z. M. Saul, V. Filkov, P. T. Devanbu, and C. Bird. Recommending

random walks. In Proceedings of the 6th joint meeting of the European

Software Engineering Conference and the ACM SIGSOFT International

Symposium on Foundations of Software Engineering, pages 15–24, 2007.

[109] A. Schr?ter, T. Zimmermann, R. Premraj, and A. Zeller. If your bug

database could talk... (short paper). In Proceedings of the 5th Interna-

tional Symposium on Empirical Software Engineering. Volume II: Short

Papers and Posters, pages 18–20, September 2006.

[110] D. Schuler, V. Dallmeier, and A. Zeller. Efficient mutation testing by

checking invariant violations. In ISSTA, pages 69–80, 2009.

[111] K. Sen and G. Agha. CUTE and jCUTE: Concolic unit testing and

explicit path model-checking tools. In CAV, pages 419–423, 2006.

BIBLIOGRAPHY 139

[112] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit testing engine

for c. In ESEC/SIGSOFT FSE, pages 263–272, 2005.

[113] S. Thummalapenta and T. Xie. Parseweb: a programmer assistant for

reusing open source code on the web. In ASE, pages 204–213, 2007.

[114] S. Thummalapenta and T. Xie. Spotweb: Detecting framework hotspots

and coldspots via mining open source code on the web. In ASE, pages

327–336, 2008.

[115] S. Thummalapenta and T. Xie. Alattin: Mining alternative patterns

for detecting neglected conditions. In ASE, pages 283–294, 2009.

[116] N. Tillmann and J. de Halleux. Pex-white box test generation for .NET.

In TAP, pages 134–153, 2008.

[117] P. Tonella. Evolutionary testing of classes. In ISSTA, pages 119–128,

2004.

[118] M. Utting and B. Legeard. Practical Model-Based Testing: A Tools

Approach. Morgan-Kaufmann, 2007.

[119] W. Visser, C. S. Pasareanu, and S. Khurshid. Test input generation

with java pathfinder. In ISSTA, pages 97–107, 2004.

[120] K. Wang, T. Walker, and Z. Zheng. Pskip: estimating relevance ranking

quality from web search clickthrough data. In KDD, pages 1355–1364,

2009.

[121] X. Wang, S. Cheung, W. Chan, and Z. Zhang. Taming coincidental cor-

rectness: Coverage refinement with context patterns to improve fault

localization. In Proc. 31th International Conference on Software Engi-

neering (ICSE 2009), May 2009.

BIBLIOGRAPHY 140

[122] X. Wang, Z. Guo, X. Liu, Z. Xu, H. Lin, X. Wang, and Z. Zhang. Hang

analysis: fighting responsiveness bugs. In EuroSys, pages 177–190, 2008.

[123] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and

Z. Su. Dynamic test input generation for web applications. In ISSTA,

pages 249–260, 2008.

[124] A. W. Williams and R. L. Probert. A measure for component interaction

test coverage. In AICCSA, pages 304–312, 2001.

[125] W. E. Wong, Y. Shi, Y. Qi, and R. Golden. Using an rbf neural network

to locate program bugs. In ISSRE, pages 27–36, 2008.

[126] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for detecting

redundant object-oriented unit tests. In 19th IEEE International Con-

ference on Automated Software Engineering (ASE 2004), pages 196–

205, 2004.

[127] T. Xie and D. Notkin. Tool-assisted unit test selection based on oper-

ational violations. In ASE, pages 40–48, 2003.

[128] T. Xie and D. Notkin. Automatically identifying special and common

unit tests for object-oriented programs. In ISSRE, pages 277–287, 2005.

[129] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Perracotta:

mining temporal api rules from imperfect traces. In ICSE, pages 282–

291, 2006.

[130] Y. Yue, R. Patel, and H. Roehrig. Beyond position bias: examining

result attractiveness as a source of presentation bias in clickthrough

data. In WWW, pages 1011–1018, 2010.

BIBLIOGRAPHY 141

[131] Q. Zhang, W. Zheng, and M. R. Lyu. Flow-augmented call graph: A

new foundation for taming api complexity. In FASE 2011, Fundamental

Approaches to Software Engineering, pages 386–400, 2011.

[132] W. Zheng, M. R. Lyu, and T. Xie. Test selection for result inspection

via mining predicate rules. In 31st International Conference on Soft-

ware Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada,

Companion Volume, pages 219–222, 2009.

[133] W. Zheng, H. Ma, M. R. Lyu, T. Xie, and I. King. Mining test oracles

of web search engines.

[134] W. Zheng, Q. Zhang, M. R. Lyu, and T. Xie. Random unit-test

generation with mut-aware sequence recommendation. In ASE 2010,

25th IEEE/ACM International Conference on Automated Software En-

gineering, Antwerp, Belgium, September 20-24, 2010, pages 293–296,

2010.

[135] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. Mapo: Mining and

recommending api usage patterns. In ECOOP 2009 - Object-Oriented

Programming, 23rd European Conference, pages 318–343, 2009.

[136] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage

and adequacy. ACM Comput. Surv., 29(4):366–427, 1997.

