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Correspondence is a Matching Problem
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Dense Correspondence Tasks

* Optical flow and stereo matching
P(t + At) P"(t)

epipolar line

p(t + At)
\‘ -0
Ot1at T~ | L
O 0, Oy
Flow Geometry Stereo Geometry
Relative locations and orientations of the cameras are Relative locations and orientations of the cameras are
not fixed: 2D matching fixed: 1D matching
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Correspondence is Crucial

* Optical flow: motion analysis * Stereo matching: 3D understanding
Image epipolar line
Sequences ,
| d
disparity 1
p#(\f\)'/ ((t) Pr( \'f
Optical - 3 0, Baseline B 0,

Flow

: Depthd = fB/D.
| Disparity is inversely proportional to depth!
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Correspondence is Everywhere
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3D Reconstruction Video Action Recognition
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Correspondence Estimation is Challenging

 Occlusion

Where is the finger in the right image?
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Correspondence Estimation is Challenging

* lllumination change

The right image is darker due to underexposure.
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Correspondence Estimation is Challenging

* Motion blur and atmospheric effects

K Y

Object boundaries are blurry.
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Correspondence Estimation is Challenging

* Hard to obtain ground truth

Image Classification Image Segmentation Optical Flow
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Hard to Collect Dense Correspondence Labels

We aim to design self-supervised learning methods
to learn dense correspondence from unlabeled data.
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Self-Supervised Learning

Pretext task:
automatically generate

1 V

— — .

Supervised Learning Self-Supervised Learning

Definition: a form of unsupervised learning where the supervision
signal is purely generated from the data itself.
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Self-Supervised Learning

* Pretext task: image inpainting, image colorization, image super-resolution,
order prediction, video frame prediction, etc

Y

TTFRCTEN
HEE
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mera

------------

Classifier

Z N

CNN CNN

Image Inpainting Relative Position Prediction
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3D Face Reconstruction

* 3D face reconstruction: a special case of dense correspondence

Learn 3D face reconstruction from videos

150 and employ optical flow as a 2D constraint.

100 §

50 «

3D face reconstruction can be regarded as
an application of optical flow.

! 3D Face Reconstruction can be regarded as an
Dense correspondence between a 2D face E application of optical flow.

image and a 3D face model e e e e e e e e e e e e e e e e e e e e e e
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Thesis Contributions

A 4

Stereo Matching
[CVPR’20]

Self-Supervised Learning
of Dense Correspondence

A 4

Optical Flow [AAAI'19, CVPR’19, *TPAMI’20]

A 4

3D Face Reconstruction
[ACCV’20]

* In Submission
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Thesis Contributions

A 4

Stereo Matching
[CVPR’20]

Self-Supervised Learning
of Dense Correspondence

Optical Flow [AAAI'19, CVPR’19, *TPAMI’20]

A 4

A 4

3D Face Reconstruction
[ACCV’20]

* Optical Flow: a series of self-supervised learning methods to learn optical flow of both occluded and
non-occluded pixels

* In Submission
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Thesis Contributions

A 4

Stereo Matching
[CVPR’20]

Self-Supervised Learning
of Dense Correspondence

Optical Flow [AAAI'19, CVPR’19, *TPAMI’20]

A 4

A 4

3D Face Reconstruction
[ACCV’20]

* Stereo Matching: explore the geometric relationship between flow and stereo

* In Submission
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Thesis Contributions

A 4

Stereo Matching
[CVPR’20]

Self-Supervised Learning
of Dense Correspondence

A 4

Optical Flow [AAAI'19, CVPR’19, *TPAMI’20]

A 4

3D Face Reconstruction
[ACCV’20]

* 3D Face Reconstruction: pose guidance network and multi-image consistency

* In Submission
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Thesis Contributions

Self-Supervised Learning
of Dense Correspondence

LIU, Pengpeng

> Stereo Matching
[CVPR’20]

J Ooti |

1 ptical Flow |

| Special Case |
)

| Application |

A 4

3D Face Reconstruction

<z

[ACCV’20]
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1 [AAAI'19, CVPR’19, *TPAMI’20]

* In Submission
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Thesis Contributions

A 4

Stereo Matching <

[CVPR"20] | Special Case |
Self-Supervised Learning " Optical Flow ! [AAAI'19, CVPR’19, *TPAMI’'20]
of Dense Correspondence -

| Application |

A 4

3D Face Reconstruction [«
[ACCV’20]

* In Submission
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Optical Flow: Task Definition

Color Coding: hue denotes the direction
of the motion, and saturation denotes
the magnitude of the motion.

3

- e——

''''' =/ i, il I
Optical flow represented with arrow Optical flow represented with color coding
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Background Review

[ Others
I  Our methods

Optical Flow Estimation

Traditional Hybrid Learning-based
Methods Methods Methods

Variational Feature Matching Unsupervised Supervised
Methods Methods Methods Methods

Occlusion Without Pre-train on
Detection Occlusion Synthetic
Detection Datasets

Unsupervised
Pre-training

Non-occluded
Pixels
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Traditional Methods

* Variational approaches: coarse-to-fine optical flow estimation
* Feature matching: sparse to dense
* Disadvantages: slow, not work well for large motion

SN | O\
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Background Review

Traditional
Methods

Optical Flow Estimation

Hybrid

Methods

Variational Feature Matching

Methods

LIU, Pengpeng

Methods

Occlusion
Detection

Non-occluded
Pixels

[ Others
I  Our methods

Learning-based

Unsupervised

Methods

Without
Occlusion
Detection

Self-Supervised Learning of Dense Correspondence

Methods

Supervised
Methods

Pre-train on
Synthetic
Datasets

Unsupervised
Pre-training
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Supervised Learning Methods

* Input two images, output a dense optical flow map with CNNs

* FlowNet [Dosovitskiy et al. CVPR 2015]
* FlowNet 2.0 [llg et al. CVPR 2017]

* SpyNet [Ranjan et al. CVPR 2017]

* PWC-Net [Sun et al. CVPR 2018]

Image Image  __________________, Initial flow
pyramid1  pyramid 2 I !
o am ;*EL F i -
} b
i D i Warpi
convolutional e I apng
*’ ockod
! [ Optical Flow
i_ i_ Estimator
|
Post-processing .. Refined flow
FlowNet SpyNet
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Supervised Learning Methods

* Advantages: high performance, high speed

 Disadvantages: need a large amount of labeled data = difficult to obtain
=» pre-train on synthetic data =» domain gap

Training domains Domains of interest

LIU, Pengpeng
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Background Review

Traditional
Methods

Optical Flow Estimation

Hybrid

Methods

Variational Feature Matching

Methods
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Methods

Occlusion
Detection

Non-occluded
Pixels

[ Others
I  Our methods

Learning-based
Methods

Unsupervised Supervised

Methods

Methods

Without Pre-train on
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Unsupervised Learning Methods

* Advantage: infinite training data

LIU, Pengpeng
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Unsupervised Learning Methods

* Problem: brightness consistency does not hold for occluded pixels

Color is differen i
for occluded
regions.

GT Flow

Self-Supervised Learning of Dense Correspondence
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Background Review

[ Others
I  Our methods

Optical Flow Estimation

Traditional Hybrid Learning-based
Methods Methods Methods

Variational Feature Matching Unsupervised Supervised
Methods Methods Methods Methods

Occlusion Without Pre-train on
Detection Occlusion Synthetic

Detection Datasets
Non-occluded
Pixels
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Unsupervised Learning Methods

* Advantage: infinite training data, learn flow of non-occluded pixels
* Disadvantage: lack the ability to predict flow of occluded pixels

Backward warp

Occlusion
I Detection
‘ \ I (x +wb)
Data loss Ep
i
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Motivation

[ Others
I  Our methods

Optical Flow Estimation

Traditional Hybrid Learning-based
Methods Methods Methods

Variational Feature Matching Unsupervised Supervised
Methods Methods Methods Methods

Occlusion Without Pre-train on
Detection Occlusion Synthetic
Detection Datasets

Unsupervised
Pre-training

Non-occluded
Pixels

| Learn flow of both non-occluded
and occluded pixels
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Method

* We propose a series of self-supervised learning methods
* DDFlow [AAAI'19]
* SelFlow [CVPR’19]
* Flow2Stereo [CVPR’20]
* DistillFlow [*TPAMI’20]

* Advantages
* Make use of infinite unlabeled data
* Learn flow of both occluded and non-occluded pixels from unlabeled data

* Reduce the performance gap compared with supervised methods
* Reduce the reliance of synthetic data

* In Submission
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DDFlow: Observation

* The optical flow of non-occluded pixels can be accurately estimated.
* How do we fully utilize those reliable predictions?
* We can create[artificial occlusions for self-supervision.

LX ]2 _________________ '.,
Y | S I 1)

1

[ P1 I [ :
: I : I — —> Flow

I | | |

| ; | j
[ Guide

11 P: iz v

_— —> Flow
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Self-Supervised Learning Framework

* The teacher model is trained with the photometric loss L, for non-
occluded pixels.

g Image Warp 1

—
| I L Forward Forward Warped
I L & -+ Flow Occlusion Image
!_____ll Tt Wr tforkwa rd(;I Of w

coi(;isvtvear:cy Photometric Loss
|r I I, e check Backward Warped
I L | & -+ | Elow Occlusion Image
!_____]' L Wp Oy Iy
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Self-Supervised Learning Framework

e The student model shares the same network structure with teacher
model.

| | g Image Warp 1

[—————
| I L Forward Forward Warped
I L & -+ - Flow Occlusion Image
!_____]I I W¢ Forward- O i
backward .
———— consistency Photometric Loss
| I I Backward check Backward Warped
I I I & > H Flow Occlusion Image
ST IR - w 0 I
I 1 Forward Forward Warped
I & —> Flow Occlusion Image
L . Ul Forward- Of I’
backward Photometric Loss
_ consistency
e 2 Backward check Backward Warped
I & —~ —*  Flow Occlusion Image
; 5 0 iy
I . Wp b 2
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Self-Supervised Learning Framework

* The student model is trained with photometric loss L, and self-supervised
loss L, for occluded pixels using predictions from the teacher model.
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Loss for %
Occluded Pixels
Photometric Loss

L, only functions
on pixels that are
non-occluded in
original images but
occluded in cropped
patches.




Rethink Occlusion

* Cropping strategy only works well for occlusions near image boundary.
* How to cope with occlusions elsewhere?

12 _____________ Peo
| e |- ______ 1P
| P1 | :
: I —> — Flow
| | I
\ ]
Guide
L & L
1 o 2 !
E— — Flow
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SelFlow: Superpixel-based Occlusion Hallucination

(a) Reference Image I, (b) Targetimage I;4q (c) Ground Truth Flow w;_;4+; (d) Warped Target Image I}%1_;

T o v - N - —

, —_— —> Flow
Pt | D2
P2 Py
Guide
L1 I bwr >
pl. .......... v
—_— —> Flow (i) Self-Supervision Mask M;_;44
B el
P2 *

(e) SLIC Superpixel Bl (g) Occlusion Map O;_¢41 (h) New Occlusion Map O;_;41
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Key of Self-Supervision

* Observation: self-supervision also improves the flow learning of non-
occluded pixels

* Key: create challenging transformations and let confident predictions
supervise less confident predictions (Flow2Stereo)

I L e . L L bo Teacher Model
R o e [ B 78 BN N - WSS o 7
| pr | | | m +Non-occluded ~——-
| | | | onfident | | Cropping
| -~ } | : - —_— uded L__1
I pr |- | pr T e, + Non-occlude
______ gl ;__;'!_._J e .
P2 2 P27 P2 confident
Image Patch
.................. e, iy L Lo Student Model
> [ o]---- R ~ B N0 ..l R
nole i (] - P — Dy Occluded pis
b 7P Less confident 2 Noise
pr ... g R E . Non-occluded
?Ol e |- - .
2 P2 P2 7 P2* | o5 confident
(a) Cropping occlusion hallucination (b) Superpixel occlusion hallucination
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Challenging Transformations

* Three kinds of challenging transformations (DistillFlow):
* Occlusion hallucination-based transformations
e Color transformations
e Geometric transformations

o %

(a) Reference Image I, (b) Flow wy (c) Flow wy (Confident) (d) Error Map

s

o G B
Cropping
Transformation

Cropping & color
Transformations

Cropping and Scaling
Transformations

(a) Reference Image I, (b) Flow Wy (c) Transformed Flow wa (d) Error Map (e) Transformed Error Map

LIU, Pengpeng
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Limitations

* The performance of the teacher model determines the upper bound of
the student model

* We propose three improvements:
» Utilize multiple frames: explore temporal consistency (SelFlow)

* Use stereo videos: explore the geometric constraints between optical flow and
stereo disparity (Flow2Stereo)

* Model distillation: employ multiple teacher models and ensemble multiple
predictions (DistillFlow)

Self-Supervised Learning of Dense Correspondence 41
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Direction 1: Multi-frame Optical Flow Estimation

 Our three-frame flow estimation network:
* Compute bidirectional flow and cost volume
* Combine reversed backward flow and backward cost volume information

* Swap initial flow and cost volume to estimate forward and backward flow
concurrently

1
Wise—1

L
Wittt

Two-frame PWC-Net network structure at each level

LIU, Pengpeng

Three-frame network structure at each level
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Direction 2: Use Stereo Data

* We regard stereo matching as a special case of optical flow, and use one
unified network to predict both optical flow and stereo disparity

e Geometric constrains

{ r — g = (—dgs1) — (—dy)

v, —v; =0
P
Z |'\{
™ Priq
Left Right NN
t+1 I3 Iy Optical Flow
% ——»  Disparity
. /
Cross-view
t I I, Optical Flow l

e ‘\ \
I’l, ‘\‘\
I N
U/ \:
/ Ay .
y
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Direction 3: Model Distillation

I I % Flow

AN

Challenglr?g Guide
Transformations
v
il 72 — > — Flow
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Motivation

[ Others
I  Our methods

Optical Flow Estimation

Traditional Hybrid Learning-based
Methods Methods Methods

Variational Feature Matching Unsupervised Supervised
Methods Methods Methods Methods

Occlusion Without Pre-train on
Detection Occlusion Synthetic
Detection Datasets

Unsupervised
Pre-training

Non-occluded
Pixels

| Learn flow of both non-occluded
and occluded pixels
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Motivation

[ Others
I  Our methods

Optical Flow Estimation

Traditional Hybrid Learning-based
Methods Methods Methods

Variational Feature Matching Unsupervised Supervised
Methods Methods Methods Methods

Occlusion Without Pre-train on
Detection Occlusion Synthetic
Detection Datasets

Unsupervised
Pre-training

—

Non-occluded

Pixels

Remove the reliance of
synthetic datasets
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Supervised Fine-tuning

* Self-supervised pre-training achieves excellent initializations for
supervised fine-tuning: remove the reliance of synthetic data

* Previous methods: pre-train on synthetic data = fine-tune with limited
labeled data

* Our method: pre-train with unlabeled data = fine-tune with limited
labeled data

LIU, Pengpeng
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Experiments: Datasets

e Labeled datasets

KITTI 2012 194 pairs 195 pairs sparse
KITTI 2015 200 paris 200 pairs Sparse
Sintel Clean

23 videos 12 videos Dense
Sintel Final

* Unlabeled datasets
* Both KITTI and Sintel contain large quantities of unlabeled raw data

LIU, Pengpeng

Self-Supervised Learning of Dense Correspondence 48




Experiments: Evaluation Metrics

* Optical Flow

* EPE: average endpoint error between the predicted flow and the
ground truth flow.

* Fl: percentage of erroneous pixels

* Occlusion Detection
* F-score: the harmonic average of the precision and recall

LIU, Pengpeng
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Experiments: Quantitative Results

* We achieve the best unsupervised optical flow estimation performance
on all datasets

Sintel Clean Sintel Final KITTI 2012 KITTI 2015
Method Method train test train test
EPE-train EPE-test EPE-train EPE-test
DSTFlow @ 6.16 1041 (651 1197 EPE-all EPE-noc EPE-all EPE-noc Fl-all Flnoc EPE-all EPE-noc  Fl-all Fl-fg Fl-bg
L.nFlo‘g_“CSg 99] 16) ’ (7'9 ) ; ) 0';_; BackToBasic [55] 11.3 43 9.9 46 4315% 34.85%
' _ : - DSTFlow [110] 10.43 3.29 12.4 40 16.79 6.96 39%
_ OccAwareFlow [130] (4.03) 7.95 (5.95) 9.15 UnFlow-CSS [92] 3.99 1.96 8.10 23.30%
i Back2FutureFlow-None [53]* (6.05) (7.09) OccAwareFlow [136] 3.55 4.2 8.88 31.2%
é Back2FutureFlow-Soft [53]* (3.89) 7.23 (5.52) 8.81 _ Back2FutureFlow-None [53]* 6.65 3.24
S EpipolarFlow [159 (3.54) 7.00 (4.99) 8.51 % Back2FutureFlow-Soft (53] 6.59 322 2294% 24.21% 22.67%
é DDFlow (2.02) 6.18 (3.08) 740 .’5 EpipolarFlow [159] (2.51) (0.99) 3.4 1.3 (5.55) (2.46) 16.95%
= SelFlow B0+ (2.88) 6.56 (3.87) 6.57 & Lai (t al. [70](+Stereo) 2.56 1.39 7.13 431 )
DistillFlow (trained on KITTI) 4.21 5.06 5 UnOS @]GSWIQO) 164 104 L8 — — :)ES — LRINT
DDFlow [79) 2.35 1.02 3.0 11 886% 451%  5.72 273 14.29% 20.40% 13.08%
[DistillFlow (2.61) 4.23 (3.70) 5.81 | SelFlow [S0]* 1.69 0.91 2.2 10 7.68% 431% 484 240 1419% 21.74% 12.68%
FlowNetS [26] (3.66) 6.96 (4.44) 7.76 Irf\lf)\\j;_?litloroo,[@].GS‘:,ereoZ. . 1);13 ??5 L7 0.9 7.63%  4.02% .z:);l 2‘5‘ 11.10% 16.67% 9.99%
Z:)?“\Eft 8?73; gzz 8?3; %;é | Dis;illFlow ] ] 1.38 0.83 1.6 0.9 7.18% 3.91%  2.93 1.96  10.54% 16.98% 9.26% |
FlowPieldsCNN ] 378 36 Souties (8], a0 s 20w nan 0% 4308 9330%
' - [y pyNet . % 2. 20.97% 2.31% 35.07% 3.62% 33.36%
}]31(‘1:1\?“;9 (1.45) j;é (201 . fj FlowFieldsCNN 3.0 12 1301% 480% 1868% 20.42% 18.33%
owiets [ 2 : : 0.1 DCFlow 1486% 23.70% 13.10%
LiteFlowNet (1.35) 4.54 (1.78) 5.38 Flowl\'mz (1.28) 1.8 1.0 R80% 4.82%  (2.3) 1041% 875%  10.75%
LiteFlowNet2 [49] (1.41) 3.48 (1.83) 4.69 UnFlow-CSS [92] (1.14)  (0.66) 1.7 0.9 R42% 4.28%  (1.86) 11.11%  15.93%  10.15%
% PWC-Net (2.02) 4.39 (2.08) 5.04 LiteFlowNet (1.05) 1.6 0.8 721% 3.21%  (1.62) 9.38%  7.99%  9.66%
£ PWC-Net+ [127] (1.71) 3.45 (2.34) 4.60 LiteFlowNet2 (0.95) 1.4 0.7 6.167% 2.63%  (1.33) 7.62%  7.64%  7.62%
€ ContinualFlow [97] 3.34 159 PWC-Net (1.45) 1.7 0.9 8.10% 4.22%  (2.16) 9.60%  9.31%  9.66%
= , _ - - PWC-Net+ [122] (1.08) 1.4 0.8 6.72% 3.36%  (1.45) 772%  788%  7.69%
7 HDJFIO\? ‘146 (1.70) 4.29 (1.17) 4(—3: B TR f 10.03% 17.48% 8.54%
IRR-PWC [1] (1.92) 3.84 (2:51) 4.58 S HDFlow (081) 14 07  541% 226% (131) 655%  9.02%  6.05%
MFF [109]* 3.42 4.57 “ IRR-PWC 16 09  670% 321%  (1.45) 7.65%  T.52%  7.68%
VCN [143] (1.66) 2.81 (2.24) 4.40 MFF [109]* 17 0.9 7.87%  4.19% 717%  7.25% 7.15%
SENSE (1.54) 3.60 (2.05) 4.86 VCN (1.16) 6.30%  8.66%  5.83%
ScopeFlow fG_J 3.50 4.10 gE_\ISEl m (1.18) 1.5 y 3.03‘; (2.05) 8.16‘;2 . %
e Nt = o e 20 copeFlow [6 1.3 0.7 5.66%  2.68% 6.82% 7.36% 6.72%
?i:iggiiz ?1 ; ;‘2 jf; MaskFlowNet-S [15] 1.1 0.6 524% 2.20% 681% 821%  6.53%
: : : MaskFlowNet [158] 1.1 0.6  4.82% 2.07% 6.11%  7.70%  5.79%
SelFlow [80]* (1.68) 3.74 (1.77) 4.26 SelFlow [0+ (0.76)  (0.47) 15 0.9 6.19% 3.32% (L18) (082) 842% 7.61% 12.48%
DistillFlow (1.63) 3.49 (1.76) 4.10 Distill Flow (0.79)  (0.45) 1.2 0.6  523% 233% (1.14) (0.74) 5.94% 7.96% 5.53%
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Experiments: Quantitative Results

* Our unsupervised results even outperform several famous fully-
supervised methods

Sintel Clean Sintel Final KITTI 2012 KITTI 2015
Method Method it test tain tost
EPE-train EPE-test EPE-train EPE-test _ _
DSTFI 6.16 10.41 681 1197 EPE-all EPE-noc EPE-all EPE-noc Fl-all Flnoc EPE-all EPE-noc  Fl-all Flfg Fl-bg
UnFl ?‘\C,Sg 2] (6.16) ' (,'9 1) 10.99 BackToBasic [5] 11.3 43 9.9 46 43.15% 34.85%
/nFlow-CSS [92] ) ( . r) o DSTFlow [110] 1043 320 124 40 1679 696 39%
_ OccAwareFlow [136 (4.03) 7.95 (5.95) 9.15 UnFlow-CSS [92] 3.99 1.96 8.10 23.30%
Z Back2FutureFlow-None * (6-05) (7-00) OccAwareFlow 3.55 4.2 8.88 31.2%
5 Back2FutureFlow-Soft [53]* (3.89) 7.23 (5.52) 8.81 _ Back2FutureFlow-None [53]* 6.65 3.24
’;“ EpipolarFlow [159 (3.5—1) 7.00 (-1.99) 8.51 i Back2FutureFlow-Soft [53]* 6.59 3.22 22.94% 24.27% 22.67%
é DDFlow (2.92) 6.18 (3.08) 740 é EPFP‘)IMFESA]' [159] (2.::)1) (0.99) 3.4 1.3 (:3455) (2.46) 16.95%
- SelFlow 80 9.88 6.56 3.87 6.57 = Lai et al. [70](+Stereo) 2.56 1.39 7.13 4.31
Det ‘t'ﬁ;‘:l ;t ined KITTI) (_1 21) ’ (r Oé) ! 5 _UnOS [135](+Stereo) 1.64 1.04 1.8 5.58 18.00%
|t iow ttrained on : > DDFlow [79] 2.35 1.02 3.0 11 88% 451% 572 273 1429% 2040% 13.08%
DistillFlow (2.61) 4.23 (3.70) SelFlow [S0]« 169 091 2.2 10 7.68% 431% 484 240  1419% 21.74% 12.68%
FlowNetS [26] (3.66) 6.96 (4.44) El.()\\ji;’]i‘t]oroo(GStereo) ) i;; 0.8:2 157 0.9 7.63%  4.02% ?5;}1 2.12 11.10% 16.67% 9.99%
NetC 3.78 6.85 5.98 istillFlow (trained on Sintel 2.3: 1.08 8.1 4.20
g]O“\I : g ;H; 6 61 Ei ;; Distill Flow 1.38 0.83 1.6 0.9 3.91% 293  1.96 |10.54%| 16.98%  9.26%
py:vet 2.1 ; - 1
FlowFieldsCNN m 3.78 5.36 FlowNetS @ 7.52 9.1 44.49%
R o SpyNet 3.36 41 20 | 2097% | 12.31% 35.07% | 43.62% 33.36%
FDIC ¥ l\?“Q (1.45) 3.54 (201 ')'1j FlowFieldsCNN 3.0 12 | 13.01% | 4.80% 18.68% | 20.42% 18.33%
owNet2 [5 A5 2. 5.7 ; 2
DCFlow 14.86% | 23.70% 13.10%
LiteFlowNet (1.35) (L.78) 5.38 FlowNet2 (1.28) 18 10 07 482% (2.3) 0% 875% 10.75%
LiteFlowNet2 [49] (1.41) 3.48 (1.83) 4.69 UnFlow-CSS [92] (1.14)  (0.66) 1.7 09 | 842% | 4.28%  (1.86) I 11.11% I 15.93% 10.15%
% PWC-Net (2.02) 4.39 (2.08) 5.04 LiteFlowNet (1.05) 1.6 0.8 7.21% I 3.27%  (1.62) _ T 7.99%  9.66%
£ PWC-Net+ (1.71) 3.45 (2.34) 4.60 LiteFlowNet2 (0.95) 14 0.7 e 2.63%  (1.33) 7.62%  T64%  T7.62%
€ ContimualFlow [97] 334 150 PWC-Net (1.45) 17 0.9 422%  (2.16) 9.60%  9.31%  9.66%
= Pp— - . e PWC-Net+ [122] (1.08) 14 08 O120% 3.36% (1.45) T72%  7.88%  7.69%
@ HD*Flow [146 (1.70) 410 (1'}7) 467 Z  ContinualFlow 10.03% 17.48%  8.54%
[RR-PWC [1] (1.92) 3.84 (2.51) 4"3‘5 = HD*Flow (0.81) 1.4 0.7 2.26%  (1.31) 6.55%  9.02%  6.05%
MFF [109]* 3.42 4.57 “ IRR-PWC 16 0.9 321%  (1.45) 7.65%  T.52%  7.68%
VCN [143] (1.66) 2.81 (2.24) 4.40 MFF [109]* 17 0.9 2 4.19% 717%  7.25% 7.15%
SENSE (1.54) 3.60 (2.05) 1.86 VCN (1.16) 6.30%  8.66% 583%
ScopeFlow [f] 3.50 4.10 gE_\ISEl @ (1.18) L5 ; 3.033 (2.05) 8.163 . .
- Nt = R 23 copeFlow [6 1.3 0.7 5.66% 2.68% 6.82% 7.36%  6.72%
?i‘*‘tgo“iet ; ' 1(2 j?? MaskFlowNet-S 1.1 0.6  524% 2.29% 681% 821%  6.53%
meow e [158) - _ ! MaskFlowNet [158] 1.1 0.6 482% 2.07% 6.11%  7.70%  5.79%
SelFlow [80}* (1.68) 3.74 (L.77) 4.26 SelFlow [R0]+ (0.76) (047 15 00  619% 332% (LI8) (082) 842% 761% 12.48%
DistillFlow (1.63) 3.49 (1.76) 4.10 Distill Flow (0.79)  (0.45) 1.2 0.6  523% 233% (1.14) (0.74) 5.94% 7.96% 5.53%
LIU, Pengpeng Self-Supervised Learning of Dense Correspondence 51




Experiments: Quantitative Results

* With more challenging transformations, DistillFlow achieves great
performance improvement over SelFlow

Sintel Clean Sintel Final KITTI 2012 KITTI 2015
Method Method train test train test
EPE-train EPE-test EPE-train EPE-test
STFlow @ 6.16 10.41 6381 1197 EPE-all EPE-noc EPE-all EPE-noc Fl-all Flnoc EPE-all EPE-noc  Fl-all Flfg Fl-bg
EnFlo‘g_“CSg -16) ' (7'9 1; ) 0.9-‘; BackToBasic [55] 113 4.3 9.9 46 43.15% 34.85%
' : < DSTFlow [110] 1043 329 12.4 40 16.79 6.96 30%
_ OccAwareFlow [130] (4.03) 7.95 (5.95) 9.15 UnFlow-CSS [92] 3.99 1.96 8.10 23.30%
i Back2FutureFlow-None [53]* (6.05) (7.09) OccAwareFlow [136] 3.55 4.2 8.88 31.2%
é Back2FutureFlow-Soft [53]* (3.89) 7.23 (5.52) 8.81 _ Back2FutureFlow-None [53]* 6.65 3.24
S EpipolarFlow [159 (3.54) 7.00 (4.99) 8.51 ’2 Back2FutureFlow-Soft [53]* 6.59 3.22 22.94% 24.27% 22.67%
é DDFlow [70] (2.92) 6.18 (3.08) 740 .E fpipolarFEﬂh}' [159] (2.51) (0.99) 3.4 1.3 (5.55) (2.46 16.95%
- T 5 00 - o - = Lai et al. [70](+Stereo) 2.56 1.39 7.13 4.31
ISDilt:]ﬁ;lozo (*traine s (EZT) 656 (gzgé) 657 | £ UnOS [135] (+Stereo) 1.64 1.04 18 : 5.58 18.00%
- [701 2 38 102 2 () 11 R N‘\‘p 4 K70 R 79 2 73 14 99% 20 40% 12 RY
[DistillFlow (2.61) 4.23 (3.70) 5.81 | SelFlow [S0) 160 091 2.2 10 7.68% 431% 484 240  14.19% 21.74% 12.68% I
FlowNetS [‘26]] (3.66) 6.06 (—l.-l—l) 7.76 Flow2Z5tereo [81](+Stereo) 145 U.ZS;’ L7 0.9 .65%  4.027% %454 2.12 1LI0%  16.677%  9.99%
FlowNetC [26] (3.78) 6.5 (5:28) 851 | Blsn;;;ow cree— ;;; :) :::, 1.6 0.9 7.18% 3.91% ; ”:;, 1‘ ;r(; 10.54% 16.98%  9.26% |
Sp\,Net (3.17) 66_1 (4.32) 8.36 S - . N . . . (8 . () - . e ] () I () . 0
FlowFieldsCNN ] 378 36 Souties (8], i “ 20 e max 0% 4308 9330%
. - - oae oy Net S 5 2. 20.97% 12.31% 35.07% 3.62% 33.36%
DCFlow [140] 3.54 512 FlowFicldsONN 3.0 12 13.01% 4.89% 18.68% 20.42% 18.33%
FlowNet2 [50] (1.45) 4.16 (2.01) 5.74 DCFlow 14.86% 23.70%  13.10%
LiteFlowNet (1.35) 4.54 (1.78) 5.38 FlowNet2 (1.28) 1.8 1.0 R80% 4.82%  (2.3) 1041% 875%  10.75%
LiteFlowNet2 [49] (1.41) 3.48 (1.83) 4.69 UnFlow-CSS [92] (1.14)  (0.66) 1.7 09  842% 4.28%  (1.86) 11.11%  15.93% 10.15%
% PWC-Net (2.02) 4.39 (2.08) 5.04 LiteFlowNet (1.05) 1.6 0.8 721% 3.21%  (1.62) 9.38%  7.99%  9.66%
£ PWC-Net+ [122] (1.71) 3.45 (2.34) 4.60 LiteFlowNet2 (0.95) 14 07  6.16% 263% (1.33) 7.62%  T64%  T7.62%
g ContinualFlow [97] 334 159 - ]};zz’g_iot (1.45) L7 0.9 &10‘;& 422‘; (2.16) 9.60‘;’f 931‘; 9.663
= ; _ - - $  PWC-Net+ [122 (1.08) 14 08  672% 3.36% (145 T72%  T88%  T.69%
@ HD*Flow (145 (1.70) 410 (1.17) 467 % ContinualFlow o 1003% 17.48%  8.54%
IRR-PWC [1] (1.92) 3.84 (2:51) 4.58 S HDFlow (081) 14 07  541% 226% (131) 655%  9.02%  6.05%
MFF [109]* 3.42 4.57 “ IRR-PWC 16 09  670% 321%  (1.45) 7.65%  T.52%  7.68%
VCN [143] (1.66) 2.81 (2.24) 4.40 MFF [109]* 17 0.9 7.87%  4.19% 717%  7.25% 7.15%
SENSE (1.54) 3.60 (2.05) 4.86 VCN (1.16) 630%  8.66% 58%
ScopeFlow [f] 3.50 4.10 21—:.\15‘.}3l @ (1.18) 15 ; 3.03‘; (2.05) 8.103 . .
e Nt = o e 20 copeFlow [6 1.3 0.7 5.66%  2.68% 6.82% 7.36% 6.72%
?i::i?}g:iz: ; ;‘2 jf; MaskFlowNet-S 1.1 0.6 524% 2.20% 681% 821%  6.53%
= : : MaskFlowNet [158] 1.1 0.6  4.82% 2.07% 6.11%  7.70%  5.79%
SelFlow [80}* (1.68) 3.1 (L.77) 4.26 SelFlow [0)= (0.76) (047 15 00  6.19% 332% (LI8) (082) 842% 761% 12.48%
DistillFlow (1.63) 3.49 (1.76) 4.10 Distill Flow (0.79)  (0.45) 1.2 0.6  523% 233% (1.14) (0.74) 5.94% 7.96% 5.53%
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Experiments: Quantitative Results

* In Flow2Stereo, we directly apply our optical flow model to estimate
stereo disparity, it achieves state-of-the-art unsupervised stereo matching

performance
KITTI 2012 KITTI 2015
Method
EPE-all EPE-noc EPE-occ Dl-all DI-noc Dl-all (test)y EPE-all EPE-noc EPE-occ DIl-all DIl-noc D1-all (test)

Joung et al. [18] = = = = - 13.88% = = = 13.92% = .
Godard et al. [8] * 2:12 1.44 30.91 10.41%  8.33% g 1.96 1.53 24.66 10.86%  9.22% p
Zhou et al. [51] - ~ - = = = e - = 9.41% 8.35% -
OASM-Net [23] pus = = 8.79% 6.69% 8.60% e pus pes = = 8.98%
SeqStereo et al. [46] * 237 1.63 33.62 9.64% 7.89% - 1.84 1.46 26.07 8.79% 7.7% Z
Liu et al. [24] * 1.78 1.68 6.25 11.57% 10.61% - 1.52 1.48 4.23 9.57% 9.10% —
Guo et al. [9] * 1.16 1.09 4.14 6.45% 5.82% - 1.71 1.67 4.06 7.06% 6.75% -
UnOS - = - - - 5.93% - = - 5.94% - 6.67%
Ours+L,, .18 1.13 27.03 7.88% 5.87% - 1.79 1.40 25.24 9.83% 7.74% -
Ours+L,+L +L, 1.62 0.94 29.26 6.69% 4.69% - 1.67 1.31 19.55 8.62% 1.15% ~

urs+Ly,+Lg+L¢+Self-Supervision  1.01 0.93 4.52 5.14%  4.59% 5.11% 1.34 1.31 2.56 6.13% 5.93% 6.61%
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Experiments: Quantitative Results

 We achieve the state-of-the-art occlusion estimation results on Sintel and
KITTI datasets

KITTI KITTI Sintel  Sintel

Method _ _
i 2012 2015  Clean  Final
MODOF [141] 0.48
OccAwareFlow [136]  0.95 0.88 (0.54)  (0.48)
Back2Future [53|* 0.91 (0.49) (0.44)
DDFlow [79] 0.04 086 (0.59) (0.52)
SelFlow [80]* 0.95 0.88  (0.59) (0.52)
DistillFlow 0.96  0.80 (0.59) (0.53)
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Experiments: Quantitative Results

* Our fine-tuned models achieve state-of-the-art results without using any
external labeled data

Sintel Clean Sintel Final KITTI 2012 KITTI 2015
Method Method train test train test
EPE-train EPE-test EPE-train EPE-test
DSTFlow @ 6.16 10.41 6381 1197 EPE-all EPE-noc EPE-all EPE-noc Fl-all Flnoc EPE-all EPE-noc  Fl-all Flfg Fl-bg
L.nFlo‘g_“CSg -16) ' (7'9 1; ) 0.9-‘; BackToBasic [55] 113 4.3 9.9 46 43.15% 34.85%
' : - DSTFlow [110] 10.43 3.29 12.4 40 16.79 6.96 39%

_ OccAwareFlow [130] (4.03) 7.95 (5.95) 9.15 UnFlow-CSS [92] 3.99 1.96 8.10 23.30%
i Back2FutureFlow-None [53]* (6.05) (7.09) OccAwareFlow [136] 3.55 4.2 8.88 31.2%
é Back2FutureFlow-Soft [53]* (3.89) 7.23 (5.52) 8.81 _ Back2FutureFlow-None [53]* 6.65 3.2
S EpipolarFlow [159 (3.54) 7.00 (4.99) 8.51 ’2 Back2FutureFlow-Soft [53]* 6.59 3.22 22.94% 24.27% 22.67%
é DDFlow (2.02) 6.18 (3.08) 740 .é EpipolarFlow [159] (2.51) (0.99) 3.4 1.3 (5.55) (2.46 16.95%
™ SelFlow [R01% (2.88) 6.56 (3.87) 6.57 g Lai et al. [70](+Stereo) 2.56 1.39 7.13 431

DistillFlow (trained on KITTD) 191 =06 £ _UnOS [135] (+Stereo) 1.64 1.04 1.8 : 5.58 18.00%

s : : DDFlow [79) 2.35 1.02 3.0 11 8.86% 457%  5.12 273 14.29% 20.40% 13.08%
DistillFlow (2.61) 4.23 (3.70) 5.81 SelFlow [S0) 169 091 2.2 10 7.68% 431% 484 240 14.19% 21.74% 12.68%
FlowNetS [26] (3.66) 6.96 (4.44) 7.76 Flow2Stereo [81](+Stereo) 1.45 0.82 B 0.9 7.63%  4.02% 3.54 212 11.10% 16.67% 9.99%
FlowNetC [26] (3.78) 085 (5.28) 8.1 B?St?::gw (raned on SiveD 12;; (1)'02 1.6 0.9 7.18% 3.91% }i;g 145)((,; 10.54% 16.98% 9.26%
SpvNet [106 317 6.64 139 3.36 istillFlow s 8 H f 7.18% 91% 2. A .54% .98% .26%
FII)C-)\\'FieNI\' m ( ) 3.78 ( ) 5.36 FlowNetS [26] 752 9.1 44.49%

. . . SpyNet [106 3.36 41 20 2097% 12.31% 35.07% 43.62% 33.36%
DCFlow [140] 3.54 512 Flo\\fFioM%ﬂNN 3.0 12 13.01% 4.89% 18.68% 20.42% 18.33%
FlowNet2 [50] (1.45) 4.16 (2.01) 5.74 DCFlow 14.86% 23.70%  13.10%
LiteFlowNet (1.35) 4.54 (1.78) 5.38 FlowNet2 (1.28) 1.8 1.0 R80% 4.82%  (2.3) 1041% 875%  10.75%
LiteFlowNet2 [49] (1.41) 3.48 (1.83) 4.69 UnFlow-CSS [92] (1.14)  (0.66) 1.7 0.9 R42% 4.28%  (1.86) 11.11%  15.93%  10.15%

% PWC-Net (2.02) 4.39 (2.08) 5.04 LiteFlowNet (1.05) 1.6 0.8 721% 3.21%  (1.62) 9.38%  7.99%  9.66%
2 PWC-Net+ [122] (1.71) 3.45 (2.34) 4.60 LiteFlowNet2 (0.95) 14 0.7 6.16% 2.63%  (1.33) 7.62%  7.64%  7.62%
€ ContinualFlow [97] 3.34 159 PWC-Net (1.45) 1.7 0.9 8.10% 4.22%  (2.16) 9.60%  9.31%  9.66%
= ; _ - - PWC-Net+ [122 (1.08) 1.4 0.8 6.72% 3.36%  (1.45) 772%  788%  7.69%
@ HDFlow [146 (1.70) 470 (1.17) 467 £ ContinualFlow ( 1003% 17.48%  8.54%
IRR-PWC [1] (1.92) 3.84 (2:51) 4.58 S HDFlow (081) 14 07  541% 226% (131) 655%  9.02%  6.05%
MFF [109]* 3.42 4.57 “ IRR-PWC 16 09  670% 321%  (1.45) 7.65%  T.52%  7.68%
VCN [143] (1.66) 2.81 (2.24) 4.40 MFF [109]* 17 0.9 7.87%  4.19% 717%  7.25% 7.15%
SENSE (1.54) 3.60 (2.05) 4.86 VCN (1.16) 6.30%  8.66%  5.83%
ScopeFlow [0] 3.50 4.10 ZE_\ISEI @ (1.18) 15 ; 3.03‘; (2.05) 8.163 . .
e Nt = o e 20 copeFlow [6 1.3 0.7 5.66%  2.68% 6.82% 7.36% 6.72%
?i::i?}g:iz: ; ;‘2 jf; MaskFlowNet-S 1.1 0.6 524% 2.20% 681% 821%  6.53%
= : : MaskFlowNet [158] 1.1 0.6  4.82% 2.07% 6.11%  7.70%  5.79%
MR LLGR) .14 (i 4.20 R0l 0760 (04D 15 00 G107 3307 (11”1 (0R) Q40U 7010 (047
DistillFlow .6: . 4.10 IDistillFIow (0.79)  (0.45) 1.2 0.6 5.23% 2.33% (1.14) (0.74) 5.94% 7.96% 5.53% |
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Experiments: Quantitative Results

e Our fine-tuned SelFlow model ranks first on Sintel dataset from
November 2018 to November 2019

Final  Clean

EPE all EPE matched EPE unmatched d0-10 d10-60 d60-140 s0-10 $10-40 s40+
GroundTruth '] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SelFlow (2 4.262 2.040 22.369 4.083 1.715 1.287 0.582 2.343 27.154
VCN [3] 4.520 2.195 23.478 4.423 1.802 1.357 0.934 2.816 26.434
ContinualFlow_ROB [ 4528 2.723 19.248 5.050 2.573 1.713 0.872 3.114 26.063
MFF 5] 4.566 2.216 23732 4.664 2.017 1.222 0.893 2.902 26.810
IRR-PWC (6] 4.579 2.154 24.355 4.165 1.843 1.292 0.709 2.423 28.998
PWC-Net+ [7] 4.596 2.254 23.696 4.781 2.045 1.234 0.945 2.978 26.620
CompactFlow [ 4.626 2.099 25.253 4192 1.825 1.233 0.845 2677 28120
HD3-Flow [ 4.666 2174 24.994 3.786 1.719 1.647 0.657 2.182 30.579
LiteFlowNet2-MD+ [1*] 4.728 2.249 24.939 4.010 1.925 1.504 0.783 2.634 29.369
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Experiments: Quantitative Results

* Our fine-tuned DistillFlow model achieves Fl-all = 5.94%, rank 1st among all
monocular methods on KITTI 2015 benchmark

Additional information used by the methods
= [ Stereo: Method uses left and right (stereo) images
= [& Multiview: Method uses more than 2 temporally adjacent images
= ¥ Motion stereo: Method uses epipolar geometry for computing optical flow
= [Bl Additional training data: Use of additional data sources for training (see details)

\ >
Evaluation ground truth | All pixels v Evaluation area | All pixels v
Method Setting :Code: Fl-bg Fl-fg @ El-all | Density Runtime Environment Compare
1 StereoExp-v2 (&5 2.86% : 9.05% : 3.89 % : 100.00 % 2s GPU @ 2.5 Ghz (Python) O
2 UberATG-DRISF [&j | 3.59% 10.40% 4.73% 100.00% 0.75s CPU+GPU @ 2.5 Ghz (Python) 0

W. Ma, S. Wang, R. Hu, Y. Xiong and R. Urtasun: Deep Rigid Instance Scene Flow. CVPR 2019.

i3 ACOSF |E| . 4.56% 12.00%: 5.79% : 100.00 % : 5 min 1 core @ 3.0 Ghz (Matlab + C/C++) i (]
C. Li, H. Ma and Q. Liao: Two-Stage Adaptive Object Scene Flow Using Hybrid CNN-CRF Model. International Conference on Pattern Recognition (ICPR) 2020.

i 4 DistillFlow=ft : :5.53% { 7.96% | 5.94%  100.00 % ! 0.03s 1 core @ 2.5 Ghz (Python) O
5 VCN+MSDRNet ; [ 5.57% 7.78%  5.94% 100.00% 055 1 core @ 2.5 Ghz (C/C++) 5 0O
6 PCE-F | 6.05% 5.99% 6.04% 100.00% 0.08s GPU @ 2.5 Ghz (Python) 5 O
7 PPAC-HD3 i code 5.78%  7.48% 6.06% 100.00% 0.19s NVIDIA GTX 1080 Ti O
A. Wannenwetsch and S. Roth: Probabilistic Pixel-Adaptive Refinement Networks. CVPR 2020.

8 MaskFlownet ' code 5.79% 7.70%  6.11% 100.00% 0.06s NVIDIA TITAN Xp O

S. Zhao, Y. Sheng, Y. Dong, E. Chang and Y. Xu: MaskFlownet: Asymmetric Feature Matching with Learnable Occlusion Mask. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) 2020.

9 ISE &8 5.40% 10.29% 6.22% 100.00% . 10 min 1 core @ 3 Ghz (C/C++) 0O

A. Behl, 0. Jafari, S. Mustikovela, H. Alhaija, C. Rother and A. Geiger: Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in
Autonomous Driving Scenarios?. International Conference on Computer Vision (ICCV) 2017.
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Experiments: Ablation Study

* Self-supervision greatly improves the optical flow estimation performance,
especially for occluded pixels: more than 50% on KITTI

* Self-supervision is agnostic to network structures

Network  Occlusion Edge-Aware Data Model KITTI 2012 KITTI 2015
Backbone  Handling Smoothness  Distillation  Distillation  EPE-all EPE-noc  EPE-occ  Fl-all  Fl-noc  EPE-all  EPE-noc  EPE-occ  Fl-all Fl-noc
X X X X 7.73 141 4963  18.08% 690%  14.02 457 73.74  2534% 14.37%
v X X X 4.67 1.05 6 1493% 532% 921 3.26 46.85  21.20% 11.07%
PWC-Net v v X X 3.36 0.97 13.31%  4.30% 7.83 3.28 19.91%  10.12%
v v v X 1.68 0.87 710 573%  3.56% 461 2.53 777 11.71%  8.66%
v v v v 1.64 0.85 | 6.84 | 5.67%  3.53% 4.32 2.40 16.43 | 11.61%  8.64%
X X X X 7.33 1.30 4726  1627% 597% 1249 3.59 68.82  23.07%  12.40%
v X X X 3.22 0.98 1807 1357% 4.40%  6.57 2.88 29.87  19.90% 10.01%
PWC-Net! v v X X 2.92 0.93 1244% 394% 645 2.59 3090 | 19.08%  9.48%
v v v X 1.46 0.85 s 517%  3.38%  3.20 2.08 02 10.05%  8.03%
v v v v 138 083  [a98 ] 499% 325% 293 1.96 9.79%  7.81%

Network  Knowledge KITTI 2012 KITTI 2015 Sintel Clean Sintel Final
Backbone Distillation  EPE-all EPE-noc  EPE-occ  EPE-all  EPE-noc  EPE-occ  EPE-all  EPE-noc  EPE-occ  EPE-all EPE-noc  EPE-occ
FlowNetS X 4.26 1.53 22.34 8.85 3.82 40.63 (5.05) (3.09) (30.01) (5.38) (3.38) (31.00)
¢ ¢ v 2.70 1.38 11.44 6.33 3.44 24.59 (4.20) (2.36) (27.66) (4.83) (2.90) (29.49)
FlowNetC X 3.63 1.26 19.31 8.11 3.45 37.61 (4.20) (2.36) (27.66) (4.83) (2.90) (29.49)
¢ € v 2.18 1.16 8.97 5.47 2.95 21.38 (3.45) (1.90) (23.27) (4.17) (2.52) (25.36)
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Experiments: Qualitative Results

* Sample unsupervised results on KITTI and Sintel dataset. From top to
bottom, samples are from KITTI 2015 and Sintel Final

T
= . 4 l
o o

a) etence mage (b) GT Flow (c) DistillFlow Flow
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Experiments: Effect of Self SuperV|S|on

Reference Image

Flow Estimation
without Self-supervision

Flow Estimation

with Self-supervision —
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Experiments: Effect of Self-Supervision

Reference Image
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Flow Estimation
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Flow Estimation
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Flow Estimation
without Self-supervision

Flow Estimation
with Self-supervision
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Flow Estimation
using PWC-Net

Flow Estimation
using Our Fine-
tuned Model \
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Generalization on Real-World Videos
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Summary

* Propose a series of self-supervised learning methods to effectively learn
optical flow from unlabeled data, which improve performance >30% than
previous methods on average

* Self-supervised learning enables us to utilize more data, and our models
have strong generalization capability

* Self-supervised training provides excellent initializations for supervised
fine-tuning, which removes the need of synthetic data. This is a new
perceptive in supervised flow learning
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Thesis Contributions
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Motivation 1

* When predicting pose, identity and expression parameters
simultaneously, regressing pose dominates the optimizing procedure,
making it hard to obtain accurate 3D face parameters

»Firstly, we train a neural network to

. . . enti Baseline
simultaneously regress the identity, L G+ Gy + (R Y
expression and pose parameters e
( ) 0T + tery + (R Y
. Express%on
»Then, we independently replace the Ededel > Regresion | o,

predicted identity, expression, and t + 0T, L{FR )
pose parameters with their i
corresponding | ground truth —QiEE=— Ry e
parameters, their errors change to

Self-Supervised Learning of Dense Correspondence 67




Motivation 1

* When predicting pose, identity and expression parameters
simultaneously, regressing pose dominates the optimizing procedure,
making it hard to obtain accurate 3D face parameters

I Baseline

reduces the error much ;] == wihGTidentity

With GT Expression

more than other two = Regressing pose With GT Pose
parameters dominates the optimizing _°| % PoscCuidamceNetwork ©Oury)

procedure
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effectively reduces the error compared to
directly regressing the pose parameters
and provides informative priors for -
reconstruct the 3D face
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Motivation 2

* 3D face reconstruction from a single 2D image is an ill-posed problem due
to depth ambiguity, we propose to learn face reconstruction from
multiple frames of the same person

* A novel self-supervised learning scheme built on a visible texture
swapping module is introduced:
* Carefully handle the occlusion and illumination change across frames
* Self-consistency losses:
* Photometric space (employ census transform)
* Optical flow space
* Semantic space
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Method

* Step 1: Train shared encoder and pose guidance network, which are fixed
during the following steps

Images from

3D landmark loss
labeled datasets

Pose
Shared :
Encod » @Quidance
I . neoaer Network
mages from : ;
in-the-wild datasets 2D landmark loss

We can leverage unlimited in-the-wild images
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Method

* Step 2: Pre-train using one image with 3D landmark loss L; and
regularization loss L,

2D/3D Landmark

Pose ‘o
» Guidance
Network 3D landmark loss L;

Shared || Expression T

—» Regression

Encoder Network
,\3 Transf ooooooo <%
Matri T1 2
! \
u

LIU, Pengpeng Self-Supervised Learning of Dense Correspondence 71




Method

* Step 3: Train using multiple images with full losses

Shared
Encoder

Shared
Encoder
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Experiments: Quantitative Results

* We achieve state-of-the-art 2D landmark estimation performance on
ALFW2000-3D dataset

NMESE
Method 01030 301060 60t090 Mean
SDM[37] 3.67 4.94 9.67 6.12
3DDFA [40] 3.78 4.54 7.93 5.42
3DDFA + SDM [40] 3.43 4.24 7.17 4.94
Yu et al. [39] 3.62 6.06 9.56 -
3DSTNI[”] 3.15 4.33 5.98 4.49
DeFA[23] - - - 4.50
Face2Face [34] 3.22 8.79 19.7 10.5
3DFAN [5] 2.77 3.48 4.61 3.62
PRN [17] 2.75 3.51 4.61 3.62
ExpNet [Y] 4.01 5.46 6.23 5.23
MMFace-PMN [ 3] 5.05 6.23 7.05 6.11
MMFace-ICP-128 [3%] 2.61 3.65 4.43 3.56
[Ours (Pose Guidance Network)  2.49 3.30 4.24 3.34
Ours (3DMM) 2.53 3.32 4.21 3.36
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Experiments: Quantitative Results

* We achieve state-of-the-art 3D face reconstruction performance on
ALFW2000-3D dataset

NME on AFLW2000-3D
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Experiments: Quantitative Results

* We achieve state-of-the-art 3D shape estimation performance on
Florence dataset

Table 2. Comparison of mean point-to-plane error on the Flo-
rence dataset. Results of other methods are from MVF [36].

Indoor-Cooperative PTZ-Indoor
Mean Std Mean Std

Tran et al. [35] 1.443 0.292 1.471 0.290
Tran et al. + pool 1.397 0.290 1.381 0.322
Tran et al. + [27] 1.382 0.272 1.430 0.306

Method

MoFA [33] 1.405 0.306 1.306 0.261
MoFA + pool 1.370 0.321 1.286 0.266
MoFA + [27] 1.363 0.326 1.293 0.276

Genovaetal. [13] 1405 0.339 1.271 0.293
Genova et al. + pool 1.372 0.353 1.260 0.310
Genovaetal. +[27] 1.360 0.346 1.246 0.302
MVEF [36] - pretrain  1.266 0.297 1.252 0.285

MVF [36] 1.220 0.247 1.228 0.236
Durs 1.122 0.219 1.161 0.224
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Experiments: Quantitative Results

* On FaceWarehouse dataset:
* Single-frame: similar performance with MoFA, Inversefacenet and Tewari et al. [34]
* Multi-frame: outperform FML by 7.5%

* Pose guidance network and multi-frame self-supervised learning scheme improve
the performance

Table 2: Per-vertex geometric error (measured in mm) on FaceWarehouse dataset.
PGN denotes pose guidance network. Our approach obtains the lowest error, outper-
forming the best prior art [33] by 7.5%.

Ours Ours Ours Ours
Method MoFA Inversefacenet Tewari ef al. FML Single-Frame Single-Frame Mult-Frame Multi-Frame
[55] [20] [54] [25] without PGN  with PGN without PGN with PGN
Error 2.19 2.11 2.03 2.01 2.18 2.09 [.98 1.86
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Experiments: Quantitative Results

* Ablation study on Florence dataset demonstrates the effectiveness of
photometric consistency loss, census transform, flow consistency loss
and semantic consistency loss

(a) Ablation study on Florence.

Indoor-Cooperative PTZ-Indoor

Ly Lp Ls Ly Mean Std Mean Std
X X X X 1.364 0.352 [.379 0.326
v X X X 1.263 0.312 [.323 0.251
X v X X 1.219 0.261 [.255 0.256
X v X vV 1.193 0.230 [.221 0.247
X v vV X 1.161 0.268 [.269 0.276
X v v v 1.122 0.219 1.161 0.224
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Experiments: Qualltatlve Results

Input Image

3D Face
Geometry

3D Face Texture
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Our model estimates accurate 3D
face shape, which fits well with
texture.







Our model still works well for
complicated expressions.




Experiments: Qualitative Results

* Comparison with other methods on ALFW2000-3D dataset
Input 3DDFA PRN
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Experiments: Qualitative Results

Our multi-image face reconstruction method is based
on texture sampling, therefore texture quality shall
have a big impact. To verify this, we fine-tune our
model on a high-quality video from Youtube.
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Our model can generate very accurate shape
and expression, such as the challenging
expression of complete eye-closing.




Summary

* Propose a pose guidance network to predict the 3D landmarks for
estimating the pose parameters

* Utilize both annotated images with 3D landmarks and unlabeled images
with pseudo 2D landmarks

* Explore multi-frame consistency based on a visible texture swapping
module
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Future Work

* More accurate optical flow estimation

LIU, Pengpeng

Occlusion detection: soft mask vs. hard mask

Robust transform: learned transforms vs. hand-crafted transforms
Network architecture: quarter resolution vs. full resolution
Multi-task learning: joint learn optical flow and depth

External guidance: utilize dense annotations in synthetic data

Self-Supervised Learning of Dense Correspondence
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Future Work

* Optical flow-based applications

* Optical flow as fixed features: straightforward

* Optical flow with task-specific patterns
* TV-Net [Fan L.et CVPR 2018 ] for video action recognition.

TV-L1 is extracted
optical flow features

With training, TVNet generates more abstractive motion features than TV-L1.
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TVNet TVNet

s Without Training  With Training

TVNet TVNet

TN Without Training ~ With Training

Self-Supervised Learning of Dense Correspondence

TV-Net with training is
the learned flow-like
features.
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Thanks!
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Back up slides
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Correspondence is Crucial

* Stereo matching for rectified image pairs

PO )

epipolar line * Epipolar line is horizontal.

* D =pi(t) —pr(t)

: d
|
— * Suppose f is focal length, d is
pr( f depth, B is the distance between
\& two cameras, thend = fB/D.
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Motivation

* Unsupervised Learning Methods
* How to effectively learn optical flow of occluded pixels?
* How to reduce the performance gap compared with supervised learning methods?

* Supervised Learning Methods
* Can we remove the reliance of synthetic data?
* Can we simplify the training procedure?
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L oss Functions

* Occlusion estimation: based on the forward-backward consistency prior

|Wf + Wf|2 < 0‘1(’ny2 + ’Wf|2) + (v9.
P+ Wf(p) e ().

e Photometric loss
Ly=> o1 —I¥)® (1=05)/> (1-0y)

+Y UL —I)© (1= 0p)/ > (1 —0y)
* Loss for occluded pixels

M; = clip(Oy — 0%,0.1)
Lo=>) t(Wh—Ws)OMs/> M
+ ) (W — W) @ My/ Y M,

* Y(x) is a robust loss function.

LIU, Pengpeng

Self-Supervised Learning of Dense Correspondence




Optical Flow # Motion Field

(a)

Motion field exists but no optical flow

LIU, Pengpeng

(b)

No motion field but shading changes
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Background

* 3DMM: represents 3D faces with linear combination of PCA vectors.
* 3 types of parameters: identity, expression and pose parameters.
* Face geometry:

S(vid. aC;l’p) = S + Bijaig + Bc;z'pac;rp'

* Projection:

| 10 0] |10 0] + s
Vi, Gep) =1y o (FRSTE =10 j'{f'R 1
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Self-Supervised Learning

* Definition: a form of unsupervised learning where the supervision signal is
purely generated from the data itself (no manual labeling)

Automatically generated

Supervised Learning Self-Supervised Learning

* In computer vision, it usually contains two stages:

* Design a pre-text task to learn representative features or generate pseudo labels

* Employ the learned features or labels to train deep learning models in a
supervised manner
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Transformation Matrix
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11}1'1‘11 |T - [X] — Xuvl|e
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