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Recommendation 
Approaches

• Collaborative filtering 
• Use user-item rating matrix to predict rating/ranking 
• Simple in data collection 

• Content-based filtering 
• Users’ preference expressed in intrinsic features 
• Difficult in feature representation
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Memory-based Collaborative 
Filtering

• Leverage similar users’/items’ ratings

• Pros 

• Simple to implement 

• Clear interpretation

• Cons 

• High computational cost 

• Prone to sparseness problem
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Model-based Collaborative 
Filtering

• Train a pre-defined model 

• Efficient in prediction time  

• Usually outperform memory-based methods 

• Successful methods: 

• Probabilistic Matrix Factorization (PMF) [Salakhutdinov et 
al., 2007] 

• Bayesian Personalized Ranking (BPR) [Rendle et al, 2009]

7



PMF
• Use two low rank matrices U and V to 

approximate the rating matrix R:  

• Conditional distribution over observed 
ratings: 

• Zero-mean spherical Gaussian priors on 
user and item feature vectors: 
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PMF

• Maximize the posterior: 

• The objective function is:
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BPR

• A ranking-oriented method 

• Construct the pairwise training set 

• a user u prefers i (observed) over j (unobserved) 

• Maximize the posterior:

10

DS = {(u, i, j)|u 2 U ^ i 2 I+u ^ j 2 I \ I+u }

Q
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BPR

• Define the prob. a user prefers i over j as: 

• Finally we maximize:
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Problems in Traditional 
Recommendation Methods

• Data Sparsity 

• Extreme sparse in some applications such as POI 
recommendation  

• How to alleviate data sparsity problem

• Context information 

• Abundant context information available: age, category, 
special date, etc.  

• How to employ context information
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Location-based Social 
Networks (LBSNs)
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Growth of Location-based 
Services (LBS)

• Almost one fifth of the world’s 
six billion mobile users are 
already using LBS 

• 26% users use the technology 
to find restaurants and 
entertainment venues 

• 74% of smartphone owners 
use LBS.
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Social Networks

Point of 
interest 
(POI)

Check-in Becomes a Life-
style
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Our Focus: POI 
Recommendation

• Help users explore their surroundings

• Help 3rd-party developers provide 
personalized services 

• Advertisements 

• Coupons 

• Traffic statistics
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Challenges
• Large dataset 
• 4,128,714 check-ins from 53,944 users on 367,149 

locations for Gowalla 
• Sparsity : density of our dataset is only 0.0208% 
• Matrix Factorization can be inaccurate
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Top-k Ranking
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users care more about top results



Our Proposal

• Multi-center Gaussian Model (MGM) to capture the 
geographical influence 

• Fused matrix factorization framework with MGM 

• Propose two methods based on BPR to address 
geographical influence and top-k ranking
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Multi-center Discovering Algorithm
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principle (top 20 locations 
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Fused Matrix Factorization with MGM 
(FMFMGM)

• Traditional Matrix Factorization (MF) only model users’ 
preference on locations

• MGM only models geographical influence
• We can fuse both of them

prob. user u visit 
location l

encode user preference 
based on  MF 

calculated by MGM
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BPR Location 
Recommendation

• BPRLR1: same as the previous fusion method
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• BPRLR2: reconstruct the training pairwise location 
set 

• Maximize the difference between visited location 
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Dataset
• Two publicly available data sets: Foursquare and 

Gowalla
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Two Main Properties in LBSNs Dataset

• Personalized Markov chain 

• Localized region constraint
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Localized Region Constraint
• Most inter check-ins occurs at 

nearby locations 
• 75% within 10km, less than 5% 

beyond 100 km. 
• We can only consider the new 

POIs near a user’s previous check-
ins when providing successive 
POI recommendation.
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Personalized Markov Chain
• Inter check-in time  
• Around 45% successive check-ins 

within 2h, 70% within 12h. 
• Strong connections between inter 

check-ins 
• E.g. cinemas or bars after restaurant, 

hotels after airports. 
• Motivated to use transition probability 
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Personalized Markov Chain
• Transition probability: location-

wise level or topic level? 

• average user check-in around 
50 POIs (Gowalla) 

• 60,000 POIs (Gowalla) 

• location-wise level may be too 
sparse 

• latent topic level can relieve this 
problem
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Example
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Our Proposal
• Factoring Personalize Markov Chain with Localized 

Region model (FPMC-LR)
• Factoring Personalize Markov Chain with Latent Topic 

Transition (FPMC-LTT)
• Combine the personalize Markov chain and localized 

region constraint
• Although borrows the idea of FPMC [Rendle et al. ’10], we 

emphasize on users’ movement constraint and focus on a 
different problem
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Problem Definition
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Problem Definition
• Notation: 
•    : users,     : locations,     : the check-in history of user u 
• T: slice window to construct a set check-ins,     : time 

window set 
•     : check-in time of user u at time   ,             

• Problem: 
• Given a sequence of check-ins,               , the (lat, lng) 

pair of locations , recommend POIs to users at t+1
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FPMC-LR
• FPMC-LR is to recommend a successive personalized 

POI by the prob. a user u will visit at time t: 
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FPMC-LR
• FPMC-LR is to recommend a successive personalized 

POI by the prob. a user u will visit at time t: 

• Based on first-order Markov chain property

38

Prob. for user u from location i to l 
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FPMC-LR
• FPMC-LR only consider the neighbourhood locations 

of previous check-ins 

• Thus our FPMC-LR yields a transition tensor 

• Note:            is reduced largely compared to     ,  around 
100 when d = 40 km

|Nd(L)|
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FPMC-LR
• Use the same idea in [Rendle et al, ’10], we 

approximate the tensor as: 

• We have: 

40

x̂u,t,l = vU,L
u · vL,U

l + 1
|Lt�1

u |

P
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FPMC-LR
• Use the same idea in [Rendle et al, ’10], we 

approximate the tensor as: 

• We have: 

40

x̂u,t,l = vU,L
u · vL,U

l + 1
|Lt�1

u |

P
i2Lt�1

u
vL,I
l · vI,L

i

user preference
location-wise transition
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• Model top-k recommendations as a ranking over 
locations: 

• The MAP estimator is 

• Learning algorithm:  Stochastic gradient descent

FPMC-LR

41



FPMC-LTT
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FPMC-LTT

42

• Maximize similarity between latent vector of 
location l and the expected average location latent 
vector after transition
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FPMC-LTT
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• Maximize similarity between latent vector of 
location l and the expected average location latent 
vector after transition

• The probability is:
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FPMC-LTT

42

• Maximize similarity between latent vector of 
location l and the expected average location latent 
vector after transition

• The probability is:

42

x̂u,t,l = ⌘Uu ·Ll + (1� ⌘)Sim(Ll,
1

|Lt�1
u |A

T P
i2Lt�1

u
Li)

global latent topic transition matrix

user preference
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Dataset
• Two publicly available data sets: Foursquare and 

Gowalla
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mood, special date, location, 
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A Toy Example

User and item are regarded as context features 
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A Toy Example

User and item are regarded as context features 

User u1 watched 
movie i1 in Happy 

Mood gave rating 4
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Context-aware Factorization 
Machines

• A strong baseline proposed in [Rendle et al., 
2011.]

• Model all interactions between pairs of variables, 
the rating function is: 

• where 

48

ŷ(x) := w0 +
dX

i=1

wixi +
dX

i=1

dX

j=i+1

ŵi,jxixj

ŵi,j := hvi,vji =
kX

f=1

vi,f · vj,f .

low rank latent feature vector, shared among interacting features  
e.g. latent vector U is shared in <U,I> and <U,M>

all pairwise feature interactions
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Drawbacks of FM

• All interacting features are useful? Or part of them?

• <U,M>,<U,I>,<I,M> or just <I,M>, <U,I> is enough

• Not all feature interactions are useful, shared latent 
features may introduce noise

• Select useful interacting features from tens of features 
is important

49



Our Proposal

50



Our Proposal

• Propose a greedy interacting feature selection 
algorithm to select useful feature step by step 
using gradient boosting

50



Our Proposal

• Propose a greedy interacting feature selection 
algorithm to select useful feature step by step 
using gradient boosting

• Propose Gradient Boosting Factorization Machines 
to incorporate interacting feature selection 
algorithm and factorization machines into a unified 
framework
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Gradient Boosting 
Factorization Machines

• We update the prediction function step by step 
after selecting interacting features Cp and Cq at 
step s:

51

ŷs(x) := ŷs�1(x) +
X

i2Cp

X

j2Cq

I[i, j 2 x]hVi
p,V

j
qi

has feature value i in feature Cp  
and feature value j in feature Cq

latent feature matrices for 
 feature Cp and Cq to be estimated, usually by  

stochastic gradient descent (SGD)
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Greedy Feature Selection 
Algorithm

• Search a function f that minimizes the objective function:

• where 

• We heuristically select feature layer by layer, feasible to 
compute, suppose feature Ci(t) is selected at layer t: 

• The q function is: 

53

L =
PN

i=1 l(ŷs(xi), yi) + ⌦(f)

qCi(t)
(x) =

P
j2Ci(t)

I[j 2 x] · wtj

ŷs(x) = ŷs�1(x) + fs(x)

the corresponding non-zero 
feature weight suppose 
choosing feature Ci(t) at 

layer t
ft(x) = ft�1(x) · qCi(t)

(x)
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Greedy Feature Selection 
Algorithm

• After n layers, we will select n features, in our 
paper, we only consider n = 2, which results in a 2-
way interacting feature

• At layer t, approximated by Taylor expansion the 
problem is equal to minimize:

54

L(f) =
NX

i=1

hi(gi/hi � ft(xi))
2 + ⌦(ft)

negative first derivative at sample i second derivative
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Greedy Feature Selection 
Algorithm

• At layer t, our problem is to select the feature: 

• The corresponding weight can be calculated: 

55

wij = arg minw

PN
i=1 hi(gi/hi � ft�1(xi) · I(j 2 xi) · w)2 + �w2

argmini(t)2{1,...,m}L(f)



Greedy Feature Selection 
Algorithm
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Discussion
• Complexity:                         

• S: boosting steps, k: SGD iterations, N: training numbers

• linear to training size

• GBMF-Opt: 

• after GBMF, we have S interacting features

• optimize S features globally with shared latent vectors

• fewer parameters, better generalization
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Set up and Metrics

• Synthetic data: randomly remove 20% data as test 
data, the remaining as training

• Tencent data: split by the time, last 4 weeks as test

• Metrics: 

• MAE and RMSE for synthetic data 

• MAP@k for Tecent data
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Conclusion 
• POI recommendation

• a framework considers user preference, geographical 
influence and personalized ranking together

• Successive POI recommendation

• two matrix factorization methods based on personalized 
Markov chain and region localization

• Gradient Boosting Factorization Machines

• incorporate feature selection algorithm with FM
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Set up

• Split the dataset into two non-overlapping sets 
• Randomly select x% for each user as training data and 

the rest (1-x)% as the test data 
• Carried out 5 times independently, we report the 

average 
• POI recommendation 
• Return top-N POIs for each user 
• Find out # of locations in test dataset are recovered
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