Learning to Recommend with Location and Context

Chen Cheng Supervisors: Michael R. Lyu and Irwin King

The Chinese University of Hong Kong

August 31, 2015

Outline

- Introduction and Background
- POI Recommendation
- Successive POI Recommendation
- Gradient Boosting Factorization Machines
- Conclusion

Outline

- Introduction and Background
- POI Recommendation
- Successive POI Recommendation
- Gradient Boosting Factorization Machines
- Conclusion

I own it Not interested XXXXXX Rate this item Recommended because you liked Live At The Troubadour (CD + DVD) (Fix this)

Blown Away

~ Carrie Underwood (May 1, 2012) Average Customer Review: In Stock Listen to samples

Price: \$9.99 38 used & new from \$8.78

I own it Not interested 🗵 🏠 🏠 🛱 Rate this item Recommended because you liked Speak Now (Fix this)

Congratulations! Movies we think You will 🖤

Add movies to your Queue, or Rate ones you've seen for even better suggestions.

Not Interested

Whore

Recommendation Approaches

- Collaborative filtering
 - Use user-item rating matrix to predict rating/ranking
 - Simple in data collection
- Content-based filtering
 - Users' preference expressed in intrinsic features
 - Difficult in feature representation

• Leverage similar users'/items' ratings

		v_1	v_2	v_3	v_4	V_5	v_6	_
<	\mathcal{U}_1		5	2		3		>
	<i>u</i> ₂	4			3		4	
	<i>u</i> ₃			2			2	
	u_4	5			3			
<	<i>u</i> ₅		5	5			3	>

- Leverage similar users'/items' ratings
- Pros
 - Simple to implement
 - Clear interpretation

		v_1	v_2	<i>v</i> ₃	v_4	<i>V</i> ₅	v_6	
<	u_1		5	2		3		>
	<i>u</i> ₂	4			3		4	
	<i>u</i> ₃			2			2	
	u_4	5			3			
<	u_5		5	5			3	>

- Leverage similar users'/items' ratings
- Pros
 - Simple to implement
 - Clear interpretation

		v_1	v_2	v_3	v_4	V_5	v_6	
<	u_1		5	2		3		>
	<i>u</i> ₂	4			3		4	
	<i>u</i> ₃			2			2	
	u_4	5			3			
<	u_5		5	5			3	>

- Cons
 - High computational cost
 - Prone to sparseness problem

Model-based Collaborative Filtering

- Train a pre-defined model
- Efficient in prediction time
- Usually outperform memory-based methods
- Successful methods:
 - Probabilistic Matrix Factorization (PMF) [Salakhutdinov et al., 2007]
 - Bayesian Personalized Ranking (BPR) [Rendle et al, 2009]

PMF

• Use two low rank matrices U and V to approximate the rating matrix R:

 $R \approx U^T V, U \in \mathbb{R}^{k \times m}, V \in \mathbb{R}^{k \times n}$

• Conditional distribution over observed ratings: $p(R|U, V, \sigma_R^2) = \prod_{i=1}^m \prod_{j=1}^n [\mathcal{N}(R_{ij}|U_iV_j^T, \sigma_R^2)]^{I_{ij}^R}$

• Zero-mean spherical Gaussian priors on user and item feature vectors:

$$p(U|\sigma_U^2) = \prod_{i=1}^m \mathcal{N}(U_i|0, \sigma_U^2 \mathbf{I}), p(V|\sigma_V^2) = \prod_{j=1}^n \mathcal{N}(V_j|0, \sigma_V^2 \mathbf{I}).$$

PMF

• Maximize the posterior:

 $p(U, V|R, \sigma_R^2, \sigma_U^2, \sigma_V^2) \propto p(R|U, V, \sigma_R^2) p(U|\sigma_U^2) p(V|\sigma_V^2)$

• The objective function is:

$$\min_{U,V} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (R_{ij} - U_i V_j^T)^2 + \frac{\lambda_1}{2} \|U\|_F^2 + \frac{\lambda_2}{2} \|V\|_F^2$$

BPR

- A ranking-oriented method
- Construct the pairwise training set $D_S = \{(u, i, j) | u \in U \land i \in I_u^+ \land j \in I \setminus I_u^+\}$
 - a user u prefers i (observed) over j (unobserved)
- Maximize the posterior:

$$\prod_{(u,i,j)\in D_S} p(i>_u j|\Theta)p(\Theta)$$

BPR

• Define the prob. a user prefers i over j as:

$$p(i >_{u} j | \Theta) = \sigma(\hat{x}_{ui} - \hat{x}_{uj})$$
$$\hat{x}_{ui} = U_{u}^{T} V_{i}$$

• Finally we maximize:

$$\sum_{(u,i,j)\in D_S} \ln \sigma(\hat{x}_{ui} - \hat{x}_{uj}) - \lambda_{\Theta} \|\Theta\|_F^2$$

Problems in Traditional Recommendation Methods

Problems in Traditional Recommendation Methods

- Data Sparsity
 - Extreme sparse in some applications such as POI recommendation
 - How to alleviate data sparsity problem

Problems in Traditional Recommendation Methods

- Data Sparsity
 - Extreme sparse in some applications such as POI recommendation
 - How to alleviate data sparsity problem
- Context information
 - Abundant context information available: age, category, special date, etc.
 - How to employ context information

Outline

- Introduction and Background
- POI Recommendation
- Successive POI Recommendation
- Gradient Boosting Factorization Machines
- Conclusion

Location-based Social Networks (LBSNs)

Growth of Location-based Services (LBS)

- Almost one fifth of the world's six billion mobile users are already using LBS
- 26% users use the technology to find restaurants and entertainment venues
- 74% of smartphone owners use LBS.

Figure 2. Projected LBS services revenue by region (2011-2017)6

Check-in Becomes a Lifestyle

Check-in Becomes a Lifestyle

"Which of these apps do you use most frequently?" (n=169)

"What is the most important benefit of these apps to you, personally?" (n=253)

Gowalla

Whrrl

Connection to other people I know or could meet

Finding a place liked by people I trust

- Insight about my travel or movement patterns over time
- Savings in discounts and merchant rewards
- Practical knowledge of a new technology
- Achieving activity milestones in a game
- ■Other (please specify)

Check-in Becomes a Lifestyle

Social Networks

• Help users explore their surroundings

• Help users explore their surroundings

- Help users explore their surroundings
- Help 3rd-party developers provide personalized services
 - Advertisements
 - Coupons
 - Traffic statistics

Challenges

- Large dataset
 - 4,128,714 check-ins from 53,944 users on 367,149 locations for Gowalla
- Sparsity : density of our dataset is only 0.0208%
 - Matrix Factorization can be inaccurate

	l_1	l_2	l_3	l_4	l_5	l_6	• • •	$l_{ \mathcal{L} -1}$	$l_{ \mathcal{L} }$
u_1	?	?	164	?	1	?	• • •	?	1
u_2	40	2	?	?	?	1	• • •	?	?
÷		:	:	÷	÷	:		:	:
$u_{ \mathcal{U} -1}$?	?	1	1	?	?	• • •	2	?
$u_{ \mathcal{U} }$?	2	?	?	1	?	•••	?	10

Figure 1: User-location check-in frequency matrix.

Geographical Influence

Geographical Influence

Top-k Ranking

Top-k Ranking

users care more about top results

Our Proposal

- Multi-center Gaussian Model (MGM) to capture the geographical influence
- Fused matrix factorization framework with MGM
- Propose two methods based on BPR to address geographical influence and top-k ranking

- Notation
 - C_u : multi-center set for user u
 - f_{c_u} : total frequency at center c_u for user u
 - $\mathcal{N}(l|\mu_{c_u}, \Sigma_{c_u})$ is : the pdf of Gaussian distribution, μ_{c_u} and Σ_{c_u} denote the mean and covariance matrices of regions around center C_u

- Notation
 - C_u : multi-center set for user u
 - f_{c_u} : total frequency at center c_u for user u
 - $\mathcal{N}(l|\mu_{c_u}, \Sigma_{c_u})$ is : the pdf of Gaussian distribution, μ_{c_u} and Σ_{c_u} denote the mean and covariance matrices of regions around center C_u
- The probability a user u visiting a location l given C_u defined as:

$$P(l|C_u) = \sum_{c_u=1}^{|C_u|} P(l \in c_u) \frac{f_{c_u}^{\alpha}}{\sum_{i \in C_u} f_i^{\alpha}} \frac{\mathcal{N}(l|\mu_{c_u}, \Sigma_{c_u})}{\sum_{i \in C_u} \mathcal{N}(l|\mu_i, \Sigma_i)}$$

- Notation
 - C_u : multi-center set for user u
 - f_{c_u} : total frequency at center c_u for user u
 - $\mathcal{N}(l|\mu_{c_u}, \Sigma_{c_u})$ is : the pdf of Gaussian distribution, μ_{c_u} and Σ_{c_u} denote the mean and covariance matrices of regions around center C_u
- The probability a user u visiting a location l given C_u defined as:

$$P(l|C_u) = \sum_{c_u=1}^{|C_u|} P(l \in c_u) \frac{f_{c_u}^{\alpha}}{\sum_{i \in C_u} f_i^{\alpha}} \frac{\mathcal{N}(l|\mu_{c_u}, \Sigma_{c_u})}{\sum_{i \in C_u} \mathcal{N}(l|\mu_i, \Sigma_i)}$$

 $\propto 1/dist(l, c_u)$

Center2(15.6%

38

atitude

- Notation
 - C_u : multi-center set for user u
 - f_{c_u} : total frequency at center c_u for user u
 - $\mathcal{N}(l|\mu_{c_u}, \Sigma_{c_u})$ is : the pdf of Gaussian distribution, μ_{c_u} and Σ_{c_u} denote the mean and covariance matrices of regions around center C_u
- The probability a user u visiting a location l given c_u defined as:

Center2(15.6%

38

atitude 8

A greedy clustering algorithm is proposed due to Pareto principle (top 20 locations cover about 80% check-ins)

A greedy clustering algorithm is proposed due to Pareto principle (top 20 locations cover about 80% check-ins)

A greedy clustering algorithm is proposed due to Pareto principle (top 20 locations cover about 80% check-ins)

Algorithm 1 Multi-center Discovering Algorithm

1: for all user i in the user set \mathcal{U} do Rank all check-in locations in $|\mathcal{L}|$ according to visiting fre-2: quency $\forall l_k \in L, \text{ set } l_k.center = -1;$ 3: Center_list = \emptyset ; center_no = 0; 4: for $i = 1 \rightarrow |L|$ do 5: if $l_i.center = -1$ then 6: center_no++; Center = \emptyset ; Center.total_freq = 0; 7: 8: Center.add(l_i); Center.total_freq += l_i .freq; for $j = i + 1 \rightarrow |L|$ do 9: if l_i center == -1 and $dist(l_i, l_i) \leq d$ then $l_j.center = center_no; Center.add(l_j);$ Center.total_freq $\neq l_i$.freq; end if end for if Center.total_freq $\geq |u_i|$.total_freq * θ then Center_list.add(Center); end if end if end for **RETURN** Center_list for user *i*; 21: end for

A greedy clustering algorithm is proposed due to Pareto principle (top 20 locations cover about 80% check-ins)

Algorithm 1 Multi-center Discovering Algorithm

1: for all user i in the user set \mathcal{U} do Rank all check-in locations in $|\mathcal{L}|$ according to visiting fre-2: quency $\forall l_k \in L, \text{ set } l_k.center = -1;$ 3: Center list = \emptyset : center no = 0: 4: for $i = 1 \rightarrow |L|$ do 5: if $l_i.center = -1$ then 6: center_no++; Center = \emptyset ; Center.total_freq = 0; 7: 8: Center.add(l_i); Center.total_freq += l_i .freq; 9: for $j = i + 1 \rightarrow |L|$ do if l_i center == -1 and $dist(l_i, l_i) \leq d$ then 10: $l_j.center = center_no; Center.add(l_j);$ 11: Center.total_freq $\neq l_i$.freq; 12: 13: end if 14: end for 15: if Center.total_freq $\geq |u_i|$.total_freq * θ then 16: Center_list.add(Center); 17: end if 18: end if search centers 19: end for 20: **RETURN** Center_list for user *i*; 21: end for

A greedy clustering algorithm is proposed due to Pareto principle (top 20 locations cover about 80% check-ins)

Algorithm 1 Multi-center Discovering Algorithm

1: for all user i in the user set \mathcal{U} do Rank all check-in locations in $|\mathcal{L}|$ according to visiting fre-2: quency $\forall l_k \in L$, set $l_k.center = -1$; 3: Center list = \emptyset : center no = 0: 4: for $i = 1 \rightarrow |L|$ do 5: if $l_i.center = -1$ then 6: center_no++; Center = \emptyset ; Center.total_freq = 0; 7: 8: Center.add(l_i); Center.total_freq += l_i .freq; 9: for $j = i + 1 \rightarrow |L|$ do if l_i center == -1 and $dist(l_i, l_i) \leq d$ then 10: $l_j.center = center_no; Center.add(l_j);$ 11: Center.total_freq $\neq l_i$.freq; 12: 13: end if 14: end for 15: if Center.total_freq $\geq |u_i|$.total_freq * θ then 16: Center_list.add(Center); 17: end if 18: end if search centers 19: end for 20: **RETURN** Center_list for user *i*; 21: end for

 $P_{ul} = P(F_{ul}) \cdot P(l|C_u)$

 Traditional Matrix Factorization (MF) only model users' preference on locations

Location

$$P_{ul} = \underbrace{P(F_{ul})}_{\text{encode user preference}} P(l|C_u)$$

- Traditional Matrix Factorization (MF) only model users' preference on locations
- MGM only models geographical influence

- Traditional Matrix Factorization (MF) only model users' preference on locations
- MGM only models geographical influence
- We can fuse both of them

• BPRLR1: same as the previous fusion method

$$P_{ul} = P(F_{ul}) \cdot P(l|C_u)$$

• BPRLR1: same as the previous fusion method

$$P_{ul} = \underbrace{P(F_{ul})}_{\text{encode user preference}} P(l|C_u)$$

- BPRLR2: reconstruct the training pairwise location set
 - Maximize the difference between visited location and unvisited nearby location

- BPRLR2: reconstruct the training pairwise location set
 - Maximize the difference between visited location and unvisited nearby location

$$S' = \{(u, i, j) | u \in \mathcal{U}, i \in \mathcal{L}_u^+ \land j \in N_u \setminus \mathcal{L}_u^+\}$$
$$N_u = \{l | P(l | C_u) > 0\}$$

- BPRLR2: reconstruct the training pairwise location set
 - Maximize the difference between visited location and unvisited nearby location

$$S' = \{(u, i, j) | u \in \mathcal{U}, i \in \mathcal{L}_u^+ \land j \in N_u \setminus \mathcal{L}_u^+\}$$
$$N_u = \{l | \mathcal{P}(l | C_u) > 0\}$$

calculated by MGM

Dataset

Two publicly available data sets: Foursquare and Gowalla

Table 3.1: Basic statistics of the Gowalla and Foursquare dataset for POI recommendation

#U	#L	#E
53,944	367, 149	306,958
$\#\widetilde{U}$	$\#\widetilde{L}$	$\#\widetilde{E}$
51.33	7.54	11.38
#max. U	#max. <i>L</i>	#max. E
2,145	3,581	2,366

#U	#L
6,084	37,976
$\#\widetilde{U}$	$\#\widetilde{L}$
35.98	5.76
#max. U	#max. L
182	985

(a) Gowalla

(b) Foursquare

Ratio	Metrics]	Dimension =	30				
Kauo	wiethes	MGM	PMF	PMFSR	PFM	FMFMGM	BPR	BPRLR1	BPRLR2
	P@5	0.0317	0.0148	0.0158	0.0173	0.0672	0.0674	0.0802	0.0517
	Improve	153.00%	441.89%	407.59%	363.58%	19.35%	18.99%	0.0002	55.13%
	R@5	0.0113	0.0033	0.0035	0.0040	0.0212	0.0199	0.0270	0.0175
70%	Improve	138.94%	718.18%	671.43%	575.00%	27.36%	35.68%	0.0270	54.29%
1070	P@10	0.0273	0.0162	0.0174	0.0173	0.0656	0.0643	0.0700	0.0628
	Improve	156.41%	332.10%	302.30%	304.62%	6.71%	8.86%	0.0700	11.46%
	R@10	0.0194	0.0075	0.0080	0.0084	0.0408	0.0382	0.0465	0.0408
	Improve	260.82%	833.33%	775.00%	733.33%	71.57%	83.25%	0.0403	71.57%
	P@5	0.0263	0.0106	0.011	0.0114	0.0486	0.0488	0.0551	0.0348
	Improve	109.51%	419.81%	400.91%	383.33%	13.37%	12.91%	0.0551	58.33%
	R@5	0.0141	0.0035	0.0037	0.0039	0.0218	0.0210	0.0263	0.0172
80%	Improve	86.52%	651.43%	610.81%	574.36%	20.64%	25.24%	0.0203	52.91%
80%	P@10	0.0226	0.0115	0.0117	0.0117	0.0472	0.0450	0.0479	0.0432
	Improve	111.95%	316.52%	309.40%	309.40%	1.48%	6.44%	0.0479	10.88%
	R@10	0.0244	0.0079	0.0081	0.0085	0.0424	0.0386	0.0456	0.0407
	Improve	86.89%	477.22%	462.96%	436.47%	7.55%	18.13%	0.0720	12.04%

Table III. Performance Comparisons on the Gowalla dataset with K = 30

Table V. Performance Comparisons on the Foursquare dataset with K = 30

Ratio	Metrics	Dimension = 30								
Katio	Methes	MGM	PMF	PFM	FMFMGM	BPR	BPRLR1	BPRLR2		
	P@5	0.0409	0.0621	0.0718	0.1201	0.1086	0.1484	0.1783		
	Improve	335.94%	187.12%	148.33%	48.46%	64.18%	20.15%	0.1765		
	R@5	0.0306	0.0277	0.0312	0.0594	0.0528	0.0763	0.0901		
70%	Improve	194.44%	225.27%	188.78%	51.68%	70.64%	18.09%	0.0901		
1070	P@10	0.0373	0.0638	0.0663	0.1166	0.1107	0.1522	0.1698		
	Improve	355.23%	166.14%	156.11%	45.63%	53.39%	11.56%	0.1070		
	R@10	0.0531	0.0574	0.0622	0.1166	0.1070	0.1568	0.1728		
	Improve	225.42%	201.05%	177.81%	48.20%	61.50%	10.20%	0.1720		
	P@5	0.0288	0.0450	0.0482	0.0833	0.0820	0.1050	0.1287		
	Improve	346.88%	186.00%	167.01%	54.50%	56.95%	22.57%	0.1207		
	R@5	0.0332	0.0306	0.0364	0.0640	0.0606	0.0834	0.0998		
80%	Improve	200.60%	226.14%	174.18%	55.94%	64.69%	19.66%	0.0996		
0070	P@10	0.0265	0.0478	0.0512	0.0811	0.0796	0.1053	0.1227		
	Improve	363.02%	156.69%	139.65%	51.29%	54.15%	16.52%	0.1227		
	R@10	0.0586	0.0657	0.0677	0.1242	0.1176	0.1658	0.1898		
	Improve	223.89%	188.89%	180.35%	52.82%	61.39%	14.48%	0.1090		

Ratio	Metrics]	Dimension =	30	\frown			
Kauo	wiethes	MGM	PMF	PMFSR	PFM	MFMGM	BPR	BPRLR1	BPRLR2
	P@5	0.0317	0.0148	0.0158	0.0173	0.0672	0.0674	0.0802	0.0517
	Improve	153.00%	441.89%	407.59%	363.58%	19.35%	18.99%	0.0002	55.13%
	R@5	0.0113	0.0033	0.0035	0.0040	0.0212	0.0199	0.0270	0.0175
70%	Improve	138.94%	718.18%	671.43%	575.00%	27.36%	35.68%	0.0270	54.29%
1070	P@10	0.0273	0.0162	0.0174	0.0173	0.0656	0.0643	0.0700	0.0628
	Improve	156.41%	332.10%	302.30%	304.62%	6.71%	8.86%	0.0700	11.46%
	R@10	0.0194	0.0075	0.0080	0.0084	0.0408	0.0382		0.0408
	Improve	260.82%	833.33%	775.00%	733.33%	71.57%	83.25%	0.0405	71.57%
	P@5	0.0263	0.0106	0.011	0.0114	0.0486	0.0488	0.0551	0.0348
	Improve	109.51%	419.81%	400.91%	383.33%	13.37%	12.91%	0.0331	58.33%
	R@5	0.0141	0.0035	0.0037	0.0039	0.0218	0.0210	0.0263	0.0172
80%	Improve	86.52%	651.43%	610.81%	574.36%	20.64%	25.24%	0.0203	52.91%
80 //	P@10	0.0226	0.0115	0.0117	0.0117	0.0472	0.0450	0.0479	0.0432
	Improve	111.95%	316.52%	309.40%	309.40%	1.48%	6.44%	0.0479	10.88%
	R@10	0.0244	0.0079	0.0081	0.0085	0.0424	0.0386	0.0456	0.0407
	Improve	86.89%	477.22%	462.96%	436.47%	7.55%	18.13%	0.0400	12.04%

Table III. Performance Comparisons on the Gowalla dataset with K = 30

Table V. Performance Comparisons on the Foursquare dataset with K = 30

Ratio	Metrics		Dimension = 30								
Katio	wiethes	MGM	PMF	PFM	MFMGM	BPR	BPRLR1	BPRLR2			
	P@5	0.0409	0.0621	0.0718	0.1201	0.1086	0.1484	0.1783			
	Improve	335.94%	187.12%	148.33%	48.46%	64.18%	20.15%	0.1765			
	R@5	0.0306	0.0277	0.0312	0.0594	0.0528	0.0763	0.0901			
70%	Improve	194.44%	225.27%	188.78%	51.68%	70.64%	18.09%	0.0701			
10 /0	P@10	0.0373	0.0638	0.0663	0.1166	0.1107	0.1522	0.1698			
	Improve	355.23%	166.14%	156.11%	45.63%	53.39%	11.56%	0.1070			
	R@10	0.0531	0.0574	0.0622	0.1166	0.1070	0.1568	0.1728			
	Improve	225.42%	201.05%	177.81%	48.20%	¢1.50%	10.20%	0.1720			
	P@5	0.0288	0.0450	0.0482	0.0833	0.0820	0.1050	0.1287			
	Improve	346.88%	186.00%	167.01%	54.50%	56.95%	22.57%	0.1207			
	R@5	0.0332	0.0306	0.0364	0.0640	0.0606	0.0834	0.0998			
80%	Improve	200.60%	226.14%	174.18%	55.94%	54.69%	19.66%	0.0990			
80%	P@10	0.0265	0.0478	0.0512	0.0811	0.0796	0.1053	0.1227			
	Improve	363.02%	156.69%	139.65%	51.29%	54.15%	16.52%	0.1227			
	R@10	0.0586	0.0657	0.0677	0.1242	0.1176	0.1658	0.1898			
	Improve	223.89%	188.89%	180.35%	52.82%	61.39%	14.48%	0.1090			

Ratio	Metrics]	Dimension =	30				
Kauo	wiethes	MGM	PMF	PMFSR	PFM	FMFMGM	BPR	BPRLR1	BPRLR2
	P@5	0.0317	0.0148	0.0158	0.0173	0.0672	0.0674	0.0802	0.0517
	Improve	153.00%	441.89%	407.59%	363.58%	19.35%	18.99%	0.0002	55.13%
	R@5	0.0113	0.0033	0.0035	0.0040	0.0212	0.0199	0.0270	0.0175
70%	Improve	138.94%	718.18%	671.43%	575.00%	27.36%	35.68%	0.0270	54.29%
1070	P@10	0.0273	0.0162	0.0174	0.0173	0.0656	0.0643	0.0700	0.0628
	Improve	156.41%	332.10%	302.30%	304.62%	6.71%	8.86%	0.0700	11.46%
	R@10	0.0194	0.0075	0.0080	0.0084	0.0408	0.0382	0.0465	0.0408
	Improve	260.82%	833.33%	775.00%	733.33%	71.57%	83.25%	0.0403	71.57%
	P@5	0.0263	0.0106	0.011	0.0114	0.0486	0.0488	0.0551	0.0348
	Improve	109.51%	419.81%	400.91%	383.33%	13.37%	12.91%	0.0551	58.33%
	R@5	0.0141	0.0035	0.0037	0.0039	0.0218	0.0210	0.0263	0.0172
80%	Improve	86.52%	651.43%	610.81%	574.36%	20.64%	25.24%	0.0203	52.91%
80%	P@10	0.0226	0.0115	0.0117	0.0117	0.0472	0.0450	0.0479	0.0432
	Improve	111.95%	316.52%	309.40%	309.40%	1.48%	6.44%	0.0479	10.88%
	R@10	0.0244	0.0079	0.0081	0.0085	0.0424	0.0386	0.0456	0.0407
	Improve	86.89%	477.22%	462.96%	436.47%	7.55%	18.13%	0.0420	12.04%

Table III. Performance Comparisons on the Gowalla dataset with K = 30

Table V. Performance Comparisons on the Foursquare dataset with K = 30

Ratio	Metrics	Dimension = 30								
Katio	Methes	MGM	PMF	PFM	FMFMGM	BPR	BPRLR1	BPRLR2		
	P@5	0.0409	0.0621	0.0718	0.1201	0.1086	0.1484	0.1783		
	Improve	335.94%	187.12%	148.33%	48.46%	64.18%	20.15%	0.1765		
	R@5	0.0306	0.0277	0.0312	0.0594	0.0528	0.0763	0.0901		
70%	Improve	194.44%	225.27%	188.78%	51.68%	70.64%	18.09%	0.0901		
1070	P@10	0.0373	0.0638	0.0663	0.1166	0.1107	0.1522	0.1698		
	Improve	355.23%	166.14%	156.11%	45.63%	53.39%	11.56%	0.1070		
	R@10	0.0531	0.0574	0.0622	0.1166	0.1070	0.1568	0.1728		
	Improve	225.42%	201.05%	177.81%	48.20%	61.50%	10.20%	0.1720		
	P@5	0.0288	0.0450	0.0482	0.0833	0.0820	0.1050	0.1287		
	Improve	346.88%	186.00%	167.01%	54.50%	56.95%	22.57%	0.1207		
	R@5	0.0332	0.0306	0.0364	0.0640	0.0606	0.0834	0.0998		
80%	Improve	200.60%	226.14%	174.18%	55.94%	64.69%	19.66%	0.0996		
0070	P@10	0.0265	0.0478	0.0512	0.0811	0.0796	0.1053	0.1227		
	Improve	363.02%	156.69%	139.65%	51.29%	54.15%	16.52%	0.1227		
	R@10	0.0586	0.0657	0.0677	0.1242	0.1176	0.1658	0.1898		
	Improve	223.89%	188.89%	180.35%	52.82%	61.39%	14.48%	0.1090		

Ratio	Metrics]	Dimension =	30			\frown	
Katio	withits	MGM	PMF	PMFSR	PFM	FMFMGM	BPR	PRLRI	BPRLR2
	P@5	0.0317	0.0148	0.0158	0.0173	0.0672	0.0674	0.0802	0.0517
	Improve	153.00%	441.89%	407.59%	363.58%	19.35%	18.99%	0.0002	55.13%
	R@5	0.0113	0.0033	0.0035	0.0040	0.0212	0.0199	0.0270	0.0175
70%	Improve	138.94%	718.18%	671.43%	575.00%	27.36%	35.68%	0.0270	54.29%
1070	P@10	0.0273	0.0162	0.0174	0.0173	0.0656	0.0643	0.0700	0.0628
	Improve	156.41%	332.10%	302.30%	304.62%	6.71%	8.86%	0.0700	11.46%
	R@10	0.0194	0.0075	0.0080	0.0084	0.0408	0.0382	0.0465	0.0408
	Improve	260.82%	833.33%	775.00%	733.33%	71.57%	83.25%	0.0403	7 <mark>1.57%</mark>
	P@5	0.0263	0.0106	0.011	0.0114	0.0486	0.0488	0.0551	0.0348
	Improve	109.51%	419.81%	400.91%	383.33%	13.37%	12.91%	0.0551	58.33%
	R@5	0.0141	0.0035	0.0037	0.0039	0.0218	0.0210	0.0263	0.0172
80%	Improve	86.52%	651.43%	610.81%	574.36%	20.64%	25.24%	0.0203	52.91%
80%	P@10	0.0226	0.0115	0.0117	0.0117	0.0472	0.0450	0.0479	0.0432
	Improve	111.95%	316.52%	309.40%	309.40%	1.48%	6.44%	0.0479	10.88%
	R@10	0.0244	0.0079	0.0081	0.0085	0.0424	0.0386	0.0456	0.0407
	Improve	86.89%	477.22%	462.96%	436.47%	7.55%	18.13%	0.0430	12.04%

Table III. Performance Comparisons on the Gowalla dataset with K = 30

Table V. Performance Comparisons on the Foursquare dataset with K = 30

Ratio	Metrics		Dimension = 30								
Katio	METICS	MGM	PMF	PFM	FMFMGM	BPR	BPRLR1	BPRLR2			
	P@5	0.0409	0.0621	0.0718	0.1201	0.1086	0.1484	0.1783			
	Improve	335.94%	187.12%	148.33%	48.46%	64.18%	20.15%	0.1785			
	R@5	0.0306	0.0277	0.0312	0.0594	0.0528	0.0763	0.0901			
70%	Improve	194.44%	225.27%	188.78%	51.68%	70.64%	18.09%	0.0901			
10%	P@10	0.0373	0.0638	0.0663	0.1166	0.1107	0.1522	0.1698			
	Improve	355.23%	166.14%	156.11%	45.63%	53.39%	11.56%	0.1070			
	R@10	0.0531	0.0574	0.0622	0.1166	0.1070	0.1568	0.1728			
	Improve	225.42%	201.05%	177.81%	48.20%	61.50%	10.20%	0.1720			
	P@5	0.0288	0.0450	0.0482	0.0833	0.0820	0.1050	0.1287			
	Improve	346.88%	186.00%	167.01%	54.50%	56.95%	22.57%	0.1207			
	R@5	0.0332	0.0306	0.0364	0.0640	0.0606	0.0834	0.0998			
80%	Improve	200.60%	226.14%	174.18%	55.94%	64.69%	19.66%	0.0996			
80%	P@10	0.0265	0.0478	0.0512	0.0811	0.0796	0.1053	0.1227			
	Improve	363.02%	156.69%	139.65%	51.29%	54.15%	16.52%	0.1227			
	R@10	0.0586	0.0657	0.0677	0.1242	0.1176	0.1658	0.1898			
	Improve	223.89%	188.89%	180.35%	52.82%	61.39%	14.48%	0.1090			

Outline

- Introduction and Background
- POI Recommendation
- Successive POI Recommendation
- Gradient Boosting Factorization Machines
- Conclusion

Successive POI Recommendation

Two Main Properties in LBSNs Dataset

- Personalized Markov chain
- Localized region constraint

Localized Region Constraint

- Most inter check-ins occurs at nearby locations
 - 75% within 10km, less than 5% beyond 100 km.
- We can only consider the new POIs near a user's previous checkins when providing successive POI recommendation.

Personalized Markov Chain

- Inter check-in time
 - Around 45% successive check-ins within 2h, 70% within 12h.
- Strong connections between inter check-ins
 - E.g. cinemas or bars after restaurant, hotels after airports.
- Motivated to use transition probability

Personalized Markov Chain

- Transition probability: locationwise level or topic level?
 - average user check-in around 50 POIs (Gowalla)
 - 60,000 POIs (Gowalla)
 - location-wise level may be too sparse
 - latent topic level can relieve this problem

ve

Example

User 1

Localized Region Constraint User 2

 Factoring Personalize Markov Chain with Localized Region model (FPMC-LR)

- Factoring Personalize Markov Chain with Localized Region model (FPMC-LR)
- Factoring Personalize Markov Chain with Latent Topic Transition (FPMC-LTT)

- Factoring Personalize Markov Chain with Localized Region model (FPMC-LR)
- Factoring Personalize Markov Chain with Latent Topic Transition (FPMC-LTT)
 - Combine the personalize Markov chain and localized region constraint

- Factoring Personalize Markov Chain with Localized Region model (FPMC-LR)
- Factoring Personalize Markov Chain with Latent Topic Transition (FPMC-LTT)
 - Combine the personalize Markov chain and localized region constraint
 - Although borrows the idea of FPMC [Rendle et al. '10], we emphasize on users' movement constraint and focus on a different problem

Problem Definition

Problem Definition

- Notation:
 - \mathcal{U} : users, \mathcal{L} : locations, \mathcal{L}_u : the check-in history of user u
 - T: slice window to construct a set check-ins, ${\mathcal T}$: time window set
 - \mathcal{L}_{u}^{t} : check-in time of user u at time t , $t \in \mathcal{T}$

Problem Definition

- Notation:
 - \mathcal{U} : users, \mathcal{L} : locations, \mathcal{L}_u : the check-in history of user u
 - T: slice window to construct a set check-ins, ${\mathcal T}$: time window set
 - \mathcal{L}_{u}^{t} : check-in time of user u at time t , $t \in \mathcal{T}$
- Problem:
 - Given a sequence of check-ins, $\mathcal{L}_u^1, \ldots, \mathcal{L}_u^t$, the (lat, lng) pair of locations , recommend POIs to users at t+1

• FPMC-LR is to recommend a successive personalized POI by the prob. a user u will visit at time t:

 $x_{u,i,l} = p(l \in \mathcal{L}_u^t | i \in \mathcal{L}_u^{t-1})$

• FPMC-LR is to recommend a successive personalized POI by the prob. a user u will visit at time t:

$$x_{u,i,l} = p(l \in \mathcal{L}_u^t | i \in \mathcal{L}_u^{t-1})$$

• Based on first-order Markov chain property

$$p(l \in \mathcal{L}_u^t | \mathcal{L}_u^{t-1}) = \frac{1}{|\mathcal{L}_u^{t-1}|} \sum_{i \in \mathcal{L}_u^{t-1}} p(l \in \mathcal{L}_u^t | i \in \mathcal{L}_u^{t-1})$$

Prob. for user *u* from location *i* to *I*

 FPMC-LR only consider the neighbourhood locations of previous check-ins

$$N_d(\mathcal{L}_u^t) = \{l \in \mathcal{L} \setminus \mathcal{L}_u^{t-1} : D(l, l_0) \le d, \forall l_0 \in \mathcal{L}_u^{t-1}\}$$

- Thus our FPMC-LR yields a transition tensor $\mathcal{X} \in [0,1]^{|\mathcal{U}| \times |\mathcal{L}| \times |N_d(\mathcal{L})|}$
 - Note: $|N_d(\mathcal{L})|$ is reduced largely compared to $|\mathcal{L}|$, around 100 when d = 40 km

• Use the same idea in [Rendle et al, '10], we approximate the tensor as:

$$\hat{x}_{u,i,l} = \boldsymbol{v}_{u}^{\mathcal{U},\mathcal{L}} \cdot \boldsymbol{v}_{l}^{\mathcal{L},\mathcal{U}} + \boldsymbol{v}_{l}^{\mathcal{L},\mathcal{I}} \cdot \boldsymbol{v}_{i}^{\mathcal{I},\mathcal{L}} + \boldsymbol{v}_{u}^{\mathcal{U},\mathcal{I}} \cdot \boldsymbol{v}_{i}^{\mathcal{I},\mathcal{U}}$$

• We have:

$$\hat{x}_{u,t,l} = \boldsymbol{v}_{u}^{\mathcal{U},\mathcal{L}} \cdot \boldsymbol{v}_{l}^{\mathcal{L},\mathcal{U}} + \frac{1}{|\mathcal{L}_{u}^{t-1}|} \sum_{i \in \mathcal{L}_{u}^{t-1}} \boldsymbol{v}_{l}^{\mathcal{L},\mathcal{I}} \cdot \boldsymbol{v}_{i}^{\mathcal{I},\mathcal{L}}$$

 Use the same idea in [Rendle et al, '10], we approximate the tensor as:

$$\hat{x}_{u,i,l} = \boldsymbol{v}_u^{\mathcal{U},\mathcal{L}} \cdot \boldsymbol{v}_l^{\mathcal{L},\mathcal{U}} + \boldsymbol{v}_l^{\mathcal{L},\mathcal{I}} \cdot \boldsymbol{v}_i^{\mathcal{I},\mathcal{L}} + \boldsymbol{v}_u^{\mathcal{U},\mathcal{I}} \cdot \boldsymbol{v}_i^{\mathcal{I},\mathcal{U}}$$

• We have:

user preference

 Use the same idea in [Rendle et al, '10], we approximate the tensor as:

$$\hat{x}_{u,i,l} = \boldsymbol{v}_u^{\mathcal{U},\mathcal{L}} \cdot \boldsymbol{v}_l^{\mathcal{L},\mathcal{U}} + \boldsymbol{v}_l^{\mathcal{L},\mathcal{I}} \cdot \boldsymbol{v}_i^{\mathcal{I},\mathcal{L}} + \boldsymbol{v}_u^{\mathcal{U},\mathcal{I}} \cdot \boldsymbol{v}_i^{\mathcal{I},\mathcal{U}}$$

• We have:

 Model top-k recommendations as a ranking over locations:

$$i >_{u,t} j :\Leftrightarrow \hat{x}_{u,t,i} > \hat{x}_{u,t,j}$$

• The MAP estimator is

$$\arg\max_{\Theta} \sum_{u \in \mathcal{U}} \sum_{\mathcal{L}_{u}^{t} \in \mathcal{L}_{u}} \sum_{i \in \mathcal{L}_{u}^{t}} \sum_{j \in N(\mathcal{L}_{u}^{t-1}) \setminus \mathcal{L}_{u}^{t}} \ln \sigma(\hat{x}_{u,t,i} - \hat{x}_{u,t,j}) - \lambda_{\Theta} \|\Theta\|_{F}^{2}$$

• Learning algorithm: Stochastic gradient descent

 Maximize similarity between latent vector of location I and the expected average location latent vector after transition

- Maximize similarity between latent vector of location I and the expected average location latent vector after transition
- The probability is:

- Maximize similarity between latent vector of location I and the expected average location latent vector after transition
- The probability is: $\hat{x}_{u,t,l} = \eta U_u \cdot L_l + (1 - \eta) Sim(L_l, \frac{1}{|\mathcal{L}_u^{t-1}|} A^T \sum_{i \in \mathcal{L}_u^{t-1}} L_i)$ user preference

Dataset

Two publicly available data sets: Foursquare and Gowalla

 Table 4.2: Basic statistics of the Foursquare and Gowalla dataset for successive

 POI recommendation

	#U	#L	# check-in	# avg. check-in
Foursquare	3571	28754	744055	208.36
Gowalla	4510	59355	873071	193.58

Results

Metrics	PMF	PTF	FPMC	FPMC-LR	FPMC-LLT	
P@ 10	0.0185	0.0170	0.0275	0.0360	0.0270	
Improve	100.00%	117.65%	34.55%	2.78%	0.0370	
R@ 10	0.1542	0.1417	0.2325	0.3033	0.3093	
Improve	100.58%	118.28%	33.03%	1.98%	0.3093	
MAP@10	0.0784	0.0712	0.1265	0.1583	0.1612	
Improve	105.61%	126.40%	27.43%	1.83%	0.1012	

Table 4.3: Performance comparison on Foursquare

Table 4.4: Performance comparison on Gowalla

Metrics	PMF	PTF	FPMC	FPMC-LR	FPMC-LLT	
P@ 10	0.0130	0.0110	0.0220	0.0310	0.0220	
Improve	153.85%	200.00%	50.00%	6.45%	0.0330	
R@ 10	0.1040	0.0785	0.1575	0.2116	0.2226	
Improve	114.04%	183.57%	41.33%	5.20%	0.2220	
MAP@ 10	0.0575	0.0473	0.0853	0.1072	0.1126	
Improve	95.83%	138.05%	32.00%	5.04%	0.1120	

Outline

- Introduction and Background
- POI Recommendation
- Successive POI Recommendation
- Gradient Boosting Factorization Machines
- Conclusion

- Context features can be helpful
 - User or item meta data: age, genre, etc.
 - Context features attached to the whole event: user's mood, special date, location, etc.

- Context features can be helpful
 - User or item meta data: age, genre, etc.
 - Context features attached to the whole event: user's mood, special date, location, etc.

- Context features can be helpful
 - User or item meta data: age, genre, etc.
 - Context features attached to the whole event: user's mood, special date, location, etc.

- Context features can be helpful
 - User or item meta data: age, genre, etc.
 - Context features attached to the whole event: user's mood, special date, location, etc.

Mother's Day Gifts by Category

A Toy Example

$$\mathcal{U} = \{u_1, u_2, u_3\}$$
$$\mathcal{I} = \{i_1, i_2, i_3, i_4\}$$
$$\mathcal{M} = \{Happy, Normal, Sad\}$$

		User		Movie				Mood			•••	R
x ⁽¹⁾	1	0	0	1	0	0	0	1	0	0	•••	4
x ⁽²⁾	0	1	0	0	1	0	0	0	0	1	•••	2
x ⁽³⁾	1	0	0	0	1	0	0	0	1	0	•••	5
x ⁽⁴⁾	0	0	1	0	0	1	0	0	0	1		1

User and item are regarded as context features

A Toy Example

$$\mathcal{U} = \{u_1, u_2, u_3\}$$

$$\mathcal{I} = \{i_1, i_2, i_3, i_4\}$$

$$\mathcal{M} = \{Happy, Normal, Sad\}$$

$$\mathbf{Moor}$$

User u₁ watched movie i₁ in *Happy* Mood gave rating 4

		User		Movie				Mood			•••	R
x ⁽¹⁾	1	0	0	1	0	0	0	1	0	0	•••	4
$\mathbf{x}^{(2)}$	0	1	0	0	1	0	0	0	0	1	•••	2
$\mathbf{x}^{(3)}$	1	0	0	0	1	0	0	0	1	0	•••	5
x ⁽⁴⁾	0	0	1	0	0	1	0	0	0	1		1

User and item are regarded as context features

A strong baseline proposed in [Rendle et al., 2011.]

- A strong baseline proposed in [Rendle et al., 2011.]
- Model all interactions between pairs of variables, the rating function is: $\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^d w_i x_i + \sum_{i=1}^d \sum_{j=i+1}^d \hat{w}_{i,j} x_i x_j$

- A strong baseline proposed in [Rendle et al., 2011.]
- Model all interactions between pairs of variables, the rating function is: $\hat{y}(\mathbf{x}) := w_0 + \sum w_i x_i + \sum \sum_{i=1}^{d} \hat{w}_{i,j} x_i x_j$

all pairwise feature interactions

- A strong baseline proposed in [Rendle et al., 2011.]
- Model all interactions between pairs of variables, the rating function is: $\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^d w_i x_i + \sum_{i=1}^d \sum_{j=i+1}^d \hat{w}_{i,j} x_i x_j$

where
$$\hat{w}_{i,j} := \langle \mathbf{v}_i, \mathbf{v}_j \rangle = \sum_{f=1}^{\kappa} v_{i,f} \cdot v_{j,f}$$

- A strong baseline proposed in [Rendle et al., 2011.]
- Model all interactions between pairs of variables, the rating function is: $\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^{d} w_i x_i + \sum_{i=1}^{d} \hat{w}_{i,j} x_i x_j$

• where

$$\hat{w}_{i,j} := \langle \mathbf{v}_i, \mathbf{v}_j \rangle = \sum_{f=1}^k v_{i,f} \cdot v_{j,f}$$
.
ow rank latent feature vector, shared among interacting features
e.g. latent vector U is shared in and

Drawbacks of FM

• All interacting features are useful? Or part of them?

- All interacting features are useful? Or part of them?
 - <U,M>,<U,I>,<I,M> or just <I,M>,<U,I> is enough

- All interacting features are useful? Or part of them?
 - <U,M>,<U,I>,<I,M> or just <I,M>, <U,I> is enough
 - Not all feature interactions are useful, shared latent features may introduce noise

- All interacting features are useful? Or part of them?
 - <U,M>,<U,I>,<I,M> or just <I,M>, <U,I> is enough
 - Not all feature interactions are useful, shared latent features may introduce noise
 - Select useful interacting features from tens of features is important

Our Proposal

Our Proposal

 Propose a greedy interacting feature selection algorithm to select useful feature step by step using gradient boosting

Our Proposal

- Propose a greedy interacting feature selection algorithm to select useful feature step by step using gradient boosting
- Propose Gradient Boosting Factorization Machines to incorporate interacting feature selection algorithm and factorization machines into a unified framework

- We update the prediction function step by step after selecting interacting features $C_{\rm p}$ and $C_{\rm q}$ at step s:

$$\hat{y}_s(\mathbf{x}) := \hat{y}_{s-1}(\mathbf{x}) + \sum_{i \in \mathcal{C}_p} \sum_{j \in \mathcal{C}_q} \mathbb{I}[i, j \in \mathbf{x}] \langle \mathbf{V}_p^i, \mathbf{V}_q^j \rangle$$

 We update the prediction function step by step after selecting interacting features C_p and C_q at step s:

$$\begin{split} \hat{y}_s(\mathbf{x}) &:= \hat{y}_{s-1}(\mathbf{x}) + \sum_{i \in \mathcal{C}_p} \sum_{j \in \mathcal{C}_q} \mathbb{I}[i, j \in \mathbf{x}] \langle \mathbf{V}_p^i, \mathbf{V}_q^j \rangle \\ \end{split}$$
has feature value i in feature C_p
and feature value j in feature C_q

 We update the prediction function step by step after selecting interacting features C_p and C_q at step s:

$$\hat{y}_{s}(\mathbf{x}) := \hat{y}_{s-1}(\mathbf{x}) + \sum_{i \in \mathcal{C}_{p}} \sum_{j \in \mathcal{C}_{q}} \mathbb{I}[i, j \in \mathbf{x}] \langle \mathbf{V}_{p}^{i}, \mathbf{V}_{q}^{j} \rangle$$
has feature value i in feature C_{p} latent feature matrices for
and feature value j in feature C_{q} latent feature matrices for
feature C_{p} and C_{q} to be estimated, usually by
stochastic gradient descent (SGD)

Algorithm 1 Gradient Boosting Factorization Machines Model

- 1: Input: Training Data $S = {\mathbf{x}_i, y_i}_{i=1}^N$
- 2: **Output**: $\hat{y}_{S}(x) = \hat{y}_{0}(x) + \sum_{s=1}^{S} \langle \mathbf{v}_{si}, \mathbf{v}_{sj} \rangle$
- 3: Initialize rating prediction function as $\hat{y}_0(x)$
- 4: for $s = 1 \rightarrow S$ do
- 5: Select interaction feature C_p and C_q from Greedy Feature Selection Algorithm
- 6: Estimate latent feature matrices \mathbf{V}_p and \mathbf{V}_q
- 7: Update $\hat{y}_s(\mathbf{x}) := \hat{y}_{s-1}(\mathbf{x}) + \sum_{i \in \mathcal{C}_p} \sum_{j \in \mathcal{C}_q} \mathbb{I}[i, j] \in \mathbf{x}] \langle \mathbf{V}_p^i, \mathbf{V}_q^j \rangle$ 8: ond for

• Search a function f that minimizes the objective function:

$$\mathcal{L} = \sum_{i=1}^{N} l(\hat{y}_s(\mathbf{x}_i), y_i) + \Omega(f)$$

• where $\hat{y}_s(\mathbf{x}) = \hat{y}_{s-1}(\mathbf{x}) + f_s(\mathbf{x})$

• Search a function f that minimizes the objective function:

$$\mathcal{L} = \sum_{i=1}^{N} l(\hat{y}_s(\mathbf{x}_i), y_i) + \Omega(f)$$

• where $\hat{y}_s(\mathbf{x}) = \hat{y}_{s-1}(\mathbf{x}) + f_s(\mathbf{x})$ N: number of training samples

• Search a function f that minimizes the objective function:

$$\mathcal{L} = \sum_{i=1}^{N} l(\hat{y}_s(\mathbf{x}_i), y_i) + \Omega(f)$$

• where
$$\hat{y}_s(\mathbf{x}) = \hat{y}_{s-1}(\mathbf{x}) + f_s(\mathbf{x})$$

• Search a function f that minimizes the objective function:

$$\mathcal{L} = \sum_{i=1}^{N} l(\hat{y}_s(\mathbf{x}_i), y_i) + \Omega(f)$$

• where
$$\hat{y}_s(\mathbf{x}) = \hat{y}_{s-1}(\mathbf{x}) + f_s(\mathbf{x})$$

 We heuristically select feature layer by layer, feasible to compute, suppose feature C_{i(t)} is selected at layer t:

$$f_t(\mathbf{x}) = f_{t-1}(\mathbf{x}) \cdot q_{\mathcal{C}_{i(t)}}(\mathbf{x})$$

• Search a function f that minimizes the objective function:

$$\mathcal{L} = \sum_{i=1}^{N} l(\hat{y}_s(\mathbf{x}_i), y_i) + \Omega(f)$$

• where
$$\hat{y}_s(\mathbf{x}) = \hat{y}_{s-1}(\mathbf{x}) + f_s(\mathbf{x})$$

 We heuristically select feature layer by layer, feasible to compute, suppose feature C_{i(t)} is selected at layer t:

$$f_t(\mathbf{x}) = f_{t-1}(\mathbf{x}) \cdot q_{\mathcal{C}_{i(t)}}(\mathbf{x})$$

Current layer, in our paper we only consider 2-way interaction, e.g. layer number is 2

• Search a function f that minimizes the objective function:

$$\mathcal{L} = \sum_{i=1}^{N} l(\hat{y}_s(\mathbf{x}_i), y_i) + \Omega(f)$$

• where
$$\hat{y}_s(\mathbf{x}) = \hat{y}_{s-1}(\mathbf{x}) + f_s(\mathbf{x})$$

 We heuristically select feature layer by layer, feasible to compute, suppose feature C_{i(t)} is selected at layer t:

$$f_t(\mathbf{x}) = f_{t-1}(\mathbf{x}) \cdot q_{\mathcal{C}_{i(t)}}(\mathbf{x})$$

• Search a function f that minimizes the objective function:

$$\mathcal{L} = \sum_{i=1}^{N} l(\hat{y}_s(\mathbf{x}_i), y_i) + \Omega(f)$$

• where
$$\hat{y}_s(\mathbf{x}) = \hat{y}_{s-1}(\mathbf{x}) + f_s(\mathbf{x})$$

 We heuristically select feature layer by layer, feasible to compute, suppose feature C_{i(t)} is selected at layer t:

$$f_t(\mathbf{x}) = f_{t-1}(\mathbf{x}) \cdot q_{\mathcal{C}_{i(t)}}(\mathbf{x})$$

• The q function is: $q_{\mathcal{C}_{i(t)}}(\mathbf{x}) = \sum_{j \in \mathcal{C}_{i(t)}} \mathbb{I}[j \in \mathbf{x}] \cdot w_{tj}$

• Search a function f that minimizes the objective function:

$$\mathcal{L} = \sum_{i=1}^{N} l(\hat{y}_s(\mathbf{x}_i), y_i) + \Omega(f)$$

• where
$$\hat{y}_s(\mathbf{x}) = \hat{y}_{s-1}(\mathbf{x}) + f_s(\mathbf{x})$$

 We heuristically select feature layer by layer, feasible to compute, suppose feature C_{i(t)} is selected at layer t:

$$f_t(\mathbf{x}) = f_{t-1}(\mathbf{x}) \cdot q_{\mathcal{C}_{i(t)}}(\mathbf{x})$$

the corresponding non-zero feature weight suppose choosing feature C_{i(t)} at layer t

• The q function is: $q_{\mathcal{C}_{i(t)}}(\mathbf{x}) = \sum_{j \in \mathcal{C}_{i(t)}} \mathbb{I}[j \in \mathbf{x}] \cdot w_{tj}$

 After n layers, we will select n features, in our paper, we only consider n = 2, which results in a 2way interacting feature

- After n layers, we will select n features, in our paper, we only consider n = 2, which results in a 2way interacting feature
- At layer t, approximated by Taylor expansion the problem is equal to minimize:

- After n layers, we will select n features, in our paper, we only consider n = 2, which results in a 2way interacting feature
- At layer t, approximated by Taylor expansion the problem is equal to minimize:

$$\mathcal{L}(f) = \sum_{i=1}^{N} h_i (g_i/h_i - f_t(\mathbf{x}_i))^2 + \Omega(f_t)$$

- After n layers, we will select n features, in our paper, we only consider n = 2, which results in a 2way interacting feature
- At layer t, approximated by Taylor expansion the problem is equal to minimize:

$$\mathcal{L}(f) = \sum_{i=1}^{N} h_i (g_i/h_i - f_t(\mathbf{x}_i))^2 + \Omega(f_t)$$

negative first derivative at sample i second derivative

• At layer t, our problem is to select the feature:

$$\arg\min_{i(t)\in\{1,\dots,m\}}\mathcal{L}(f)$$

• At layer t, our problem is to select the feature:

$$\arg\min_{i(t)\in\{1,\dots,m\}}\mathcal{L}(f)$$

• The corresponding weight can be calculated:

$$w_{ij} = \arg \min_{w} \sum_{i=1}^{N} h_i (g_i/h_i - f_{t-1}(\mathbf{x}_i) \cdot \mathbb{I}(j \in \mathbf{x}_i) \cdot w)^2 + \lambda w^2$$

Algorithm 2 Greedy Feature Selection Algorithm

1: Input: Training Data
$$S = \{\mathbf{x}_i, y_i\}_{i=1}^N$$
, context feature set C

2: **Output**: *n*-way interaction feature $C_{i(1)}, \ldots, C_{i(n)}$.

3: for
$$l = 1 \rightarrow n$$
 do

4: $\mathcal{A} = \emptyset / / \mathcal{A}$ is the set of context features already selected

5: Maintain two vectors
$$\mathbf{a}$$
 and \mathbf{b} for all categorical values in \mathcal{C} , both initialized to $\mathbf{0}$

6: for
$$(\mathbf{x}_i, y_i)$$
 in \mathcal{S} do

7: compute $tempa = z_i h_i f_{t-1}(\mathbf{x}_i)$ and $tempb = h_i (f_{t-1}(\mathbf{x}_i))^2$

8: for
$$j = 1 \rightarrow d$$
 do

9: **if** \mathbf{x}_{ij} is non-zero and not in \mathcal{A} then

- 10: add tempa to \mathbf{a}_j and tempb to \mathbf{b}_j
- 11: end if
- 12: end for
- 13: end for
- 14: Compute weight for all categorical features in C A according to Eq. 25.
- 15: Select the feature $C_{i(l)}$ according to Eq. 24.
- 16: Add feature $C_{i(l)}$ into A
- 17: end for

prepared for

computing

weight

• Complexity:

- Complexity: $\mathcal{O}(SN + kSN)$
 - S: boosting steps, k: SGD iterations, N: training numbers

- Complexity: $\mathcal{O}(SN + kSN)$
 - S: boosting steps, k: SGD iterations, N: training numbers
 - linear to training size

- Complexity: $\mathcal{O}(SN + kSN)$
 - S: boosting steps, k: SGD iterations, N: training numbers
 - linear to training size
- GBMF-Opt:

- Complexity: $\mathcal{O}(SN + kSN)$
 - S: boosting steps, k: SGD iterations, N: training numbers
 - linear to training size
- GBMF-Opt:
 - after GBMF, we have S interacting features

Discussion

- Complexity: $\mathcal{O}(SN + kSN)$
 - S: boosting steps, k: SGD iterations, N: training numbers
 - linear to training size
- GBMF-Opt:
 - after GBMF, we have S interacting features
 - optimize S features globally with shared latent vectors

Discussion

- Complexity: $\mathcal{O}(SN + kSN)$
 - S: boosting steps, k: SGD iterations, N: training numbers
 - linear to training size
- GBMF-Opt:
 - after GBMF, we have S interacting features
 - optimize S features globally with shared latent vectors
 - fewer parameters, better generalization

• Synthetic data:

- Synthetic data:
 - 10 context features

- Synthetic data:
 - 10 context features
 - randomly select 5 interacting features to generate 1-5 ratings

- Synthetic data:
 - 10 context features
 - randomly select 5 interacting features to generate 1-5 ratings
- Real data: Tencent microblog data

- Synthetic data:
 - 10 context features
 - randomly select 5 interacting features to generate 1-5 ratings
- Real data: Tencent microblog data
 - 18 context features: user, item, follower/followee number, tweet time etc.

- Synthetic data:
 - 10 context features
 - randomly select 5 interacting features to generate 1-5 ratings
- Real data: Tencent microblog data
 - 18 context features: user, item, follower/followee number, tweet time etc.
 - Sparse, 70% of users in test data not in training data

- Synthetic data:
 - 10 context features
 - randomly select 5 interacting features to generate 1-5 ratings
- Real data: Tencent microblog data
 - 18 context features: user, item, follower/followee number, tweet time etc.
 - Sparse, 70% of users in test data not in training data

Dataset	# Users	#Items	#Observed Entries		
Synethic data	1000	1000	16270		
Tencent microblog	2.3 M	6095	73 M		

Table 5.1: Statistics of datasets

 Synthetic data: randomly remove 20% data as test data, the remaining as training

- Synthetic data: randomly remove 20% data as test data, the remaining as training
- Tencent data: split by the time, last 4 weeks as test

- Synthetic data: randomly remove 20% data as test data, the remaining as training
- Tencent data: split by the time, last 4 weeks as test
- Metrics:
 - MAE and RMSE for synthetic data
 - MAP@k for Tecent data

Results

Table 5.2: Results on the synthetic data in RMSE and MAE

Method	RMSE	MAE
PMF	1.9881	1.7650
FM	1.9216	1.6981
GBFM	1.8959	1.6354
GBFM-Opt	1.8611	1.5762

Table 5.3: Results on the Tencent microblog data in MAP

Method	MAP@1	MAP@3	MAP@5
PMF	22.88%	34.50%	37.95%
FM	24.36%	36.77%	40.32%
GBFM	24.62%	37.17%	40.90%
GBFM-	24.66%	37.23%	40.98%
Opt	24.0070	91.2970	40.9070

Outline

- Introduction and Background
- POI Recommendation
- Successive POI Recommendation
- Gradient Boosting Factorization Machines
- Conclusion

• POI recommendation

- POI recommendation
 - a framework considers user preference, geographical influence and personalized ranking together

- POI recommendation
 - a framework considers user preference, geographical influence and personalized ranking together
- Successive POI recommendation

- POI recommendation
 - a framework considers user preference, geographical influence and personalized ranking together
- Successive POI recommendation
 - two matrix factorization methods based on personalized Markov chain and region localization

- POI recommendation
 - a framework considers user preference, geographical influence and personalized ranking together
- Successive POI recommendation
 - two matrix factorization methods based on personalized Markov chain and region localization
- Gradient Boosting Factorization Machines

- POI recommendation
 - a framework considers user preference, geographical influence and personalized ranking together
- Successive POI recommendation
 - two matrix factorization methods based on personalized Markov chain and region localization
- Gradient Boosting Factorization Machines
 - incorporate feature selection algorithm with FM

Thanks Q&A

Set up

- Split the dataset into two non-overlapping sets
 - Randomly select x% for each user as training data and the rest (1-x)% as the test data
 - Carried out 5 times independently, we report the average
- POI recommendation
 - Return top-N POIs for each user
 - Find out # of locations in test dataset are recovered

