
Design, Implementation, and
Evaluation of Scalable

Content-Based Image Retrieval
Techniques

WONG, Yuk Man

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Master of Philosophy
in

Computer Science and Engineering

c©The Chinese University of Hong Kong
August 2007

The Chinese University of Hong Kong holds the copyright of this thesis. Any
person(s) intending to use a part or whole of the materials in the thesis in
a proposed publication must seek copyright release from the Dean of the
Graduate School.

Thesis/Assessment Committee Members

Professor Irwin King (Chair)
Professor Michael R. Lyu (Thesis Supervisor)

Professor Leo J. Jia (Committee Member)
Professor L. Quan (External Examiner)

i

Abstract of thesis entitled:
Design, Implementation, and Evaluation of Scalable Content-Based Im-

age Retrieval Techniques
Submitted by WONG, Yuk Man
for the degree of Master of Philosophy
at The Chinese University of Hong Kong in August 2007

Content-based image retrieval (CBIR) has been a very active research
topic in multimedia community since the early 1990s. A lot of CBIR systems
have also been built in both industry and academia. However, most of the
previously proposed CBIR systems are not scalable to very large database.
They suffer from performance problem when trying to scale up to a large
database. The main goal of this thesis is to address the performance problem
and investigate some ways to further improve the performance of the CBIR
system.

In this thesis, we first present a novel scalable CBIR scheme using an
emerging data indexing technique, locality-sensitive hashing (LSH), which is
shown to be scalable to high dimensional data. With this indexing technique,
our CBIR system can retrieve image without much degradation (∼ 5%) on
accuracy when comparing with exhaustive linear search with Euclidean dis-
tance measure. We propose a parallel and distributed scheme which not only
can address the problems of applying LSH in CBIR but also can significantly
improve the responsiveness of the CBIR system.

We then present a comprehensive empirical performance evaluation of
the proposed CBIR system over one million images. To the best of our
knowledge, there are very limited empirical studies on such large-scale CBIR
evaluation. Our empirical results show that our proposed solution is able to
scale for a million of images, which is promising for building Web-scale CBIR
systems.

Next, we propose a novel image near-duplicate detection system for effi-
cient near-duplicate image retrieval. This system adopts the Scale Invariant
Feature Transform (SIFT) descriptor to describe image features and Exact
Euclidean Locality-Sensitive Hashing (E2LSH) to index the descriptors. To
further improve the performance of the system, we propose a new matching
strategy and a new verification process that are not adopted by other im-

ii

age near-duplicate detection system. The resulting accuracy is high and the
system’s response time is short even for databases of millions of keypoints.

Furthermore, we study the invariant local feature descriptors which have
recently been widely employed in many computer vision applications, includ-
ing image retrieval and object recognition. To realize their real performance,
we have performed an empirical performance evaluation on some state-of-the-
art descriptors. Then, we propose a new feature descriptor which extends
the SIFT descriptor to achieve background and object color invariance. It
commonly happens that images of the semantic topic differ with background
and object color. Thus our feature descriptor is particularly useful for seman-
tic search in CBIR. The performance evaluation shows that our descriptor
performs better than others on datasets that capture changes in background
and object color.

iii

摘要

 基於內容的圖像檢索(CBIR)是從 90年代初期開始在多媒體社區非常活躍的研究題目。到現在為止，已經有很多 CBIR系統在工業界和學術界被建立了。 然而，大多以前提出的 CBIR系統並不適用於非常大的資料庫。當它們被用於大資料庫時，它們會有很大的效能問題。這份論文的主要目標是設法解決 CBIR系統的效能問題和調查一些方法進一步改進 CBIR系統表現。

 在這份論文，我們首先提出一個新穎的、適用於大資料庫的 CBIR解決方案，這個方案使用了一個斬新的、被證明就算被用於高維資料庫也能保持高效能的資料索引技術，LSH。透過這個資料索引技術，我們的 CBIR系統可以以不差於線性搜索 5個百分比的準確性來進行圖像檢索。我們提出了一個不僅能解決 LSH的使用問題，而且可以明顯地加快 CBIR系統的並聯和分佈式的解決方案。

 然後我們會對我們提出的CBIR系統在一百萬個圖像資料庫上運行的表現進行了一個全面的效能評估。就我們所知，學界裡很少有對 CBIR系統在這樣大型的圖像資料庫上運行作全面的效能評估報告。我們實驗結果表示，我們的提議解決方案能為成千上萬的圖像作快速圖像檢索。這為我們將要建造的、用來檢索互聯網上的圖像的 CBIR系統帶來希望。

 其次，我們提出一個新穎的高效率圖像近複製檢測系統。這個系統採取 SIFT圖像特點描述技術來描述圖像特點和使用高效能資料索引技術 LSH來索引這些圖像特點。為進一步改進系統的表現，我們提議了一個未曾在其他近複製圖像檢測系統中找到的配比度量和結果核實過程。我們的系統既有高度的準確性，就算在成千上萬的圖像特點資料庫上亦有很短的反應時間。

 除此之外，我們研究了最近在許多電腦視覺應用程序(包括圖像檢索和物件辨認)廣泛使用了的特點描述技術。 為了知道他們真正的表現，我們對一些最新的描述技術進行了一個表現評估。然後，我們提議擴大 SIFT描述技術以達到背景和物件顏色不變性。在同一語意題目之下的圖像裡面有形狀一樣而僅著色不同的物件與背景是很常見的。因而我們的特點描述技術對語義查尋是特別有用的。表現評估表示，我們的描述技術比其他執行在擁有形狀一樣而僅著色不同的物件與背景的圖像的資料集更好。

iv

Acknowledgement

First of all, I would like to give wholehearted thanks to my supervisor, Prof.
Michael R. Lyu, who has given me a lot of support, guidance, and advices
throughout the past three years.

I would also like to sincere thanks to my fellow research partner, Steven
Hoi, who always kindly gives me helping hand to my research.

Moreover, I would like to thanks Prof. Irwin King and Prof. Leo Jia for
being my internal examiners.

Last but not least, I want to give thanks to my dear friends and fellow
colleagues, Pat Chan, Alan Chu, Albert Lam, Oscar Leung, Stephen Leung,
KK Lo, Edith Ngai, Brian Tsui, Peng Xiang, Eric Yu, and many others. The
days we study together are happy and full of joy. I really enjoy the time with
them.

v

This work is dedicated to my family for their continuous encouragement.

vi

Contents

Abstract ii

Acknowledgement v

1 Introduction 1
1.1 Overview . 1
1.2 Contribution . 3
1.3 Organization of This Work . 5

2 Literature Review 6
2.1 Content-based Image Retrieval 6

2.1.1 Query Technique . 6
2.1.2 Relevance Feedback . 7
2.1.3 Previously Proposed CBIR systems 7

2.2 Invariant Local Feature . 8
2.3 Invariant Local Feature Detector 9

2.3.1 Harris Corner Detector 9
2.3.2 DOG Extrema Detector 10
2.3.3 Harris-Laplacian Corner Detector 13
2.3.4 Harris-Affine Covariant Detector 14

2.4 Invariant Local Feature Descriptor 15
2.4.1 Scale Invariant Feature Transform (SIFT) 15
2.4.2 Shape Context . 17
2.4.3 PCA-SIFT . 18
2.4.4 Gradient Location and Orientation Histogram (GLOH) 19
2.4.5 Geodesic-Intensity Histogram (GIH) 19
2.4.6 Experiment . 21

2.5 Feature Matching . 27
2.5.1 Matching Criteria . 27
2.5.2 Distance Measures . 28
2.5.3 Searching Techniques 29

vii

3 A Distributed Scheme for Large-Scale CBIR 31
3.1 Overview . 31
3.2 Related Work . 33
3.3 Scalable Content-Based Image Retrieval Scheme 34

3.3.1 Overview of Our Solution 34
3.3.2 Locality-Sensitive Hashing 34
3.3.3 Scalable Indexing Solutions 35
3.3.4 Disk-Based Multi-Partition Indexing 36
3.3.5 Parallel Multi-Partition Indexing 37

3.4 Feature Representation . 43
3.5 Empirical Evaluation . 44

3.5.1 Experimental Testbed 44
3.5.2 Performance Evaluation Metrics 44
3.5.3 Experimental Setup . 45
3.5.4 Experiment I: Disk-Based Multi-Partition Indexing Ap-

proach . 45
3.5.5 Experiment II: Parallel-Based Multi-Partition Index-

ing Approach . 48
3.6 Application to WWW Image Retrieval 55
3.7 Summary . 55

4 Image Retrieval System for IND Detection 60
4.1 Overview . 60

4.1.1 Motivation . 60
4.1.2 Related Work . 61
4.1.3 Objective . 62
4.1.4 Contribution . 63

4.2 Database Construction . 63
4.2.1 Image Representations 63
4.2.2 Index Construction . 64
4.2.3 Keypoint and Image Lookup Tables 67

4.3 Database Query . 67
4.3.1 Matching Strategies . 68
4.3.2 Verification Processes 71
4.3.3 Image Voting . 75

4.4 Performance Evaluation . 76
4.4.1 Evaluation Metrics . 76
4.4.2 Results . 77
4.4.3 Summary . 81

viii

5 Shape-SIFT Feature Descriptor 82
5.1 Overview . 82
5.2 Related Work . 83
5.3 SHAPE-SIFT Descriptors . 84

5.3.1 Orientation assignment 84
5.3.2 Canonical orientation determination 84
5.3.3 Keypoint descriptor . 87

5.4 Performance Evaluation . 88
5.5 Summary . 90

6 Conclusions and Future Work 92
6.1 Conclusions . 92
6.2 Future Work . 93

A Publication 94

Bibliography 95

ix

Chapter 1

Introduction

1.1 Overview

Content-based image retrieval (CBIR) has been a very active research topic
in multimedia community since the early 1990s. In general, a CBIR system at
least consists of four modules: data acquisition and processing, feature rep-
resentation, data indexing, query feedback processing. In the past decades,
many techniques for feature representation, relevance feedback, and multidi-
mensional indexing have been proposed. A lot of CBIR systems have also
been built in both industry and academia. These includes IBM’s QBIC [41],
Virage [2], MIT’s Photobook [42], etc. Some of them [42] are designed to
work in small image database (100− 10, 000) only and are thus not scalable
to database as large as 1 million images. In those systems, simple exhaustive
linear search suffices to provide prompt searching performance. Other sys-
tems [9, 11, 26] employ dimension reduction techniques like Karhunen Lòeve
Transform (KLT) to reduce the dimension of the high dimensional feature
vector prior to applying traditional multidimensional indexing techniques on
the database. Although these systems can perform similarity search in fast
speed, the dimension reduction step has already significantly deteriorated the
accuracy of the system. Therefore, most of the previously proposed CBIR
systems are not scalable to very large databases. They suffer from perfor-
mance problems when trying to scale up to a large database. Recently, a
promising indexing technique, Locality-Sensitive Hashing (LSH), was pro-
posed for solving the near neighbor search in high dimensional spaces effi-
ciently and accurately [6, 19]. However, there have been no research studies
employing LSH in CBIR systems for indexing image contents in the previous
years.

In a web-scale CBIR system that provides web search service, one of the
important issue is on filling the database using the World Wide Web as a

1

CHAPTER 1. INTRODUCTION 2

logical repository. A common way to obtain the web images from the World
Wide Web is to use web image crawlers. During web image crawling, it is
not difficult to encounter some web pages that contain images that are nearly
the same. For instance, you may easily find multiple sizes of the same image
in some photo sharing web sites. The contents of near-duplicate images are
very similar and thus these images are likely to be returned together in CBIR
search. If the images crawled from the Internet are not filtered before they are
used to build the image database of the CBIR system, users of CBIR systems
may easily get spammed with near-duplicate images when they submit search
queries. This is not desirable since users of CBIR system would not like to
see the same image appearing repeatedly when they are searching for images
of certain semantics. In other words, users will not be interested in seeing
the multiple versions of the same image unless they are interested in that
image. Thus, removing the near-duplicate images is critical in improving the
quality of CBIR search. An image near-duplicate (IND) detection system
[5, 23, 57] is a kind of system that can achieve this purpose.

Previously developed INDs are mostly designed to detect copyrighted im-
ages but not in improving the quality of CBIR search. Berrani [5] proposed
an IND detection system employing local differential descriptors and approx-
imate similarity search. Yan Ke [23] proposed to use PCA-SIFT invariant
local feature descriptors and LSH. According to our performance evaluation,
SIFT-based descriptors [32] outperform other local descriptors in matching
tasks in terms of both the recall and precision rates. Therefore, previously
proposed IND detection systems can be further improved by using this more
powerful feature descriptor. On the other hand, locality-sensitive hashing
has been proved [23] to be effective in finding near neighbors both in accu-
racy and speed. However, the LSH algorithm employed by Yan Ke assumes
L1 (Manhattan) distance in the analysis of near neighbors, which is not as
effective as L2 distance, as shown in [23]. In short, these previously proposed
systems can be further improved by considering SIFT and LSH technique.

Recently, local invariant feature [45, 32, 37] is becoming more and more
popular and there are increasing interests in applying local invariant feature
in CBIR systems. According to our performance evaluation, SIFT local de-
scriptor performs the best in matching tasks among the others. However,
SIFT cannot be directly applied in CBIR which searches for images with a
specific semantic topic. This is because SIFT descriptor is variant to change
in background and object color. For example, two images of the same ob-
ject on two backgrounds with different colors may have very different SIFT
descriptors. Also, two images of the same kind of object but with different
color appearance will have very different SIFT descriptors. Thus, it will be
interesting if we can separate some sharp dependent components from SIFT

CHAPTER 1. INTRODUCTION 3

so that it is more invariant to changing background and object color. When
needed, these shape dependent components can be integrated back to the de-
scriptor to enhance the accuracy of CBIR search for exact individual images,
rather than images under the same semantic topic.

1.2 Contribution

This thesis focuses on designing, implementing, and evaluating a large-scale
content-based image retrieval system. Our main contributions are summa-
rized in the following aspects:

One of our major contributions is to propose a novel scalable CBIR
scheme using an emerging data indexing technique, locality-sensitive hashing,
which is shown to be scalable to high dimensional data. With this indexing
technique, the CBIR system can achieve fast image retrieval by sampling
only a very small subset of data points in the database. In addition to being
fast, our CBIR system can retrieve image without much degradation (∼ 5%)
on accuracy when comparing with exhaustive linear search with Euclidean
distance measure. Applying this technique is not trivial, since there are prob-
lems in applying LSH to index large database. Thus we propose a parallel
and distributed scheme which not only can overcome the problems of LSH
but also can significantly improve the responsiveness of the CBIR system.

The second important contribution in this thesis is a comprehensive em-
pirical performance evaluation of the proposed CBIR system over one million
images. To the best of our knowledge, there are very limited empirical stud-
ies on such large-scale CBIR evaluation. Our empirical results show that our
proposed solution is able to scale for hundreds of thousands of images, which
is promising in building web-scale CBIR systems.

The third contribution in this thesis is to propose a novel image near-
duplicate detection system. This system adopts the state-of-the-art SIFT
feature descriptor with fast LSH retrieval method that makes the system
accurate, fast, and practical. A new verification process, called orientation
verification, on the matched local feature is introduced to improve the recall
and precision of the system. A new empirical distance metric, called K-
NNRatio, that integrates the k Nearest Neighbor algorithm with distance
ratio, is also introduced to improve the system performance.

Furthermore, this thesis proposes a new invariant local descriptor, Shape-
SIFT (SSIFT), which extends Scale Invariant Feature Transform (SIFT) de-
scriptor to achieve background and object color invariance. Experiments
show that our descriptor performs better than other state-of-the-art descrip-
tors on data sets that capture changes in background and object color.

CHAPTER 1. INTRODUCTION 4

Besides the above contributions, the thesis also contributes to an empiri-
cal performance evaluation of the state-of-the-art local invariant descriptors.
This evaluation leads to our choice of feature descriptor in the proposed IND
detection system as our target to be extended to background and object color
invariance.

Figure 1.1: Overview of contribution.

Figure 1.1 shows the overview of our contribution in form of a system
diagram. We contribute to improve the performance of CBIR system in three
major aspects: data acquisition, image description, and feature indexing.
For data acquisition, we have built a web image crawler which crawls web
pages from the World Wide Web and downloads the images linked to the
pages. It first converts the HTML web pages to XML documents and then
it parses the documents for certain XML nodes such as to locate the
URLs of the target images. Image properties such as alternate text, hyperlink
URL, and image file name can aim image search and thus they are also
recorded down. They can be found by parsing the XML nodes and attributes
around the node. We have also built an novel IND detection system
which can filter duplicated images out of the crawled web images. This
system can either be applied on the images retrieved from the same web
site or be applied on images retrieved from a set of related sites. For image
description, we propose to represent the image contents of the duplicate-free
images using their shape, color, and texture features. Alternatively, we can
adopt Shape-SIFT invariant local descriptor to represent the image contents

CHAPTER 1. INTRODUCTION 5

of the images. For feature indexing, we built a parallel and distributed system
which distributes indexing tasks over a cluster of machines and performs
similarity search using LSH indexing technique. Through the web-based
frontend system, user can do search query and provide relevance feedback
simply through a web browser in the client machine.

1.3 Organization of This Work

Chapter 2, “Literature Review”, surveys the research work on CBIR and
reviews the feature detection, description, and matching techniques for in-
variant local feature. It also presents a performance evaluation on some of
the state-of-the-art feature descriptors to find an outstanding technique.

Chapter 3, “A Distributed Scheme for Large-Scale CBIR”, proposes a
scalable content-based image retrieval scheme that uses LSH as the indexing
technique. An extensive performance evaluation on a large image testbed of
one million images is also presented.

Chapter 4, “Image Retrieval System for IND Detection”, presents a novel
IND detection system built using the state-of-the-art invariant local feature
detector, descriptor, and indexing techniques. A new matching strategy and
a new verification process are also proposed to improve the performance of
the IND detection system.

Chapter 5, “Shape-SIFT Feature Descriptor”, suggests a new invariant
local descriptor, SSIFT, which extends the SIFT descriptor to achieve back-
ground and object color invariance.

The thesis concludes in Chapter 6 with discussion of futher research di-
rections on web-scale CBIR.

2 End of chapter.

Chapter 2

Literature Review

2.1 Content-based Image Retrieval

Along with the increasing popularity of digital imaging, web blogging, and
photo sharing, image retrieval in web-scale image databases has attracted
more and more attention in the research community. Through the extensive
studies in both academia and industry in the previous years, two main types
of approaches have been proposed to attack the image retrieval problem,
that is, the problem of retrieving digital images from large databases. The
first type of approach is the metadata-based approach. The metadata-based
approach is a traditional method of image retrieval that makes use of the
metadata of image such as the textual descriptions, captioning, or keywords
to search and retrieve images. However, this method is not practical for large
databases because it relies on manual image annotation which is expensive
and time-consuming. Because of this limitation, there is a growing interest in
solving the image retrieval problem using the second type of approach, which
is the content-based approach [27]. The content-based approach performs
the search based on the analysis of the contents of an image. Since the
contents of the image can be automatically derived from the image itself,
the content-based approach has the advantage of not relying on any manual
image annotation.

2.1.1 Query Technique

Query to content-based image retrieval system (CBIRS) is usually made by
providing an example image. This query technique is called query by example
(QBE). The example image can either be supplied by the user or chosen
from a random set provided by the system. Given the example image, the
system then engages its contents on performing similarity search to search

6

CHAPTER 2. LITERATURE REVIEW 7

for images that share the same low-level features with the provided example.
In CBIRS, the contents of an image are represented by low-level global image
features. The most commonly used features include color [52], shape [21],
and texture [33]. Before image retrieval can be performed, these features are
extracted from every image in the database. Usually, the features of each
image are then combined into a feature vector which is used as the index
of the corresponding image in the database. During an image retrieval, the
feature vector of the provided example will be first computed. Then, based
on certain similarity measures, a similarity search can be performed over the
feature vectors of all images in the database. One of the most commonly
used similarity measure is Euclidean (L2) distance. It is often used because
of its simplicity and its robustness. Since the database can be very large, a
fast indexing technique is usually employed to speed up the search.

2.1.2 Relevance Feedback

One of the major limitations of CBIR is the semantic gap between high-level
concepts of human and low-level features extracted from images. CBIR bases
its search upon the extracted low-level features which may not fully capture
the high-level concepts specified by the user. Eventually, the user may not get
satisfactory result from the search query. Due to this limitation, relevance
feedback is introduced [48] into CBIRS to narrow down the semantic gap
between high-level concepts and low-level features. Relevance feedback is an
interactive mechanism for the user to progressively refine the search results
by marking the images in the results as “relevant” or “irrelevant” to the
search query and then repeating the search using this additional information.
Through the relevance feedback, the user can obtain her desired images by
interacting with the system in a round-by-round basis.

2.1.3 Previously Proposed CBIR systems

Many CBIR systems have been proposed in the previous years. Some repre-
sentative samples of the systems include IBM’s QBIC [41], Virage [2], MIT’s
Photobook [42], etc. Many surveys on these systems have also been pub-
lished. Three of the comprehensive surveys on CBIR research are [27], [47],
and [50]. Readers can refer to them for more information about CBIR. Some
of these systems, such as Photobook [42], are suitable for searching small
database (100− 10, 000) only and not scalable to database as large as 1 mil-
lion images. Since the size of the database used by these systems is small, a
simple exhaustive linear search is adequate to provide prompt searching per-
formance. Other systems, such as QBIC [11] and the CBIR systems proposed

CHAPTER 2. LITERATURE REVIEW 8

by Lew [26] and Egas [9], employ some dimension reduction techniques such
as principal component analysis (PCA) to reduce the dimension of feature
vectors to below 20 before applying a multidimensional indexing technique on
the dimension-reduced feature vectors. Many traditional multidimensional
indexing techniques are shown to be applicable for these applications, in-
cluding k-d tree [9], R*-tree [11]. Although these indexing techniques are
fast and accurate, the dimension reduction step significantly deteriorate the
system performance.

2.2 Invariant Local Feature

Invariant local features refer to the representations of image contents, at
some particular interesting regions on the images of scenes or objects. These
features are local as they are related to small regions on objects instead
of the whole object. The local property makes feature-based recognition
inherently robust to occlusion and clutter, which are the two serious prob-
lems in recognition using global features. They are usually solved by image
segmentation techniques. However, since the performance of current image
segmentation techniques are still limited, the performance of recognition us-
ing global features is limited, too. On the other hand, local features can
solve these problems easily. Since images of the same object can be taken
in different environmental and instrumental conditions, they are most likely
different but related in content. Differences between these images include
image noise level, change in illumination, scaling, rotation and change in
viewing angle. In order to match two different images of the same object,
the local features should be invariant to these differences. Invariance of a
local feature refers to its ability to tolerate these differences. The extent
of invariance depends on how its representation is designed. A good local
feature should be highly distinctive, which means it should allow for correct
object identification with high probability. However, the more invariance a
feature has, the less distinctive it is. Therefore, there are trade-offs between
invariance and distinctiveness.

Three keys processes involved in feature-based recognition are feature de-
tection, feature description and feature matching. These three processes have
been actively investigated and continuously improved in the last decade. We
will discuss some of the state-of-the-art techniques proposed to improve these
three processes in the following sections. Then we will perform performance
evaluation on feature descriptors in describing features so as to investigate
which techniques outperform the others.

CHAPTER 2. LITERATURE REVIEW 9

2.3 Invariant Local Feature Detector

Since the resolution of an object’s image can be very high, it is not practical in
efficiency, storage and accuracy to take every pixel of the image as a feature
and describe it by a vector. It is more practical to extract only a subset
of pixels from an image to be described. We call this subset of pixels the
interest points. There are two main requirements on a feature detector. First,
corresponding interest points on the object should be repeatedly detected
by the feature detector over different images of the same object. Second,
detected interest points should be distinctive. 2D image windows where
there is some form of 2D texture like corners, are the most distinctive image
patch comparing with other types of image windows. A number of feature
detectors have been proposed to detect 2D windows, which include Harris
corner detector [13], DOG extrema detector [32], Harris-Laplacian detector
[39] and affine covariant region detector [40].

2.3.1 Harris Corner Detector

Harris corner detector [13] is widely used in many image matching tasks to
select regions that have significant gradient change in all directions.

The Auto-Correlation Matrix

This detector analyzes the auto-correlation matrix M of every location in an
image that is computed from image derivatives:

M = g(σI) ∗
[

I2
x(x) IxIy(x)

IxIy(x) I2
y (x)

]
(2.1)

where x is the pixel location vector, Ix(x) is the x-gradient at location x,
Iy(x) is the y-gradient at location x and g(σI) is the gaussian kernel of scale
σI .

Eigenspace Analysis

A point is located at a corner if its corner response is large. The corner
response R can be computed from matrix M by the following equation:

R = Det(M)−K × Trace(M)2

= I2
xI2

y − (IxIy)
2 −K × (Ix + Iy)

2

where K is an empirical constant ranging from 0.04 to 0.06.

CHAPTER 2. LITERATURE REVIEW 10

Non-Maximal Suppression

To reduce the amount of corners detected, a corner should not be captured
by more than one interest point. This objective can be achieved by non-
maximal suppression which removes candidate points that are not the local
maxima of R within its local neighborhood:

R(x) > R(xw)∀xw ∈ W ∧R(x) > threshold

where W denotes the 8-neighborhood of the point x.

2.3.2 DOG Extrema Detector

DOG Extrema Detector is proposed by Lowe [32, 31] to detect SIFT features.
It extracts interest points with a cascade filtering approach in which the more
expensive operations are applied only at locations that pass all prior tests.
The major steps of generating interest point from an image are discussed in
the following sections.

Scale-Space Extrema Detection

DOG Extrema detection identifies the locations and scales of the interest
point that can be repeatedly detected under different views of the same
object. As the interest point can be repeatedly detected, we will call it
stable features. Detecting stable features that are invariant to locations is
achieved by searching for most of the locations over the image. To extend
its invariance to scales, all possible scales of the image are searched instead
of one scale only.

The scale space of an image which is defined as a function, L(x, y, σ), can
be prepared by repeatedly convolving the initial image with a variable-scale
Gaussian function G(x, y, σ):

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

L(x, y, σ) = G(x, y, σ) ∗ I(x, y)

To efficiently detect stable interest point locations in scale space, Lowe
proposed [31] using scale-space extrema in the difference-of-Gaussian func-
tion, D(x, y, σ), which can be computed from the difference of two nearby
scales of smoothed images, L(x, y, σ), separated by a multiplicative factor k.

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) = L(x, y, kσ)− L(x, y, σ)

CHAPTER 2. LITERATURE REVIEW 11

Figure 2.1: A diagram illustrating how differences of gaussian images are
prepared from the initial image. The initial image is repeatedly smoothed
by Gaussian function, which is shown on the left. Adjacent Gaussian images
are subtracted to produce the difference-of-Gaussian images, which is shown
on the right.

CHAPTER 2. LITERATURE REVIEW 12

The scale space of the input image is prepared in the way illustrated by
Figure 2.1. The difference-of-Gaussian function has been proved to be a close
approximation to the scale-normalized Laplacian of Gaussian. Therefore,
finding extrema in difference-of-Gaussian space is approximately equivalent
to finding extrema in Laplacian space. After the scale space has been pre-
pared, each sample point is compared to its eight neighbors in the current
image and nine neighbors in the scale above and below in order to detect the
extrema of D(x, y, σ).

The advantage of searching interest points over a complete range of scales
is that both small interest points and large interest points are detected. Small
interest points help solving occlusion problem while large interest points con-
tribute to the robustness of the system toward noise and image blur.

Interest Point Localization

The second step is to reject the interest points that have low contrast or are
localized along an edge. Low contrast interest points are rejected because
they are sensitive to noise. Interest points localized along an edge are also
rejected because they in general do not make significant differences with
nearby points.

To reject interest points with low contrast, the scale-space function value
at each extremum, D(x̂), is examined:

D(x̂) = D +
1

2

δD

δx

T

x̂

For the experiments done by Lowe in [32], all extrema with a value of
|D(x̂)| less than 0.03 were discarded.

To reject interest points on edges, Hessian edge detector is applied. The
difference-of-Gaussian function, D, will have a large principal curvature across
the edge but a small one in the perpendicular direction. Hessian matrix, H,
can be computed at the location and scale of the interest point by:

H =

[
Dxx Dxy

Dxy Dyy

]

The derivatives, Dxx, Dxy and Dyy, can be estimated by taking differences
of neighboring points around the sampling interest point.

The eigenvalues of H are proportional to the principal curvatures of D.
Thus, the ratio of the two eigenvalues reflects whether the interest point is on
the edge or not. The solution can be simplified by just checking the following
condition:

CHAPTER 2. LITERATURE REVIEW 13

Tr(H)2

Det(H)
<

(r + 1)2

r

For the experiments done by Lowe in [32], all extrema having a ratio
between the principal curvatures greater than 10 are discarded.

2.3.3 Harris-Laplacian Corner Detector

Mikolajczyk et al. [39] proposed another detector for detecting scale invariant
interest points. It is called Harris-Laplacian corner detector. This detector
first computes a set of images represented at different levels of resolutions
(pyramid) for Harris corner detector. It then selects points at which the
normalized Laplacian is maximal over scales. Mikolajczyk et al. observed
that the amplitude of spatial image derivatives decreases with scale. Thus
the derivative function must be normalized according to the scale of the
observation. They modify the Harris corner detector such that it can be
applied over the scale-space.

Auto-Correlation Matrix for Scale-Space

The detector analyzes the auto-correlation matrix M of every location in an
image that is computed from normalized image derivatives:

M = σ2
Dg(σI) ∗

[
I2
x(x, σD) IxIy(x, σD)

IxIy(x, σD) I2
y (x, σD)

]
(2.2)

Equation 2.2 differs from Equation 2.1 by the differentiation scale σD. Ix(x, σD)
and Iy(x, σD) represents the image derivative computed over an image ob-
tained by convolving the full-size image with Gaussian kernels of scale σD.
The image derivatives are normalized by multiplying with σ2

D that is propor-
tional to the scale of the target image.

Scale Selection

After localizing points in 2D space using Harris corner detector, the candi-
date points are subjected to scale maxima detection. For each level of the
scale-space, the detector applies the non-maximal suppression to reduce the
amount of candidate points. Then for each of the candidate points found on
different levels, it is verified if it is the maximum in Laplacian in the scale
direction. The Laplacian F of a point x is defined by:

F(x, σD) = |σ2
D(Lxx(x, σD) + Lyy(x, σD))|

CHAPTER 2. LITERATURE REVIEW 14

Candidate point x at scale σDn is the maximum in Laplacian in the scale
direction if the following condition is satisfied:

F(x, σDn) > F(x, σDn−1) ∧ F(x, σDn) > F(x, σDn+1)

where σDn−1 is a sampled scale just smaller than σDn and σDn+1 is a sampled
scale just larger than σDn.

2.3.4 Harris-Affine Covariant Detector

Harris-affine covariant detector is an advance of the Harris-Laplacian detec-
tor. This detector can detect the same elliptical regions on images even if
the object in the images is taken with significant different viewpoints. this
makes feature description later in the recognition process invariant to changes
of viewpoint. The detected regions are covariant to the affine transformation
of object and thus this detector is called affine covariant detector.

Harris-affine covariant detector is based on affine normalization around
Harris points. After a set of interest points are detected by Harris-Laplacian
detector, iterative estimation of elliptical affine regions around the interest
points are carried out. The estimation is done by determining the transforma-
tion that converts the interest region to the one with equal eigenvalues. The
transformation can be computed by the square root of the auto-correlation
matrix M1/2. Points x inside the interest region can then be normalized by
the transformation:

x′ = M1/2x

After projecting every point inside the interest region to a new position,
the auto-correlation matrix is computed again and transformation of interest
region to the one with equal eigenvalues is carried out again. This process
proceeds until the auto-correlation matrix has equal eigenvalues. When all
interest regions are normalized, corresponding regions differ only by a simple
rotation. Thus, regions detected from an image are now invariant to the
affine transformation.

Figure 2.2: This figure shows an example of the elliptical affine region and
the normalized region. The transformation matrix A = M1/2 projects x to
x′ such that the eigenvalues of the auto-correlation matrix are equal.

CHAPTER 2. LITERATURE REVIEW 15

2.4 Invariant Local Feature Descriptor

Given the interest points detected by the feature detector, the remaining task
is to describe them for matching and recognition later. Distribution-based
descriptors are shown [22] to be superior to other types of descriptors such as
differential descriptors in recognition task. A distribution-based descriptor
is a histogram representing in the form of a feature vector to capture the
distribution of the image context such as pixel intensity, edge point, gradient
location and orientation. In this section, five state-of-the-art descriptors
are discussed. They are SIFT [31, 32], shape context [4], PCA-SIFT [45],
GLOH [38] and GIH descriptors [29]. SIFT descriptor is a 3D histogram of
gradient location and orientation direction. Shape context descriptor is a
2D histogram of edge points’ locations. Schmid et al. [38] improved shape
context to include also the distribution of orientations. PCA-SIFT descriptor
is a vector of coefficients of the base image gradient patches obtained by
PCA. GLOH descriptor is an extension of SIFT descriptor and is reduced in
dimension by PCA. GIH is a geodesic-intensity histogram that is invariant
to non-affine deformation.

2.4.1 Scale Invariant Feature Transform (SIFT)

The most important considerations of a feature descriptor are invariance
and distinctiveness. SIFT descriptor is a carefully designed representation
of image patch that is highly invariant to changes in scale, orientation and
illumination, and is partially invariant to 3D viewpoints. SIFT descriptor
is originally designed to use DOG extrema detector to detect interest points
such that the descriptor is invariant to scale changes. SIFT descriptor allows
feature positions to shift significantly without large changes in the descriptor
and thus it can achieve partial invariance to affine distortion and changes in
3D viewpoints. Schmid et al. [38] further enhances its invariance to changes
in 3D viewpoints by replacing the DOG extrema detector by harris-affine
covariant detector. Although the average recall rate is lower, the descriptor
showed significant improvement in detecting affine features under large affine
distortion.

Orientation Assignment

For each interest point of each image sample L(x, y) in a particular scale, the
gradient magnitude m(x, y) and orientation θ(x, y) are obtained using pixel
differences:

CHAPTER 2. LITERATURE REVIEW 16

Figure 2.3: Computation of a feature descriptor based on the gradient and
orientation of each image sample point in a region around the feature.

m(x, y) =
√

(L(x + 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2

θ(x, y) = tan−1 L(x, y + 1)− L(x, y − 1)

L(x + 1, y)− L(x− 1, y)

The gradient and orientation information of each interest point can then
be used to construct the feature descriptor.

Descriptor Representation

The computation of the feature descriptor is illustrated in Figure 2.3. The
approach is to create orientation histograms over 4×4 sample regions around
the interest locations. Each histogram contains 8 orientation bins which is
the Gaussian-weighted average of the gradient vectors over the corresponding
region. For the case illustrated in Figure 2.3, a 32-element feature vector
can be obtained for each interest point. Lowe has shown in experiments
that a 4 × 4 array of histogram with 8 orientation bins in each would yield
the best result. Since the orientation histograms are created over 4 × 4
regions instead of over every pixel, the descriptor is robust against significant
changes in gradient position and thus it is partially invariant to changes in
3D viewpoints.

To make the descriptor further invariant to illumination changes, the
descriptor is normalized to unit length. This totally cancels the effect of

CHAPTER 2. LITERATURE REVIEW 17

Figure 2.4: Figure illustrating how the bins of shape context is distributed
around a given edge point. Belongie et al. [4] use five bins for quantizing
distance between the rest of the edge points from the given edge point and
12 bins for quantizing the angle between them.

affine changes in illumination.

I(x) = aI ′(x) + b (2.3)

Equation 2.3 shows how an original pixel’s intensity I ′(x) at position x is
changed by affine illumination. Assume the constants a and b are the same
within a small local region of an image, then the image derivative Ix will not
be affected by the inter-reflection light term b. That is,

Î(x) =
aIx(x)

a
∑

x∈W Ix(x)
=

Ix(x)∑
x∈W Ix(x)

(2.4)

where W is the set of points within the concerned local region. Equation 2.4
showed that the image derivative does not depend on the constant a. Since
the SIFT descriptor is created solely using image derivative, it is invariant
to affine changes in illumination.

2.4.2 Shape Context

Shape context is a shape descriptor that describes the distribution of the
rest of the shape with respect to a given edge points on the shape. It is
a histogram of the relative positions of all other edge points in the image.
Edge points here refer to a set of points sampled from the shape contours
of the target object using edge detector. Shape context uses bins that are
uniform in log-polar space to emphasize close-by, local structure as shown in
Figures 2.4 and 2.5. In the original design of shape context, a histogram hi

is computed by simply counting the number of edge points within a bin:

hi = #{q 6= pi : (q − pi ∈ bin(k)}

CHAPTER 2. LITERATURE REVIEW 18

Figure 2.5: Figure showing the shape context histograms of three edge points.
Darker bins indicate larger number of edge points are located inside the bins.
The first and second histograms are very similar because the edge points they
represent are similar while the third histogram is very different.

In the modified design by Schmid et al. [22], weight is assigned to the con-
tribution of each point based on its gradient magnitude and orientation of
edge points, which are also captured into the histogram. This makes shape
context descriptor very similar to SIFT and GLOH descriptors.

Since shape context is a histogram computed from edge points, it is invari-
ant to changes in illumination. To make shape context descriptor invariant
to orientation, the feature detector has to help aligning the dominant orien-
tation of the local patch to a canonical direction.

2.4.3 PCA-SIFT

PCA-SIFT descriptor is a vector of coefficients of the base image gradient
patches obtained by PCA. It can be created in the following steps:

For each interest point,

1. Locate the 41× 41 image patch around the point at the correct scale.

2. Rotate the patch to align its dominant orientation to a canonical di-
rection in the same manner as SIFT.

3. Compute the Image gradients of the patch.

4. Create a vector by concatenating both horizontal and vertical gradient
maps.

CHAPTER 2. LITERATURE REVIEW 19

5. Normalize the vector to unit magnitude and make it invariant to changes
in illumination.

6. Project the vector into a pre-computed eigenspace to derive a feature
vector. The eigenspace can be pre-computed by applying PCA to the
gradient patches in a set of training images.

Although creating PCA-SIFT descriptor is much simpler than creating
SIFT, PCA-SIFT has been shown to have similar accuracy with SIFT in
recognition [22] and run a lot faster than SIFT because of its much lower
dimension. The success of PCA-SIFT lies in the fact that the patches sur-
rounding the interest points all share some characteristics such as centering
at the local extremum in the scale-space and orientated to the canonical di-
rection. However, since the dimension of PCA-SIFT is very small (dim = 20),
it is worthwhile to evaluate its performance when the database of features
increases significantly.

As implied by the steps of creating PCA-SIFT, PCA-SIFT descriptor is
invariant to orientation and changes in illumination in the same way as SIFT.

2.4.4 Gradient Location and Orientation Histogram
(GLOH)

GLOH is an extension of the SIFT descriptor and is an advance version
of PCA-SIFT and shape context. The same as SIFT, GLOH describes the
gradient orientations of the image patches. Instead of sampling gradient
orientations in a rectangular grid, GLOH samples them in a log-polor location
grid like the one used in shape context descriptor. The histogram of each
interest point consists of 17 location bins with 16 orientation bins in each.
This gives a 272-bin histogram. PCA is then applied to reduce the dimension
of GLOH descriptor to 128.

2.4.5 Geodesic-Intensity Histogram (GIH)

GIH is a novel local descriptor that is invariant to deformation based on the
fact that the pixel intensity and geodesic distance are invariant to deforma-
tion. Geodesic distance is the distance of the shortest path between two
points on the embedded surfaces. It is defined as:

d =

∫ b

a

√
(1− α)2x2

t + (1− α)2y2
t + α2I2

t dt

where a and b represent the coordinates of the two points on the embedded
surfaces and the subscripts denote partial derivatives, e.g., xt = dx/dt. Ling

CHAPTER 2. LITERATURE REVIEW 20

proved [29] that the geodesic distance of two points remains unchanged after
deformation when α −→ ∞. Geodesic distance for 1-D image is illustrated
in Figure 2.6. GIH descriptor is created in the following steps:

Figure 2.6: Deformation invariance for 1-D images (Figure from [29]).

For each interest point p0 = (x0, y0),

1. Apply fast marching algorithm to compute the points with identical
geodesic distances from p0 at intervals of δ. The aggregate of these
points are called level curve.

2. Sample points from each level curve at intervals of δ.

3. Create a 2D intensity-geodesic distance space with intensity and geodesic
distance as the two dimensions.

4. Insert all sampled points into the histogram according to its intensity
and geodesic distance.

5. Normalize the geodesic distance dimension and then normalize the his-
togram as a whole.

CHAPTER 2. LITERATURE REVIEW 21

Ling has made a good attempt to enhance local descriptor for deformation
invariance. However, since images are defined on discrete grids, pixels in
between two points can merge together to be a few pixels only. In this case,
the discrete geodesic distance will vary a lot due to deformation. Refer to
figure 2.7.

Figure 2.7: Figure illustrating discrete geodesic distance can fail. Due to
discrete sampling of image pixels, the geodesic distance between points a
and b is large in the image on the left and small in the deformed image on
the right.

2.4.6 Experiment

In this experiment, we aim to compare the performances of the top three
local descriptors: SIFT, PCA-SIFT and GLOH. In each experiment, each
descriptor will describe both the Harris-affine covariant region and the Harris-
Laplacian region. This allows us to compare the performance of Harris-affine
covariant detector and Harris-Laplacian detector in matching at the same
time. Our experiment only evaluates the accuracy but not the computational
time of the local descriptors. At last, we will rank the descriptors based on
the experiment we carried out.

Data Set

The data set used in our experiment is obtained from Visual Geometry
Group1. We employed this data set to evaluate the performance of the four
descriptors. Shape context is quite similar to GLOH and thus we evaluated
the performance of GLOH only. For each set of images of the same scene, we
selected two images as the image pair. The images we have used are shown
in Figure 2.8

1http://www.robots.ox.ac.uk/ vgg/research/affine

CHAPTER 2. LITERATURE REVIEW 22

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 2.8: (a) & (b) Bark image sequence. (c) & (d) Leuven image sequence.
(e) & (f) Wall image sequence. (g) & (h) Graf image sequence. (i) & (j) Bikes
image sequence (A small portion).

CHAPTER 2. LITERATURE REVIEW 23

Evaluation Criterion

We adopted the evaluation criterion used in [22, 45]. It counts the number
of correct matches and the number of false matches obtained for an image
pair. We want a local descriptor to have a large number of correct positives
and a small number of false positives. Two regions are matched if the Eu-
clidean distance between the two descriptors are below a threshold t. For the
elliptical regions detected by Harris-affine covariant detectors, two regions
are matched if the overlap error ε defined in [22, 40] is less than 0.4. If the
match agrees with the ground truth, the match is classified as correct match;
otherwise, it is false match. The transformation between each image pair can
be described by a homography which can be used as the ground truth. The
results are plotted in forms of recall versus 1-precision curves. The values
of ε and t are varied to obtain the curves. Recall is defined as the number
of correct matches over the number of possible correct matches in the image
pair:

recall =
#correctmatches

#correspondences

1-precision is defined as the number of false matches over the sum of the
number of matches:

1− precision =
#falsematches

#correctmatches + #falsematches

Experimental Results

Four common transformations in images are evaluated in this experiment.
They are scale change and rotation, illumination change, viewpoint change
and image blur. For each transformation, a recall versus 1-precision graph is
plotted.

1. Scale change and rotation. We used the image pair shown in Figure
2.8(a),(b) to evaluate the performance for scale change and rotation.
Result is shown in figure 2.9. As observed from the figure, description
using Harris-affine covariant regions performs better than using non-
affine covariant regions, and SIFT descriptor performs the best.

2. Illumination change. We used the image pair shown in Figure
2.8(c),(d) to evaluate the performance for illumination change. The
result is shown in figure 2.10. These images are obtained by changing
the camera setting likes exposure. As observed from the figure, all the
descriptors under test are robust to illumination changes. The reason
is that all of them use the same illumination normalization technique.

CHAPTER 2. LITERATURE REVIEW 24

Nevertheless, we observed that SIFT descriptor remains the best among
the three descriptors and Harris-Laplacian detector performs better
than Harris-affine covariant detector. PCA-SIFT descriptor performs
very well at high precision but the recall rate does not increase much
when precision is less.

3. Viewpoint change. We used two image pairs shown in Figure 2.8(e),(f)
and Figure 2.8(g),(h) to evaluate the performance for viewpoint changes.
The result is shown in Figures 2.11 and 2.12. Viewpoint change in the
wall image pair are less than those in the graf image pair. As observed
from the figures, for the wall image pair, SIFT descriptor based on
Harris-Laplacian detector performs the best, while for the graf image
pair, SIFT descriptor based on Harris-affine covariant detector per-
forms the best. This illustrates Lowe’s SIFT descriptor itself is in-
variant to small amount of viewpoint changes and retains the highest
distinctiveness. For high amount of viewpoint changes, performance of
Lowe’s SIFT descriptor drops significantly. However, when used with
Harris-affine covariant detector, its performance is improved a lot. We
observed that Harris-affine covariant detector really helps improve the
robustness of descriptor. Yet this improvement may be limited only to
cases with large viewpoint changes.

4. Image blur. We used the image pair shown in Figure 2.8(i),(j) to
evaluate the performance for image blur. Blur effect is introduced to
the image by adjusting the camera focus. The result of the experiment
is shown in Figure 2.13. Both SIFT and PCA-SIFT descriptors perform
well in this image pair. PCA-SIFT, again, performs very well at high
precision but SIFT is better at lower precision.

Conclusion

From these experiments, we arrived at this conclusion: SIFT > GLOH >
PCA-SIFT. SIFT descriptor is the best among the three descriptor in most
of the cases. SIFT always performs slightly better than GLOH, so GLOH
descriptor is only the second best. PCA-SIFT descriptor always performs
very well at high precision requirement but not at lower precision so it is
ranked the third. This fact does not depend on the types of interest regions.

CHAPTER 2. LITERATURE REVIEW 25

Figure 2.9: Experimental Result for scale change and rotation on bark image
sequence.

Figure 2.10: Experimental Result for illumination change on leuven image
sequence.

CHAPTER 2. LITERATURE REVIEW 26

Figure 2.11: Experimental Result for viewpoint change on wall image se-
quence.

Figure 2.12: Experimental Result for viewpoint change on graf image se-
quence.

CHAPTER 2. LITERATURE REVIEW 27

Figure 2.13: Experimental Result for image blur on bikes image sequence.

2.5 Feature Matching

A distribution-based descriptor represents local context in the form of a his-
tograms. Thus, in comparing two descriptors, we can consider the distance
measures commonly adopted in comparing two histograms. There are two
main types of distance measures: bin-by-bin dissimilarity measures and cross-
bin measures. Bin-by-bin dissimilarity measures only compare the contents
of corresponding bins of two histogram while cross-bin measures also com-
pare the non-corresponding bins. Recently, a cross-bin measure is proposed
by Haibin Ling [30] and it is claimed that it significantly improves the orig-
inal SIFT feature matching approach. In this section, we will introduce
some of these distance measures, including those adopted in comparing the
local descriptors. Then we will introduce some common feature matching
techniques. We assumed there are two histograms: X = (x1, x2, ..., xn) and
Y = (y1, y2, ..., yn). Histogram Y is one of the histogram stored in a database
that histogram X will match with.

2.5.1 Matching Criteria

There are three common criteria in determining whether a feature matches
with another feature:

1. Similarity Threshold. Two features are matched if the distance between
the two features are below an absolute threshold. Each feature may
have more than one match under this matching criterion.

CHAPTER 2. LITERATURE REVIEW 28

2. Nearest Neighbor with threshold. Feature A matches with feature B
in a database if B is the nearest neighbor of A among other features in
the database and the distance between them is lower than a threshold.

3. Nearest Neighbor Distance Ratio. Feature A matches with feature B
in a database if B is the nearest neighbor of A among other features in
the database and the distance between them is lower than the distance
between A and the second nearest neighbor in the database by a mul-
tiply constant. This criterion is shown to give higher precision to the
above two methods in [22].

2.5.2 Distance Measures

Dissimilarity of two features is evaluated by measuring the distance between
them.

Minkowski Distance

The Minkowski distance of order p (p-norm distance) is defined as:

dp(X,Y) = (
∑

i

|xi − yi|p)
1
p

2-norm distance is the Euclidean distance. This is the most common distance
measures used in comparing local descriptors. SIFT, GLOH, PCA-SIFT and
GIH adopt this distance measure.

Histogram Intersection

Histogram intersection is defined as:

d(X, Y) = 1−
∑

i min(xi, yi)∑
i yi

For 2-D histogram, the distance is related to the area of intersection of two
input histograms. The distance is normalized by the area of histogram Y .
This distance measure is adopted by the color histogram proposed by Swain
et al. [52].

χ2 Statistic

χ2 Statistic is defined by:

d(X, Y) =
∑

i

(xi −mi)
2

mi

,mi =
xi + yi

2

This distance measure is adopted by Shape context descriptor.

CHAPTER 2. LITERATURE REVIEW 29

Quadratic-form Distance

Quadratic-form distance is a cross-bin distance. Assume X and Y are his-
tograms expressed in the form of column vectors. It is defined as follows:

d(X, Y) = (X − Y)T A(X − Y)

where A is a similarity matrix A = [aij] and aij is the similarity between bins
i and j, which can be defined as:

aij = 1− dist(i, j)

distmax

This distance is commonly used in matching color histograms.

2.5.3 Searching Techniques

Exhaustive Search

Each feature in an image is matched with all features in another image or in
the database. This is the most simplest method but it involves a brute-force
computation of all distances and its complexity is very high.

k-D Tree

k-D tree is a binary space partition which recursively partitions the feature
space at the mean in the dimension with the highest variance. k-D tree is a
commonly used data structure for nearest neighbor query and range query.
However, the performance of this structure is poor if the dimension of the
data entries is high. A modified version called Best-Bin First tree is used by
Lowe to match SIFT features.

Locality-Sensitive Hashing

Locality-Sensitive Hashing (LSH) is first proposed by Indyk & Motwani [19]
and further improved in [6]. Locality-sensitive hashing is designed to pro-
vide a solution for high-dimensional near neighbor problem. It can answer
queries in sublinear time with each near neighbor being reported with a fixed
probability. This hashing scheme differs from other kinds of hashing in that
under this scheme, the probability that two points share the same hash value
decreases with the distance between them. This makes it suitable for feature
matching purpose, in which features similar to the query feature should be
returned.

CHAPTER 2. LITERATURE REVIEW 30

According to [6], LSH family is defined as a family H = {h : S → U}.
If for any q, the function p(t) = Pr[h(q) = h(v) : ||q − v||2 = t] is strictly
decreasing in t. That is, the probability of a collision of points q and v is
decreasing with the distance between them. Then, for any points, q, v, u,
with v within the ball of radius R centered at q while u is not, we would have
p(||q − v||2) > p(||q − u||2). In other words, we could hash the points from
the dataset into some domain U , and at the query time compute the hash of
q and consider only the points with which q collides.

To shorten the search time, the gap between the collision probabilities for
the range [0, R] and the range (R,∞) is usually amplified. The commonly
adopted method is to concatenate several functions h ∈ H. By concatenating
k such functions, we obtain a function family G = {g : S → Uk} such that
g(v) = (h1(v), ..., hk(v)), where hi ∈ H. On the other hand, to increase the
accuracy of near neighbor search, usually more than one such function family
are used to hash the data points. Thus, usually LSH algorithm chooses L
functions g1, ..., gL from G, independently and uniformly at random. During
the creation of the LSH hash tables, the algorithm stores each data point
in the dataset into buckets gj(v), for all j = 1, ..., L. Then, during the
processing of a query q, the algorithm searches all buckets g1(q), ..., gL(q).
For each point v found in a bucket, the algorithm computes the distance
from q to v, and reports the points if and only if ||q − v||2 ≤ R where v is
said to be the R-near neighbor.

E2LSH (Exact Euclidean LSH) [1] is a package that implements the
above LSH algorithm and can be used to solve the nearest neighbor problem.
It can ensure point p satisfying ||q−p||2 ≤ R has to be reported with certain
probability.

Under the implementation of E2LSH, each hash function ha,b(v) : <d →
Z maps a d dimensional vector v onto the set of integers. The hash function
ha,b is given by ha,b(v) = ba·v+b

w
c where a is a d dimensional vector with

entries chosen independently from a Gaussian distribution and b is a real
number chosen uniformly from the range [0, w]. In words, the hash function
first projects each vector to the real line through the dot product a · v. It
then divides the real line into equi-width segments of appropriate size w and
assign hash values to vectors based on which segment they project onto. It
is shown that for any two vectors, say v1 and v2, the distance between their
projections (a ·v1−a ·v2) is distributed as ||v1−v2||2X where X is a random
variable with Gaussian distribution. It follows that two vectors closer in
Euclidean space would more likely share the same hash value.

2 End of chapter.

Chapter 3

A Distributed Scheme for
Large-Scale CBIR

A long-standing challenge in content-based image retrieval (CBIR) is to de-
velop a fast solution indexing high-dimensional image contents efficiently,
which is crucial to building real-world large-scale CBIR systems. Traditional
indexing schemes, which typically work well for low dimensional data, of-
ten suffer from the curse of the dimensionality problem when dealing with
high-dimensional representations of image data. To attack this challenge, in
this paper, we propose a parallel and distributed indexing scheme based on
the locality sensitive hashing (LSH) technique, which is an effective high-
dimensional indexing technique proposed recently. Our scheme not only ex-
ploits the powerful performance of LSH for high-dimensional data indexing,
but also overcomes the scalability disadvantage of typical LSH solutions, en-
suring that the overall indexing solution is scalable to real-world large-scale
applications. We have conducted an extensive set of evaluations on a large
CBIR testbed of over 1 million real-world images. The empirical results show
that our proposed solution is effective and scalable to hundreds of thousands
of images, which is promising for the development of large-scale Web CBIR
systems.

3.1 Overview

The volume of multimedia data, particularly images and videos, has been in-
creasing dramatically on the world wide web (WWW) due to the popularity
of digital devices and personal computers. Effective retrieval of content from
the huge volumes of media data in large-scale multimedia databases raises
a number of critical challenges. In recent years, multimedia information re-
trieval has attracted more and more attention in the research community.

31

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR32

One of the most popular and fundamental research topics is content-based
image retrieval (CBIR) [27], [50]. Although CBIR has been extensively stud-
ied in both academia and industry for many years, a number of challenging
issues, still lack effective solutions. These issues are often related to long-
standing challenges among several interdisciplinary research areas, includ-
ing database searching, computer vision, information retrieval, and machine
learning.

In general, the development of a CBIR system consists of at least four
stages: data acquisition and processing, feature representation, data index-
ing, query processing, and feedback processing. The first stage is to acquire
the images by either collating photos from users or trawling existing images
from the WWW. The feature representation stage studies techniques of low-
level feature extraction from image pixels and the application of effective
similarity measures. The data indexing stage studies techniques for indexing
low-level features to facilitate query processing. The last stage is to respond
to users’ queries and process the relevance feedback interaction based on the
indexing system constructed.

For all these stages, an efficient data indexing system is critical to making
the CBIR system scalable to large-scale real-world applications. Although
various data indexing techniques have been well studied in the database com-
munity, traditional indexing solutions usually work well only for low dimen-
sional data. They often suffer from the curse of the dimensionality problem
when handling high dimensional data [19]. Since images are usually rep-
resented in high dimensional feature spaces, applying traditional indexing
techniques to CBIR may not effectively solve the indexing problem, particu-
larly for large-scale applications. Therefore, it is imperative to developing an
efficient indexing solution that can deal with high dimensional data efficiently
and scale well to large-scale data.

In this paper, we propose a parallel and distributed indexing scheme for
building scalable CBIR systems. The proposed indexing solution applies an
emerging indexing technique, locality-sensitive hashing (LHS) [19, 6], which
enjoys some significant advantages for indexing high dimensional data. Our
parallel and distributed indexing scheme enables our CBIR system to adapt
to large-scale applications efficiently. In summary, our contributions in this
paper include: (1) a study of LSH techniques as applied to CBIR for the
purpose of overcoming the high dimensional indexing challenge; (2) a novel
parallel and distributed indexing scheme with LSH for large-scale high di-
mensional indexing problems; (3) a comprehensive evaluation of large-scale
pure CBIR systems with over 1 million images.

The rest of this paper is organized as follows. Section 3.2 reviews some
related work. Section 3.3 presents our proposed scalable CBIR solution with

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR33

LSH. Section 3.4 discusses our feature representation methods. Section 5.4
gives our evaluations on a large-scale image testbed. Detailed experimen-
tal results are presented to show that our distributed solution is scalable to
large-scale data. Section 3.6 presents a fast, online CBIR web application
prototype which is built based on the proposed distributed solution. Sec-
tion 3.7 sets out our summary.

3.2 Related Work

Content-based image retrieval has been a very active research topic in the
multimedia community since the early 1990s [27, 50, 47]. Many CBIR pro-
totype systems have been built and studied in both industry and academia.
Some famous systems include IBM’s QBIC [41], Virage [2], RetrievalWare [7],
MIT’s Photobook [42], VisualSEEK [51], and MARS [35], VIMA [24], etc.
Some of the earlier work focused on the feature extraction methods by apply-
ing image processing techniques to extract useful features, such as color [20],
texture [56], shape [36], etc. Since there is a well-known semantic gap be-
tween an image’s low-level features and the high-level semantic concepts rep-
resented in the image, relevance feedback in which a human user evaluates
the relevance of images selected by searching algorithm is one of the most
popular research topics recently in CBIR [53]. Many previous papers have
applied various machine learning techniques and often demonstrated good
results on small scale testbeds. In addition, there has been an amount of
research effort focusing on distance metric learning [14, 15] and log-based
image retrieval [16] in recent years. However, most previous work in CBIR
has employed relatively small image testbeds, usually in a scale of several
thousand images, which may not reflect their real-world performance. One
of the reasons for this limitation is the lack of efficient indexing solutions for
fast retrieval over large-scale image databases.

In fact, the study of data indexing techniques is not new to CBIR re-
searchers [47, 54]. A variety of traditional multidimensional indexing tech-
niques, such as k-d tree, quad-tree, and R-tree [12] and its variants R+-tree
and R∗-tree [3], have been applied to CBIR. A comprehensive review and
comparison of these traditional indexing techniques in CBIR can be found
in [54]. However, traditional indexing techniques often suffer from the curse
of the dimensionality problem in dealing with high dimensional data. For
example, as shown in a previous empirical study [54], a well-known k-d tree
indexing method is usually not better than a simple Euclidean measure when
the number of dimensions is greater than 20. Since images in CBIR are of-
ten represented in a high dimensional feature space, retrieval would be a

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR34

difficult task if traditional indexing techniques are applied in [25, 28]. Until
now, there have been still few sophisticated solution is proposed for indexing
large-scale images in CBIR. Indeed, some large-scale CBIR applications have
to engage keywords-based indexing to facilitate search tasks [44].

Recently, a novel emerging indexing technique, locality sensitive hash-
ing, has emerged and has been proposed as a means of attack on the high
dimensional data indexing problems. LSH enjoys several of advantages for
high-dimensional data indexing. M. Datar et al. gave some empirical results
to show that LSH searches for near neighbors 30 times faster than the k-d tree
does when the dimensionality of the dataset goes beyond 200 [6]. Recently
LSH has attracted more and more attention in various applications, such as
video retrieval [18] and image copy detection [43]. However, there has been,
as yet, little comprehensive study of the application of LSH to solve CBIR
applications [55]. A straightforward application of LSH to CBIR may gener-
ate several problems, which hinder its scalability to large-scale applications.
Our work is focused on applying LSH to CBIR and solving the scalability
problem through a novel parallel and distributed scheme.

3.3 Scalable Content-Based Image Retrieval

Scheme

3.3.1 Overview of Our Solution

In order to take advantages of the powerful performance of LSH for high
dimensional indexing, we propose a scalable content-based image retrieval
scheme based on a parallel and distributed indexing solution using LSH
techniques. Our proposed indexing scheme overcomes the scalability issue
when applying LSH directly to large-scale applications, making the devel-
oped CBIR systems capable of adequate real-time performance in large-scale
applications. In the following discussion, we first introduce LSH in terms of
its advantages of indexing high dimensional data, and then discuss some dif-
ficulties when applying it directly to large-scale applications. To solve these
problems, we then present the proposed solution.

3.3.2 Locality-Sensitive Hashing

Locality-sensitive hashing, an emerging new indexing algorithm, has recently
been proposed to solve high-dimensional near neighbor searching problems
in Euclidean space l2, and is therefore very suitable for indexing high di-
mensional data in CBIR applications. It was first proposed by Indyk &

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR35

Motwani [19] and further improved in [6]. Like any other traditional hashing
algorithm, LSH employs a hash function to map a query point to a hash
bucket at which the target data point can be found. However, in contrast to
the traditional algorithms, LSH’s hash functions are locality sensitive, which
means the probability that two points share the same hash value decreases
when the distance between them increases. This property makes LSH useful
in solving the near neighbors problem. By using LSH, given a query point,
we can obtain its near neighbors simply by computing its hash value, locat-
ing the hash bucket, and then examining the points inside the hash bucket.
Typically, LSH can answer queries in sublinear time, with each near neighbor
being reported with a fixed probability. This enables us to build large-scale
scalable CBIR systems.

For building a scalable system, we employ the E2LSH (Exact Euclidean
LSH) package 1, an implementation of the LSH algorithm that can solve
the nearest neighbor problem. Under the implementation of E2LSH, each
hash function ha,b(v) : <d → Z maps a d dimensional vector v onto a set
of integers. The hash function ha,b is given by ha,b(v) = ba·v+b

w
c where a is

a d dimensional vector with entries chosen independently from a Gaussian
distribution and b is a real number chosen uniformly from the range [0, w]. In
other words, the real line is first divided into equal segments of appropriate
size w. The hash function then projects the query feature vector to the real
line through the dot product a · v and assigns a hash value to the vector
based on which segment it is projected onto. It is shown that for any two
vectors, say v1 and v2, the distance between their projections (a · v1 − a · v2)
is distributed as ||v1 − v2||2X where X is a random variable with Gaussian
distribution. It follows that two vectors closer in Euclidean space would be
more likely to share the same hash value.

The probability of finding a certain near neighbor can be controlled by
two parameters, L and k. Parameter L controls the number of hash tables
to be built. Each hash table contains an independent set of hash buckets
located by a different set of hash functions. A larger value L increases the
probability of finding all near neighbors. Parameter k controls the number
of hash functions to be used together to locate a hash bucket. A larger k
reduces the chance of hitting data points in a hash bucket that are not the
near neighbors of the query point.

3.3.3 Scalable Indexing Solutions

The application of LSH for solving large-scale CBIR is not straightforward.
One major problem is that E2LSH is a main memory based implementation.

1http://web.mit.edu/andoni/www/LSH/index.html

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR36

Although it can answer a given query very efficiently, it requires all the data
points, the R-near neighbor (R-NN) data structures, and the LSH hash tables
to be stored in main memory for fast memory access. If the total demand
for main memory is larger than the size of the main memory, swap space
of the disk will be used. In that case E2LSH may not answer a query
efficiently because disk swapping may happen during the query. Therefore,
the maximum database size E2LSH can handle at the same time is limited
by the the amount of free main memory available in the machine. This
bottleneck limits its direct application for large-scale databases.

To make our CBIR system scalable to large-scale data, we propose two
multi-partition indexing approaches to tackle the above issue: disk-based
multi-partition indexing and parallel multi-partition indexing. Both of these
approaches divide the whole database into multiple partitions. Each partition
is associated with a partition structure, which consists of a corresponding
subset of data points in the database, R-NN data structures, and LSH hash
tables for that subset of data points. In order to fit the partition structure
into the main memory, the size of each partition structure is set carefully.
Since E2LSH requires some time to compute the R-NN data structures and
the LSH hash tables, very partition structure newly computed by our system
is saved to disk. By doing so, when our system has to process queries in
a particular partition, it can obtain that partition quickly by loading its
associated structure from the disk into the main memory.

The approach described above employs one machine to provide the in-
dexing functionality. That machine loads one partition structure at a time
from disk into the main memory and processes the query on it. These two
steps are done sequentially until the query has been processed on all parti-
tions. However, an approach is available, employing multiple machines. In
this approach, each machine serves requests over only one partition of the
database. Thus, the number of the machines required is equal to the number
of partitions of the indexing database. Both of these two indexing approaches
are further discussed below.

3.3.4 Disk-Based Multi-Partition Indexing

The detailed procedure for using this approach to process a query is shown
in Algorithm 1.

This solution is able to handle very large-scale databases without any
size limit. It is useful for building off-line CBIR applications, particularly
when there are only a few machines available. However, there are still some
critical issues that need to be addressed in order to apply the above solution
to huge web-scale applications. One main limitation of the above approach

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR37

Algorithm 1 A Disk-Based Multi-Partition Indexing Scheme

1: Divide the database into n partitions, where the number of partitions
n = d database size

max. partition′s size
e.

2: Run E2LSH indexing on each of the partitions to create the R-NN data
structures and hash tables.

3: Save all partition structures on the disk.
4: for a query q or a set of queries qS do
5: for each partition structure si do
6: Load si (including the data points, the R-NN data structures, and

the LSH hash tables) into the main memory
7: Run E2LSH query on si to retrieve the top k ranking images with

respect to q or each query in the set qS
8: end for
9: Collect the results for all partitions and return the top k ranking results

with respect to the query q or each query in the set qS.
10: end for

is the disk-access overhead for loading the partition structures into the main
memory. When the database size is very large, the disk-access time will be
a critical problem. As will be shown in section 5.4, the total time required
to load all the five partition structures of a 0.5 million image database into
the main memory is up to 750 seconds. This clearly cannot satisfy real-time
applications. To solve this problem, we propose the parallel multi-partition
indexing approach, which overcomes the disk-access overhead and expedites
the overall process at the same time.

3.3.5 Parallel Multi-Partition Indexing

In this approach, the query is processed by a parallel and distributed system.
The system consists of three main components: Frontend, Master, and Slave.
The frontend is the interface between the query processing module and the
client machine. The master is the coordinator which acts as a communication
bridge between the frontend and the slave. The slave is the core of the system,
which performs the LSH search upon request.

In contrast to the previous approach, this approach distributes the data
indexing tasks over a cluster of Slave machines. Each Slave in the cluster
is responsible for answering user queries over a designated portion of the
database, which is assigned by a Master machine during the initialization
stage. The Slaves store their corresponding partition structures in their main
memory spaces permanently. This ensures that no re-loading of the parti-

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR38

tion structures is required after the initialization stage. In other words, this
approach avoids the disk-access overhead problem that exists in the previous
approach.

The Slaves are managed by the Master machine. The Master listens to the
query requests from the Frontend machines and then forward the requests to
the Slaves. Query answers from the Slaves are merged together in the Master
and the top k ranking images among the merged results are returned to the
Frontend.

The system setup and query processing procedures of this approach are
given in Algorithm 2.

Figure 3.1: The system architecture of our proposed parallel and distributed
indexing and retrieval scheme

System Architecture

Figure 3.1 shows the system architecture of the parallel multi-partition in-
dexing approach. The Master is a single-thread concurrent TCP server that
listens to two ports: a TCP port that receives Frontends’ queries, and a

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR39

TCP port that receives Slaves’ answers. The task of the Master is to forward
requests from the Frontend to the Slaves, merge the replies from the Slaves,
and then send the result back to the requesting Frontend. Since the top k
ranking images from the Slaves have already been sorted in similarity val-
ues by the Slaves before replying, the replies from the Slaves can be quickly
merged in the Master by an O(n) merging algorithm. Thus, the workload of
the Master is light. However, it is better to separate the task of the Master
from the Frontend and the Slaves, because the workload of the Frontend and
the Slaves is usually high. Moreover, when we engage more Frontends and
Slaves, the workload of the Master will increase. If necessary, we can con-
sider using multiple Masters or a hierarchy of Masters so as to improve the
responsiveness of the system.

The Slave is a single-thread TCP client that operates the indexing and
retrieval tasks. Since the indexing service is a CPU-intensive task, we im-
plement the Slave as a single-thread process and make the Slave serve only
one query at any time so that time is saved from thread swapping or process
swapping during query processing.

The system can have many Frontends. The Frontend is a TCP client
during empirical evaluation and is also an ASP.NET web server during system
deployment. When the system is deployed, the Frontend will have to serve
hundreds of users at a time. The Frontend is responsible for accepting HTTP
requests, serving HTTP responses, loading images from disks, and displaying
images to users. Thus, the workload of the Frontend is heavy and multiple
Frontends are required to improve the responsiveness of our system.

Procedures and Time Performance Analysis

As shown in Algorithm 2, there are two phases in building the CBIR system,
i.e., system setup and query processing. Since the system setup is not critical
in terms of time performance, we will analyze only the time performance of
the query processing procedure below.

Our system is distributed over a network of machines, thus there are in-
evitably some network transmission delays in the communications between
the Frontends, the Master, and the Slaves. To minimize the adverse effect
of the network transmission delays, we design several ways to maximize the
efficiency of the communications such that the round-trip-time (RTT) be-
tween the Frontend and the Master, and that between the Master and the
Slave, are negligibly small. Firstly, in the query and reply messages trans-
mitted between the machines, we represent each image that also exists in
the image database by a 4-byte integer image ID number, instead of a long
feature vector or a large image format file. The image ID number can be

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR40

Algorithm 2 A Parallel and Distributed Multi-Partition Indexing and Re-
trieval Scheme
1: Start PHASE 1: System Setup
2: Set the Master up. Path to the database file and the maximum partition’s size

are specified.
3: Set the Slaves up. The Slaves register with the Master and wait for job assign-

ment.
4: The Master calculates the number of Slaves required and the range of each

partition. Then it assigns the partitions to the available Slaves.
5: for each slave machine Slavei do
6: if Slavei found a partition structure in disk then
7: Slavei loads the partition structure into the main memory.
8: else
9: Slavei runs E2LSH indexing on its assigned partition to create partition

structure in the main memory and then saves the structure on disk.
10: end if
11: end for
12: Set the Frontends up. The Frontends register at Master and wait for user

commands.
13:
14: Start PHASE 2: Query Processing
15: The Frontend presents a small set of random images obtained from the image

database to the user.
16: The user can either upload her own image or select one of the provided im-

ages and then request the Frontend to perform top k similarity search on the
specified image.

17: if the user selects one of the images provided by the Frontend then
18: The Frontend attaches the pre-computed feature vector of the query image

to a query message.
19: else
20: The Frontend computes the feature vector of the query image provided by

the user and attaches it to a query message.
21: end if
22: The Frontend sends the query message to the Master.
23: The Master duplicates and distributes the query message to the Slaves.
24: The Slaves run E2LSH query on their partition structures to retrieve the top

k ranking images with respect to the query image and then send the results
back to the Master.

25: The Master collects and merges the results from the Slaves. It then attaches
the top k ranking results with respect to the query image to a reply message
and sends the reply message to the Frontend.

26: Upon receiving the reply message, the Frontend loads the images from disk
according to the image references given in the reported ranking results and
displays them to the user.

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR41

set as the index of the corresponding image in the image database. Sec-
ondly, we represent each of the query and reply message by a Structure in
C/C++. Since most of the data represented in the query and reply message
are either floating-point numbers or large integers, representing these data
as binary data in the form of a Structure is both accurate and space-saving.
In this form, the query message passed from the Frontend to the Master and
from the Master to the Slave can esaily fit into one 1500-byte TCP packet,
even if it represents a 238-dimensional query feature vector and up to 120
positive/negative relevance feedback image ID numbers. The reply message
which is passed from the Slave to the Master and the Master to the Frontend
can also fit into one TCP packet, with the capability of containing up to the
top 180 ranking image ID numbers. Since both the query and reply message
can be transmitted in only one TCP packet each, communications between
the Frontend, the Master, and the Slave are fast and efficient. In our system,
we employ TCP in all communication channels to ensure the packet delivery
is reliable. Since all the connections are persistent throughout the system
lifetime, during query processing, no time is needed for the time-consuming
TCP connection initialization step. As a result, the communication channels
are both reliable and efficient.

In general, the Slave can finish a query request and reply to the Master
within a second. However, in some situations, the Slaves may not be able
to reply requests immediately. For example, the Slave may be delayed by
network problems or other exceptions. To offer some quality of service to
prevent users from long delays, the Master will timeout any Slave that cannot
reply to the request within a period of time, e.g. 1 second. Therefore, the
total system’s query processing time (TTotal) can be expressed as the following
formula:

TTotal = TFrontend + RTT + TMaster + RTT+

min(max(TSlave1 , ..., TSlaveN
), TTimeout)

(3.1)

where TM represents the processing time of machine M , Slavei is the ith
Slave machine, TTimeout is the maximal time that the Master will wait for the
reply from a Slave, and RTT , the round-trip-time, is defined as

RTT ≈ RTTFrontend↔Master ≈ RTTMaster↔Slave

From our experimental experience, the RTTs between Frontend and Mas-
ter RTTFrontend↔Master, and that between Master and Slave RTTMaster↔Slave

are as small as 2ms in a 100Mbps local area network. These two RTTs,
together with the processing time of the Master, accounts for only 8% of
the total query processing time when each Slave is indexing 0.25 million data
points. Most of the query processing time is spent on running the LSH query
on the Slaves.

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR42

Disk-Loading Issues for Relevance Feedback

To perform relevance feedback, each Slave needs a way to obtain the feature
vectors of the images specified in the positive relevance feedback image ID
list of the query message. The way we adopt is to fetch the feature vectors of
the specified images directly from the disks upon request. Since the number
of image feature vectors required by each LSH query is small (at most 120
feature vectors), the disk-access overhead is relatively low. This approach
has some immediate advantages:

(a) It relieves the necessity of having feature vectors consuming precious
main memory space so that more space can be used to contain as much
partition structure as possible. This minimizes the number of Slave
machines needed.

(b) It relieves the necessity of loading all the data points of the dataset
into the main memory, which is not scalable due to the limit on the
size of the main memory of the Slave.

(c) It relieves the necessity of transmitting the feature vectors of the pos-
itive relevance feedback images between the machines, which would
increase the network load.

Furthermore, the disk loading of feature vectors can be accelerated by means
of two tricks:

(a) By saving the database of feature vectors in binary format. Since each
feature vector occupies the same number of bytes i.e. (238× 4 =) 952
bytes, a feature vector with a known corresponding image ID can be
fetched quickly by offsetting 952× ImageID bytes.

(b) By sorting the positive relevance feedback image IDs in ascending/descending
order. This means that the hard disk head can read all of the speci-
fied feature vectors by moving in a single direction one time only. This
reduction in disk head motion can effectively shorten the disk seek time.

Major Advantages of the Parallel Indexing Approach

The followings are some advantages of the parallel multi-partition indexing
approach over the disk-loading based approach:

(a) No Disk-Access Overhead. Since the whole database is distributed
over multiple Slaves, in each of which partition of the database fits in
main memory, Slaves can store the partition permanently in memory

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR43

and thus no disk-access overhead is required during query processing.
This is critical to ensuring the real-time query performance of our sys-
tem.

(b) Significant Speedup by Parallelization. We employ the paral-
lelization technique to reduce the query time significantly. Of course,
the acceleration depends on the available hardware resources.

(c) Guaranteed Time Performance. Since each Slave handles a portion
of data points below a fixed maximum size, the query response time of
each Slave is usually smaller than a fixed value. This may enable our
proposed CBIR system to deliver adepquate quality of service (QoS)
in real-world applications.

Remark. Although the above scheme is promising, there are still some
open issues to be studied in future work. For example, for the parallelization
of the indexing scheme, how to equalize the retrieval time in each partition
and minimize the overall query time is an open problem. Moreover, we
currently simply divide the data randomly into multiple partitions. In future
work, we may study some data-sensitive partition techniques to facilitate the
indexing procedure.

3.4 Feature Representation

Feature representation is a key step for building CBIR systems. In our solu-
tion, three types of visual features are engaged: color, shape and texture [16].

For color, we use the grid color moment. Each image is partitioned into
3 × 3 grids and three types of color moments are extracted for representing
color content of each grid. Thus, an 81-dimensional color moment is adopted
for the color feature.

For shape, we employ the edge direction histogram. A Canny edge detec-
tor is used to acquire the edge images and then the edge direction histogram
is computed from the edges. Each histogram is quantized into 36 bins of
10 degrees each. An additional bin is used to count the number of pixels
without edge information. Hence, a 37-dimensional edge direction histogram
is used for the shape feature.

For texture, we adopt the Gabor feature [34, 56]. Each image is scaled
to 64 × 64. Gabor wavelet transformation is applied on the scaled image
with 5 scale levels and 8 orientations, which results in 40 subimages. For
each subimage, three moments are computed: mean, variance, and skewness.
Thus, a 120-dimensional feature vector is adopted for the texture feature.

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR44

In total, a 238-dimensional feature vector is employed to represent each
image in our image database.

3.5 Empirical Evaluation

3.5.1 Experimental Testbed

To examine the scalability of our proposed scheme, we have collected a
testbed containing 1, 000, 000 images trawled from WWW. Further, to enable
an automatic objective evaluation, an additional set of 5, 000 images from
COREL image CDs are engaged as the query set for performance evaluation.
This image set contains 50 categories. Each category in the dataset consists
of exactly 100 images that are randomly selected from relevant examples
in the COREL image CDs. Every category represents a different semantic
topic, such as antique, antelope, aviation, balloon, botany, butterfly, car, cat,
dog, firework, horse and lizard.

The motivation for selecting the COREL images in semantic categories
for evaluation is twofold. First, it allows us to evaluate whether the pro-
posed approach is able to retrieve images that are not only visually relevant
but also semantically similar. Second, it allows us to evaluate the retrieval
performance automatically, which significantly reduces the subjective errors
arising from manual evaluations. This evaluation methodology has been
widely adopted in previous CBIR research [16].

3.5.2 Performance Evaluation Metrics

We evaluate the retrieval performance of our CBIR system based on two
standard performance metrics: precision and recall. The precision is calcu-
lated as the proportion of relevant images in the set of returned images, while
the recall is calculated as the ratio of the number of relevant images in the
returned images to the total number of relevant images in the database. The
returned image is judged as being relevant with respect to a query image if
it is one of the 100 COREL images in the database which share the same
category as the query image. Since each selected COREL category contains
100 images only, we assume that the total number of relevant images in the
database for each query is equal to 100. To evaluate the efficiency of our
CBIR system, we measure the average CPU time elapsed for a given query.

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR45

3.5.3 Experimental Setup

To choose a query set for performance evaluation, we randomly select 20
images from each of the 50 COREL image categories, to form a query set
of 1000 image examples. To evaluate how our CBIR system performs with
respect to different database scales, we prepare a number of image databases
of different sizes up to 1, 000, 000 images. For example, a database of size D
contains 5, 000 COREL images and D− 5000 other images selected from our
testbed.

We employ the techniques described in section 3.4 to extract the image
features (color, shape and texture) of the query and database images, in
which each image is represented by a 238-dimensional feature vector.

We have implemented two systems for each of the two indexing approaches
. Both of the systems employ LSH with parameters L = 550 and k = 34.
The average number of nearest neighbors returned in every LSH query is con-
trolled at around 6000 nearest neighbors by tuning the parameter R. For the
system that implements the disk-based multi-partition indexing approach, a
single 3.2GHz Intel Pentium 4 PC with 2GB memory running Linux kernel
2.6 is used for all of our experiments. All implementations are programmed
in C++ and the maximum partition size is set to 100, 000. As for the system
that implements the parallel-based multi-partition indexing approach, each
Slave program is run on an individual 3.2GHz Intel Pentium 4 PC with 2GB
memory running Linux kernel 2.6, and the Master program is hosted on a Sun
Blade 2500 (2 x 1.6GHz US-IIIi) machine with 2GB memory running Solaris
8. During performance evaluation, a console-based Frontend program is run
on a Nix dual Intel Xeon 2.2GHz with 1GB memory running Linux kernel
2.6. All implementations are programmed in C++ and the maximum par-
tition size varies between experiments. During functionality demonstration,
another Frontend program is used. This is an ASP.Net server program with
C# code behind, running on a PC with Windows OS. All of these machines
are connected together in a 100Mbps network speed local area network.

3.5.4 Experiment I: Disk-Based Multi-Partition Index-
ing Approach

In this experiment, we have prepared 10 databases with size ranging from
50, 000 to 500, 000 images. For each of these databases, we perform two sets
of experiments to compare our LSH solution with the traditional methods.
One set of the experiments employs our proposed LSH solution, while the
other set uses an exhaustive linear search (ES) method based on Euclidean
distance similarity measure. In each experiment, we query the database with

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR46

0 1 2 3 4 5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size (# points)

A
vg

. P
re

ci
si

on

TOP20 of CBIR with DLSH and ES

3−round RF for ES
2−round RF for ES
1−round RF for ES
QBE for ES
3−round RF for DLSH
2−round RF for DLSH
1−round RF for DLSH
QBE for DLSH

(a) Avg. Precision of TOP 20

0 1 2 3 4 5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

Size (# points)

A
vg

. P
re

ci
si

on

TOP50 of CBIR with DLSH and ES

3−round RF for ES
2−round RF for ES
1−round RF for ES
QBE for ES
3−round RF for DLSH
2−round RF for DLSH
1−round RF for DLSH
QBE for DLSH

(b) Avg. Precision of TOP 50

0 1 2 3 4 5

x 10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Size (# points)

A
vg

. R
ec

al
l

TOP100 of CBIR with DLSH and ES

3−round RF for ES
2−round RF for ES
1−round RF for ES
QBE for ES
3−round RF for DLSH
2−round RF for DLSH
1−round RF for DLSH
QBE for DLSH

(c) Avg. Recall of TOP 100

0 1 2 3 4 5

x 10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Size (# points)

T
im

e
(s

ec
on

ds
)

LSH vs ES

ES
LSH

(d) Avg. Query Time

Figure 3.2: Graphs showing the average recall, the average precision, and the
query time of the disk-based approach over the 0.5 million image dataset.

a set of query images. For each query image, we retrieve the top 20, top
50 and top 100 ranking images. The returned ranking images are checked
against the ground truth to determine the relevant images. Based on the
number of relevant images, we measure the precision and recall rates. The
recall and precision rates for all queries are averaged for final performance
comparison. In each experiment, we simulate three rounds of relevance feed-
back. Relevance feedback is based on a k-Near Neighbors approach [17] by
re-querying the database with the relevant examples with respect to the given
query.

The CBIR system employing the disk-based multi-partition indexing ap-
proach is called the DLSH system, while that employing the exhaustive lin-
ear search approach is called the ES system. Fig. 5.4(a) and (b) shows the
experimental results of the average precision obtained using LSH and ES
respectively in our CBIR system. In these figures, the top 20 and the top

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR47

Table 3.1: Speed of LSH over ES on different databases

Size ES (ms) LSH (ms) CPU Speedup

50000 32.3 7.6 4.246
100000 64.7 14.3 4.507
150000 96.9 22.8 4.244
200000 129.7 30.3 4.271
250000 160.7 37.3 4.306
300000 192.9 43.6 4.417
350000 224.8 49.8 4.508
400000 256.6 55.3 4.637
450000 288.4 62.4 4.617
500000 320.0 68.9 4.640

50 ranking images are returned for evaluation. The “Query-By-Example”
(QBE) curve represents the average precision without any relevance feedback.
The “1-round RF” curve represents the average precision when one round of
relevance feedback is applied to refine the QBE result. The “2-round RF”
curve shows the average precision when another round of relevance feedback
is applied to refine the “1-round RF” result. From the figure, we can observe
that the results from LSH are very close to the ES results. The maximum
difference is no more than 5% for any database size. Fig.5.4(c) shows the
average recall of our CBIR system using LSH and ES respectively, when the
top 100 ranking images are returned for evaluation. From Fig.5.4(a), (b), and
(c), we can see that the average recall and average precision of our CBIR sys-
tem decrease with the database size, yet the rate of decrease diminishes as
the database size increases. Fig.5.4(d) shows the average query time of our
CBIR system with LSH versus that with ES. From the results in Fig.5.4(d),
we can see that the LSH approach outperforms the ES approach. To examine
the details, we also show the time performance comparison in Table 3.1. We
can see that the LSH approach is much faster than the ES solution, with an
average speedup greater than 4 times. Also, the gap of time performance
between them increases as the database size increases. In the next section,
we present the experimental results for our parallel solution, which further
improves the efficiency of this approach.

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR48

3.5.5 Experiment II: Parallel-Based Multi-Partition In-
dexing Approach

For the implementation of the parallel-based multi-partition indexing ap-
proach, the number of Slaves is a critical factor in system performance. If we
evenly distribute the partitions of a database to all of the available Slaves,
having more Slaves avaiable means each one handles a smaller partition. As
seen in Fig. 5.4, LSH query time is sublinear relative to the database size.
This implies that when the number of Slaves increases, each of the Slaves will
perform a faster LSH query, and at last, the eventual system responsiveness
will be improved. Of course, increasing the number of Slave means that more
hardware resources are required.

In the following experiments, we evaluate the performance of the parallel
systems using the maximum and minimum number of available machines.
The system processing time of the parallel-based approach using the mini-
mum possible number of machines is also compared with that of the disk-
based approach.

System Performance with Maximum Number of Machines

In this experiment, we employ four machines to serve as the Slaves of our par-
allel system, which we called the PLSH system. Irrepective of the database
size, we employ all the possible Slave machines and evenly distribute the
partitions to all of them. This experimental setting ensures the system per-
formance is maximized by using the maximum possible hardware resources.
In total, five tests are performed. Each test is done on a different-sized
database. The sizes range from 0.2 million to 1.0 million images. Each of
these databases is evenly divided into four partitions that are to be assigned
to the four Slaves. In each test, the recall, the precision, and the processing
time are recorded. As in the previous experiment, we compare the perfor-
mance of our system with that of the ES system, which uses the exhaustive
linear search method based on a Euclidean distance similarity measure.

The experimental results are summarized in Fig. 3.3. As in the previous
experiment, we conduct two rounds of relevance feedback in each test. The
results from the parallel system are represented by the “PLSH” curve, while
those from the system employing exhaustive linear search are represented
by the “ES” curve. As seen from Fig. 3.3(a), (b), and (c), the decreasing
rate of both the average recall and the average precision of the PLSH system
diminishes as expected when the database size increases. This result agrees
with the result of the previous experiments conducted on databases with size
below 0.5 million. This indicates that the accuracy of our system is scalable

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR49

2 3 4 5 6 7 8 9 10

x 10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Size (# points)

A
vg

. P
re

ci
si

on

TOP20 of CBIR with PLSH with ES

2−round RF Precision for ES
1−round RF Precision for ES
QBE Precision for ES
2−round RF Precision for PLSH
1−round RF Precision for PLSH
QBE Precision for PLSH

(a) Avg. Precision of TOP 20

2 3 4 5 6 7 8 9 10

x 10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Size (# points)

A
vg

. P
re

ci
si

on

TOP50 of CBIR with PLSH with ES

2−round RF Precision for ES
1−round RF Precision for ES
QBE Precision for ES
2−round RF Precision for PLSH
1−round RF Precision for PLSH
QBE Precision for PLSH

(b) Avg. Precision of TOP 50

2 3 4 5 6 7 8 9 10

x 10
5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Size (# points)

A
vg

. R
ec

al
l

TOP100 of CBIR with PLSH with ES

2−round RF Recall for ES
1−round RF Recall for ES
QBE Recall for ES
2−round RF Recall for PLSH
1−round RF Recall for PLSH
QBE Recall for PLSH

(c) Avg. Recall of TOP 100

2 3 4 5 6 7 8 9 10

x 10
5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Size (# points)

T
im

e
(s

ec
on

ds
)

Response Time of CBIR with Parallel Approach

Query Time at Frontend
Query Time at Master
Query Time at Slave1
Query Time at Slave2
Query Time at Slave3
Query Time at Slave4

(d) Avg. Query Time

Figure 3.3: Graphs showing the average recall, the average precision, and
the query time of the parallel-based approach using the maximum number
of machines on a 1 million image dataset.

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR50

for databases as large as 1.0 million images.
Fig. 3.3(d) shows the amount of time elapsed between the time a request

is received and the time a reply is sent out in each machine. This empirical
data is recorded in all machines, i.e. the Frontend, the Master, and the four
Slaves.

As seen from Fig.3.3(d), there is a constant time difference between the
query time recorded at the Frontend and the Master. As mentioned before,
during experimental evaluation, the Frontend is just a simple TCP client
simulating user requests and receiving answers for evaluation. It does not
need to spend much time on loading and sending images. Therefore, the
processing time of the Frontend is negligible. Thus, this time difference is
mainly composed of the RTT between the Frontend and the Master. Sim-
ilarly, there is a constant time difference between the query time recorded
at the Master and the maximum times recorded at the Slaves. However, it
can be easily observed that this time difference is slightly larger than that
between the Frontend and the Master. This is because the processing time of
the Master is relatively longer. Nevertheless, both of these time differences
are relatively small compared with the LSH query times captured by the
query times at the Slaves, as shown in Fig.3.3(d). This indicates our system
is efficient, since the total time overhead of all processes in our system other
than the LSH query process is small.

The variation of the total system processing time against the size of the
database is captured by the “Query Time at Frontend” curve in Fig.3.3(d).
In our experimental design, when the database grows larger, the size of the
partition distributed to each Slave increases accordingly. This in turn in-
creases the LSH query time of each Slave. As expected, as seen from the
figure, the total time increases as the database grows larger. The query time
is more or less linear relative to the size of the database.

System Performance with Minimum Number of Machines

Figure 3.4: An example of the partition assignment on a 0.60 million data
points database.

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR51

In contrast to the previous experiment, we use here the minimum possible
number of Slave machines to provide the similarity search service. This is
to minimize the demand for hardware resources and maximize the usage of
the hardware resources that are employed. As in the previous experiment,
we evaluate the system by measuring the recall, the precision, and the query
time of the system.

All Slaves used in our experiments possess exactly the same hardware and
software configuration. Thus, they have the same maximum partition size.
Under our experimental settings, the maximum partition size is 0.25 million
data points.

To minimize the number of Slaves while preventing the use of the virtual
memory (disk swapping) in any of the Slaves, the database is divided into as
few partitions as possible under the constraint that each partition contains
at most 0.25 million data points. Fig. 3.4 shows an example of a way to
divide the database. In this example, the first 0.25 million data points in
the database is assigned to partition 1 which is to be indexed by Slave1.
The second 0.25 million is indexed by Slave2, and so on. If there is any
partially filled partition, e.g., the partition indexed by Slave3 in Fig.3.4,
future data points will be assigned to this partition. Otherwise, new data
points will be assigned to a new partition indexed by a new Slave machine.
This simple partition distribution algorithm enables the whole system to
be highly scalable and easily maintained. For instance, when adding new
data points to the system, the system only need to modify one Slave without
changing other Slave machines. In future work, we may study better partition
strategies to improve other aspects of performance, such as workload balance.

Fig. 3.5(a), (b), (c), and (d) show the average precision, the average
recall of the top 50 ranking images, the average recall of the top 100 ranking
images, and the average query time of our system respectively. As shown in
the figures, the average recall and precision of the PLSH system using the
minimum possible number of machines are nearly the same as that using the
maximum number of machines. This indicates that although we have used
fewer machines, our system can achieve the same level of accuracy. As for
the average query time, we can see that the query time tends to keep at a
constant value. Since some Slaves may not be used when the database is not
large, there are no query time record.

We discuss the processing time of this PLSH system in more details in
the next section.

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR52

2 3 4 5 6 7 8 9 10

x 10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Size (# points)

A
vg

. P
re

ci
si

on

TOP20 of CBIR with PLSH with ES

2−round RF Precision for ES
1−round RF Precision for ES
QBE Precision for ES
2−round RF Precision for PLSH
1−round RF Precision for PLSH
QBE Precision for PLSH

(a) Avg. Precision of TOP 20

2 3 4 5 6 7 8 9 10

x 10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Size (# points)

A
vg

. P
re

ci
si

on

TOP50 of CBIR with PLSH with ES

2−round RF Precision for ES
1−round RF Precision for ES
QBE Precision for ES
2−round RF Precision for PLSH
1−round RF Precision for PLSH
QBE Precision for PLSH

(b) Avg. Precision of TOP 50

2 3 4 5 6 7 8 9 10

x 10
5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Size (# points)

A
vg

. R
ec

al
l

TOP100 of CBIR with PLSH with ES

2−round RF Recall for ES
1−round RF Recall for ES
QBE Recall for ES
2−round RF Recall for PLSH
1−round RF Recall for PLSH
QBE Recall for PLSH

(c) Avg. Recall of TOP 100

2 3 4 5 6 7 8 9 10

x 10
5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Size (# points)

T
im

e
(s

ec
on

ds
)

Response Time of CBIR with Parallel Approach

Query Time at Frontend
Query Time at Master
Query Time at Slave1 (Always used)
Query Time at Slave2 (Used if # points > 0.25M)
Query Time at Slave3 (Used if # points > 0.50M)
Query Time at Slave4 (Used if # points > 0.75M)

(d) Avg. Query Time

Figure 3.5: Graphs showing the average recall, the average precision, and
the query time of the parallel-based approach using the minimum number of
machines over 1 million image dataset.

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR53

Table 3.2: The Comparison of Time Performance and Speedup.

SIZE TES TES
DAO TPES TDLSH TDLSH

DAO TPLSH TES

TDLSH

TES
TOTAL

TDLSH
TOTAL

TES
TOTAL

TPLSH
TPES

TPLSH

(×106) (ms) (×103 (ms) (ms) (×103 (ms)

ms) ms)

0.1 64.7 0 68.7 14.3 0 19.8 4.52 4.52 3.27 3.47

0.2 129.7 79.4 133.7 30.3 144.0 35.9 4.28 0.55 2216.43 3.72

0.3 192.9 158.9 164.7 43.6 290.0 43.8 4.42 0.55 3632.48 3.76

0.4 256.6 236.3 164.7 55.3 438.0 43.8 4.64 0.54 5400.43 3.76

0.5 320.0 320.0 164.7 68.9 597.0 43.9 4.64 0.54 7296.41 3.75

0.6 383.8 392.4 164.7 89.1 749.0 44.6 4.31 0.52 8806.12 3.69

0.7 448.7 473.1 164.7 99.4 895.3 45.4 4.51 0.53 10430.77 3.63

0.8 525.8 551.8 164.7 128.2 1045.9 45.7 4.10 0.53 12085.54 3.60

0.9 581.7 631.3 164.7 143.8 1191.6 45.8 4.05 0.53 13795.65 3.60

1.0 658.9 709.2 164.7 161.2 1343.9 46.0 4.09 0.53 15432.47 3.58

The Comparison of Time Performance and Speedup

By comparing Fig.3.5(a), (b), and (c) and Fig.5.4(a), (b), and (c), we can
observe that the PLSH system has nearly the same accuracy as the DLSH
system which employs the disk-based multi-partition indexing approach. As
for the processing speed, they are summarized in Table-3.2. The meanings
of the table headers are as follows:
SIZE: the number of data points in the database.
TES: the query time (milliseconds per query) of the ES system, which uses
an exhaustive linear search by Euclidean distance measure.
TES

DAO: the disk access overhead (seconds per query) spent on loading feature
vectors from disk into the main memory such that Exhaustive Linear Search
can be performed. For example, if the system can keep at most 100, 000 data
points in the main memory, when the database contains more than 100, 000
data points, the system has to erase the previously loaded data points and
load another 100, 000 data points in order to perform a similarity search.
TPES: the query time (milliseconds per query) of the Parallel ES (PES) sys-
tems which is a parallel version of the ES system. The way we parallelize
the ES system is exactly the same as the PLSH system that uses the min-
imum number of machines. Thus, this PES system also contains the three
major components: Frontend, Master, and Slave. This implies some network
transmission delays; the total delay can be obtained by subtracting the query

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR54

time in this column by that in the TES column. To enable fair comparison
between the performance of the PES system and that of the PLSH system,
the hardware resourcse used by both systems are controlled to be exactly the
same. That is, the PES system and the PLSH system are set to use the same
number of machines.
TDLSH: the query time (milliseconds per query) of the DLSH system re-
quired to perform a similarity search using LSH indexing.
TDLSH

DAO : the disk access overhead (seconds per query) spent on loading the
partition structure from disk into the main memory such that LSH query can
be performed. Since the system can keep the partition structure of at most
(for example) 100, 000 data points at a time in the main memory, when the
database contains more than 100, 000 data points, the system has to erase
the previously loaded partition structure and load another partition struc-
ture of 100, 000 data points in order to perform a similarity search.
TPLSH: the query time (milliseconds per query) of the PLSH system required
to perform a similarity search using LSH indexing.

TES

TDLSH : the speedup of the DLSH system over the ES system without taking
the disk access overhead into account.
TES

TOTAL

TDLSH
TOTAL

: the speedup of the DLSH system over the ES system taking the

disk access overhead into account. TES
TOTAL = TES + TES

DAO and TDLSH
TOTAL =

TDLSH + TDLSH
DAO .

TES
TOTAL

TPLSH : the speedup of the PLSH system over the ES system taking the disk
access overhead into account.
TPES

TPLSH : the speedup of the PLSH system over the PES system.

From the sum of the TDLSH column and the TDLSH
DAO column, it can be

seen that the system processing time is too long for a real-time online ap-
plication. Moreover, if we take the disk access overhead into account, from

the
TES

TOTAL

TDLSH
TOTAL

column, it can be seen that the DLSH system is no faster than

the ES system. The reason is that, for the DLSH system, there are more
data to be loaded into the main memory from disk before similarity search
can be performed. To eliminate the disk access overhead, we introduce the

parallel multi-partition indexing approach. As seen from the
TES

TOTAL

TPLSH col-
umn, the parallel approach is a considerably faster than the ES system, and
the speedup increases with the size of the database. For instance, when the
database grows as large as 1.0 million data points, the parallel approach is
15432 times faster than the ES system.

It may be argued that this is an unfair comparison, since the ES system
would use only one machine to perform similarity search while the PLSH
system would use multiple machines. To address this, we setup a parallelized

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR55

ES system for fair comparison, as described above. By parallelize the ES
system, disk access overhead can be eliminated since each Slave maintains
only a limited size of database and all the data points of a partition can be
completely loaded into the main memory without putting the swap space
to use. The query time of this PES system is shown in the TPES column.
From the TPES

TPLSH column, it can be seen that the PLSH system still processes
queries much faster than the PES system. This supports our choice of LSH
indexing technique in the CBIR system for performing similarity searches.

3.6 Application to WWW Image Retrieval

To demonstrate the real-time performance of the PLSH system, we have built
a web-based application that serves as the Frontend of our system. Since the
Frontend is built using ASP.NET and hosted on a computer, users can access
the Frontend through the Internet to use our similarity search service through
a browser.

Figs.3.6 demonstrates the functionality of our web-based Frontend appli-
cation, PD-CBIR. In each of the demonstrations, a real query example is
presented. Fig.3.6 shows an example, querying topic plate over a 1 million
image database. To start a search, the user can request to search for a spe-
cific semantic topic by selecting one of the images randomly shown in the
Search Page (Fig.3.6(a)). After the request is submitted, the top k images
most similar to the query image are then shown (Fig.3.6(b)). Then, the user
can perform the following operations:

1. Select relevant images and irrelevant images with respect to the query
topic by checking the tick and cross radiobox respectively.

2. Refine the search result by submitting the relevance feedback informa-
tion (Fig.3.6(c), (d)).

3. Change the query image by clicking the search this button under the
target image.

Similarly, Fig.3.7 shows an example for querying topic surfing over a 1 million
image database and Fig.3.8 shows an example for querying topic kung fu over
a 1 million image database.

3.7 Summary

In this paper we proposed a novel parallel and distributed indexing scheme
for building scalable content-based image retrieval systems. The suggested

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR56

(a) Search page. (b) Search Result.

(c) 1-Round Relevance Feedback. (d) 2-Round Relevance Feedback.

Figure 3.6: Some screenshots of plate search using our web-based Frontend
application, PD-CBIR, over a 1 million image database.

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR57

(a) Search page. (b) Search Result.

(c) 1-Round Relevance Feedback. (d) 2-Round Relevance Feedback.

Figure 3.7: Some screenshots of surfing search using our web-based Frontend
application, PD-CBIR, over a 1 million image database.

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR58

(a) Search page. (b) Search Result.

(c) 1-Round Relevance Feedback. (d) 2-Round Relevance Feedback.

Figure 3.8: Some screenshots of kung fu search using our web-based Frontend
application, PD-CBIR, over a 1 million image database.

CHAPTER 3. A DISTRIBUTED SCHEME FOR LARGE-SCALE CBIR59

indexing scheme employs an efficient indexing technique, locality-sensitive
hashing (LSH), which is efficient for high dimensional data indexing. We
have implemented our proposed parallel and distributed indexing scheme and
applied it to large-scale content-based image retrieval of WWW images. We
conducted an extensive set of evaluations, including the evaluation of time
performance and retrieval performance of query and relevance feedback, over
a large-scale testbed of 1 million images. The promising results showed that
our proposed parallel and distributed solution delivers highly efficient perfor-
mance, which is significantly more efficient than traditional exhaustive linear
searching methods. We believe that this empirically-proven scheme could be
valuable for future development of real-world large-scale CBIR applications.

2 End of chapter.

Chapter 4

Image Retrieval System for
IND Detection

4.1 Overview

4.1.1 Motivation

Users of content-based image retrieval systems are usually interested in look-
ing into a limited number of search results, say the top 50 or the top 100 of
the search results, in each search query. Thus, it would be highly undesirable
to them if there exist some duplicated images in the results, because it means
the information gained by them will further be decreased. Therefore, remov-
ing duplicated images prior to the return of results is critical in improving
the quality of CBIR search. Duplication removal can be performed during
web image crawling and after crawling.

During web image crawling, it is not difficult to encounter some web
pages that contain multiple sizes of the same photo. In these web pages,
the thumbnail photos are usually displayed to the users first and links are
left for the users to browse or download the same photo with higher reso-
lution. This photo sharing scheme is more and more popular and there are
increasing number of web sites adopting this scheme to fasten the loading
speed in the client sides. The multiple sizes of the same photo are certainly
different pieces of photos. However, with respect to their contents, they are
the same. Because of this, these photos are very likely to be returned to-
gether to the users as different search results in CBIR. As discussed before,
this is not desirable to the users and should be avoided. However, normal
web image crawlers can not differentiate multiple sizes of the same photo but
just regard these photos as different individuals. This is because they do not
analyze the contents of the images they have crawled. In this chapter, we will

60

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION61

introduce an image near-duplicate (IND) detection system that can identify
near-duplicate images in a database based on the analysis of the contents
of the images. Equipped with this system, web image crawler can decide
to retain only a subset of the near-duplicate images in a web site which in
turn decreases the memory storage and improving the quality of the CBIR
search. Since the number of images in a web site are usually small, with a
fast searching technique, our IND detection system can find near-duplicate
images in fast speed.

Sometimes near-duplicate images can not only be found in the same web
site, but also in different and unrelated web sites. Thus, IND detection
can also be performed over all crawled images after the web image crawling
process is completed. It can be imagined that the crawled image database
would be huge and the IND detection would take a long time to search for all
near-duplicate images. Nevertheless, since web image crawling is an off-line
application, the speed of the IND detection is not critical.

Image near-duplicate detection has been an important application in re-
cent years. Because of the widespread of the Internet, more and more people
publish images on the Web for many purposes. People may publish their own
images or publish the images bought from photo agencies. However, some
people illegally copy the images from the others without acknowledging the
owners of the images. This undeniably affects the businesses of photo pub-
lishing agencies. Since people always manipulate the pirate images before
publishing, the pirate image and the near-duplicate images cannot simply be
detected by digital watermarking method. On the contrary, image matching
using invariant local feature approaches can easily tackle this problem.

Beside private image detection and CBIR search refinement, another pos-
sible use of IND detection system is in finding similar web pages on the In-
ternet. Since similar web pages usually have similar images, one can use our
IND detection system to detect similar images from two web pages and use
it as a cue to evaluate the similarity between the two web pages.

4.1.2 Related Work

Different definitions in near-duplicate image exist in the academia. Yan Ke
[23] and Berrani et al. [5] define near-duplicates as images altered with
common manual image manipulation process such as changing contrast, sat-
uration, resizing, cropping, framing, jpeg-compression, etc. Images of a scene
taken under different environments or camera conditions are not regarded as
near-duplicate image at all. On the other hand, Zhang [57] defines near-
duplicates as images that are close to exact duplicate but with variations
due to content changes, camera parameter changes, and digitization con-

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION62

ditions. Both definitions are reasonable but they are suitable for different
applications. For CBIR search refinement, the former definition is more suit-
able. When we prepare a dataset for performance evaluation, this definition
is taken into consideration. Most of the previous works adopt traditional
CBIR approaches in building the IND detection system. Since these ap-
proaches generally adopt global features of image as the key to search for
near-duplicates, their performances can suffer when significant cropping, re-
sizing or framing is applied on the near-duplicates. Moreover, systems using
global features usually lack a self-verification process, likes the geometric veri-
fication in [23]. Thus, they tend to have many false positives. Instead of using
global features, some IND detection systems build parts-based representation
of images using invariant local features were proposed. Berrani [5] proposed
a IND detection system employing local differential descriptors and approx-
imate similarity search. Yan Ke [23] proposed to use PCA-SIFT invariant
local feature descriptors and Locality-Sensitive Hashing (LSH). The matched
features are filtered using geometric verification such that the precision rate
is significantly improved. According to the recent performance evaluation
done by Mikolajczyk et al. [22], SIFT-based descriptors [32] outperforms the
differential descriptor in image matching problem. There also exists some
other SIFT-based descriptors, such as SIFT and GLOH, that are better than
PCA-SIFT in term of both the recall and precision rate. Therefore, their IND
detection systems can be further improved by using more powerful feature
descriptors. Locality-sensitive hashing has been proved [23] to be effective in
finding near neighbors both in accuracy and speed. However, the LSH algo-
rithm employed by Yan Ke assumes L1 (Manhattan) distance in the analysis
of near neighbors which is not as effective as L2 distance, as shown in [23].

4.1.3 Objective

We aim our IND detection system at copyright protection and CBIR search
refinement purpose. Therefore, the former definition of near-duplicates is
more suitable. In other words, images with variations due to camera pa-
rameter changes and content changes are not counted as near-duplicates.
Our system is a variant of content-based image retrieval system in which the
desired images to be retrieved are originated from a source copy which is
the same as that of the query image. Although the desired images and the
query image share the same source, they differ with some common image
transformations due to the manual image manipulation process.

To make our system more practical, we chase for high recall, high pre-
cision, and high speed. To achieve this, we employ SIFT feature descriptor
which perform the best in our performance evaluation presented in Section

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION63

2.4. We would also try the SURF feature descriptor since it is shown to
have comparable performance with SIFT but has smaller number of dimen-
sions and thus it is fast to compute and search. To improve the speed of
searching, we employ locality-sensitive hashing (LSH) [6] which is a special
kind of hashing algorithm first proposed by Indyk & Motwani. It is designed
for solving the approximate/exact near neighbor search in high dimensional
Euclidean space. The implementation of this algorithm is released to public
in [1].

4.1.4 Contribution

The first contribution of this chapter to IND detection is the integration of
the state-of-the-art SIFT feature descriptor with fast LSH retrieval method
that makes our IND detection system accurate and practical. The second
contribution of this chapter is the introduction of a new verification process,
called orientation verification, on the candidate matches such that the recall
and precision of the system can be further improved. The third contribution
of this chapter is the introduction of a new distance metric, called k-NNRatio,
that integrates k Nearest Neighbor algorithm with distance ratio to further
improve the average recall and precision rate. Although our system is tar-
geted at IND detection, it can easily be modified to suit for other CBIR
applications.

4.2 Database Construction

Our system consists of two main phases: the database construction phase and
database query phase. In the database construction phase, we process every
image in the image collection and extract a set of invariant local features from
it. We then build an index for all the extracted features using LSH algorithm.
In the database query phase, user can issue a query to find near-duplicates
of the submitted query image. The system extracts a set of invariant local
features from the query image and issues search queries to the pre-built LSH
hash table based on the extracted features. Search results of all query features
are then verified and the top k most probably near-duplicates are returned to
the user. Detail description of the database construction phase will be given
in this section and the database query phase in the next section, Section 4.3.

4.2.1 Image Representations

Scale-invariant feature transform (SIFT) feature descriptors are very suitable
for tackling IND detection problem. The image manipulations commonly

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION64

applied on near-duplicate images include changing illumination, contrast,
coloring, saturation, resizing, cropping, framing, affine warping, and jpeg-
compression. SIFT descriptor is invariant to all of these transformations
because of the following reasons. Firstly, the descriptors are normalized such
that it is invariant to illumination change and contrast. Secondly, the descrip-
tors are built using the grayvalues of color images and thus it is invariant to
coloring and saturation. Thirdly, the descriptors are computed on many dif-
ferent scales of each image such that there are always some features common
to two images with different scales only. Thus the descriptors are invariant to
resizing. Fourthly, the descriptors are local in nature which means some local
changes to the image, like cropping and framing, have little adverse effect to
the IND system, as long as the number of features sampled in each image is
large enough. Fifthly, the descriptors are orientation histograms over 4 × 4
sample feature regions. They are less sensitive to significant shift in gradient
positions and thus they are invariant to affine warping. Finally, Gaussian
filters of different widths are applied on the images before SIFT descriptors
operate on them. Thus the effect of the changes in the content of compressed
images due to jpeg-compression are reduced. Because of the above reasons,
we adopt the powerful SIFT descriptor as the image representation of our
system.

Despite of these advantages, there is one strong reason why invariant local
descriptor is not desirable to practical system. The reason is the size of local
feature database is huge. Since each image can generate hundreds of SIFT
features and each feature is a 128 bytes long vector, the size of a feature
database of just thousands of images is already huge. Searching for desired
features in such database using simple exhaustive linear search algorithm is
not practical since it takes too long to run. However, a recently proposed
feature indexing method, LSH, solve this problem. By building an index of
the feature database, the searching process can be performed extremely fast
with acceptable accuracy. The detail of index building is to be discussed
next.

4.2.2 Index Construction

Among many previously proposed indexing algorithms, hashing is the fastest
algorithm to lookup a database. The time complexity of database lookup of
a hashing algorithm is O(1) on average, which means a database lookup usu-
ally takes constant amount of time independent of the size of the database.
Because of this attractive feature, hashing algorithm is commonly employed
in indexing large-scale database. However, simple hashing algorithms do not
satisfy our requirements. Different from the normal use of hashing, our query

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION65

key is a high-dimensional vector of real numbers that is usually not an iden-
tical copy of any entry in the hash table. Moreover, the desired keys are not
limited to an identical copy of itself but all the entries that are close to the
query vector in Euclidean space l2. The hashing algorithms that satisfy our
requirements are a recently proposed technique called locality-sensitive hash-
ing (LSH). It is first proposed by Indyk & Motwani [19] and further improved
in [6]. Locality-sensitive hashing scheme can answer queries in sublinear time
with each near neighbor being reported with a fixed probability. What is
special with this type of hashing scheme is that it is locality-sensitive. By
locality-sensitive, it means the probability that two points share the same
hash value decrease with the distance between them. As for the hashing
scheme we employed, the distance is Euclidean distance. Since points close
to each other in Euclidean space share the same hash value, we can find the
near neighbor of the query point by checking the collided hash buckets.

Advantages

Locality-sensitive hashing compromises speed with accuracy. It only ensures
reporting every near neighbor of the query point with a certain probability.
However, it is sufficient to our system. It is because an image usually contains
at least hundreds of local features. Even if a large proportion of the near
neighbors are missing, there are always enough near neighbors reported and
contributed to voting the correct image hypothesis.

We have employed the E2LSH(Exact Euclidean LSH) package [1] to build
the LSH index of our feature database. This makes our LSH index concep-
tually different from that employed by Yan Ke [23]. The LSH algorithm
employed by Yan Ke reports c-approximate R-near neighbors problem only
while that employed by us reports exact R-near neighbors problem. The
definitions of these two types of near neighbor problems are described below:

The c-approximate R-near neighbor problem formulates that if there
exist a point p in the set of points P in the database that is at distance
at most R from the query point q (i.e., satisfying ||p − q|| ≤ R), any
point within the distance of at most cR from the query point (i.e.,
satisfying ||p− q|| ≤ cR) has to be reported.

The exact R-near neighbor problem formulates that each point p sat-
isfying ||p− q|| ≤ R has to be reported with a certain probability.

By using the exact R-near neighbor solution, we can ensure that the k nearest
neighbors of any query point are found at a certain probability. Of course,
if we demand a higher probability, the speed of the LSH algorithm will be

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION66

slower. As for our system, we can obtain high recall and precision even when
a low probability is set.

Scalability Problem

The major problem of E2LSH is scalability. Although E2LSH can answer
the query in fast speed, it stores all the data points and the R-near neighbor
data structures (which is built by the E2LSH for indexing the database) in
the main memory. Thus, the size of the database it can index at a time is
limited by the amount of free main memory space in the computer. If the IND
detection is to be applied on a database once only in a batch mode fashion,
we can employ the following approach to solve the scalability problem:

1. Divide the dataset into several parts.

2. For each of the parts, run E2LSH to build the index and run all queries
on that part.

3. Collect the results from all the parts together to create the total results
for the queries.

The hash index of each part will be created once altogether and thus there
is no significant difference in speed between creating the index for one huge
database and creating the divided databases one by one. However, to achieve
this, one would have to obtain all the queries beforehand. This is not suit-
able for online applications in which users can submit query at any time.
Nevertheless, this method is suitable for performance evaluation. To solve
the scalability problem, we can adopt the parallel and distributed solution
proposed in chapter 3.

Solving k-NN

The k-nearest neighbor problem can be solved using E2LSH. However, each
R-near neighbor data structure is suitable indexing with a specfic value of
radius R. Thus, to find the k-nearest neighbor, an effective method is to
create several R-near neighbor data structures with R = {R1, R2, ..., Rt},
where Rt is the threshold distance from the query point to its near neighbor.
The query can be started with the near neighbor data structure with the
smallest radius, say R1, and continue with the data structure with larger
radius until k-nearest neighbors are found. However, this method costs too
much memory space to store the data structures and is thus not desirable.
Instead, we create one near neighbor data structure with moderate radius
only. k-nearest neighbors of the query are identified based on the distance

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION67

between the query point and the query result points obtained from data
structure.

4.2.3 Keypoint and Image Lookup Tables

For the sake of reducing the main memory usage, we do not store the details
of the keypoints (SIFT feature vectors) and their corresponding images in
the hash table. We store the details of keypoints and images in separate files
on disk. In the keypoint lookup table, the details of each keypoint are stored
in one line in plain text according to the following format:

Image ID x-coordinate y-coordinate Scale Orientation 45 chars

The keypoints are stored such that the indexes of keypoints in the LSH
hash table are equal to the line numbers of the corresponding keypoints.
Thus, as we retrieve a keypoint represented by a keypoint index from the
LSH hash table, we can obtain the detail of that keypoint by looking up
the line in the keypoint description file with line number equals the keypoint
index. Since each line is of equal width of 45 characters, the memory address
of the starting byte of a specific line can easily be calculated by this formula:
45 ∗ index.

In the keypoint lookup table, the image associated with each keypoint is
represented by “Image ID”. The ID is actually an index to the image lookup
table. The details of each image are stored in one line in plain text according
to the following format:

Image ID # keypoints Length of File Name File Name 86 chars

4.3 Database Query

After the index is built, query can be issued to search for near-duplicate im-
ages. During query search, the system extracts SIFT features from the query
image and submit the features to E2LSH one by one. E2LSH then returns
keypoints that are sufficiently close to the query keypoint in Euclidean space.
However, not all returned keypoints are regarded as the matches. They are
determined by the following matching strategies.

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION68

4.3.1 Matching Strategies

Since a query image may have several near-duplicate images in the database,
a query keypoint of the query image can have several possible correct matches.
Therefore, we should take a group of keypoints instead of taking a single key-
point as the candidate matches of a query keypoint. There are two commonly
used matching strategies that are suitable for our requirements. They are
threshold based matching and k-NN matching. We have also proposed a
new matching strategies, called k-NNRatio matching, which is a integration
of the k-NN matching the and distance ratio matching. Since E2LSH sup-
ports retrieving keypoint within a threshold radius to the query keypoint, the
keypoints returned from E2LSH are already the candidate matches under
the threshold matching strategy. To identify the k nearest neighbor of each
query keypoint, we can employ the method discussed in the previous section,
Section 4.2.2. The candidate matches under the k-NNRatio matching strat-
egy are actually the same as those under the k-NN matching strategy, but
they are additionally assigned a weight specifying its importance in deciding
the matching images of the query image. The higher the weight, the more
important is the candidate match. A weight closes to zero mean that the
keypoint is hardly regarded as a candidate match and we may just remove
it from the list of candidate matches.

Threshold Based Matching

Under the threshold based matching strategy, a query keypoint matches with
a keypoint in the database if the distance between them is below a thresh-
old R. We have adopted Euclidean distance (L2) metric for SIFT feature
descriptors in our experiment.

It is actually very hard to design a fixed threshold for this strategy. It is
because the image transformations applied on different images are variant.
However, under different transformations, the average distances between the
query points and their matches are usually different. Therefore, a threshold
suitable for certain transformation may not be suitable for the others. If we
set the threshold too tight, too few matches will be obtained. We may not be
able to determine the matching images based on a small amount of candidate
matches and thus the recall rate will be low. On the contrary, if we set
the threshold too loose, too many matches will be obtained. The matching
images will be seem like being chosen by random and thus the precision
rate will be low. To overcome these problems, we can set the threshold to
a large value and rely on the orientation verification and RANSAC affine
transformation verification processes to filter out, hopefully, all of the false
matches. However, certainly, this will significantly reduce the speed of the

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION69

system and not all false matches can be removed by these two processes if
the original amount of false matches are numerous.

k-NN Matching

Under the k-NN matching strategy, a query keypoint Q matches with a
keypoint KA in the database if KA is among one of the k nearest neighbors
of Q and if the distance between them is below a threshold. With this
approach a query keypoint has up to k matches. The threshold should be
set large enough such that keypoints under serious image transformations are
still within the threshold radii from the query keypoints such that it is highly
probably that no correct matches are missed before choosing the nearest k.

The value k is, again, a fixed value. Since the content of database is vari-
ant, we actually cannot tell how many matches exist for each query keypoint.
Certainly, we can tell how many matches exist in performance evaluation, but
we cannot do so when our system is deployed to public use. As k is set much
lower than the actual number of correct matches, not all matches of a query
points may be included and this makes the recall rate low. On the contrary,
as k is set far higher than the actual number of correct matches, many false
matches are included and this makes the precision rate low.

k-NNRatio Matching

Under the above strategies, all keypoints within a threshold radius of a query
points or among the k nearest neighbors are counted as the matches regard-
less of the inter-distances between those keypoints. To the extreme, for
instance, there may exist a case in which ten keypoints are located within
the threshold radius of a query keypoint. Among the ten keypoints, one of
them is very close to the query keypoint while all the others are very far
away from the query keypoint. Then, even if all the ten keypoints have some
chances to be the correct matches, the nearest one has higher chance to be
a correct match than the others.

To solve the above problem and to soften the adverse effect of a fixed
value of threshold and k in the above matching strategies, we introduce a
new matching strategy called k-NNRatio matching. Under the k-NNRatio
matching strategy, a query keypoint Q matches with a keypoint KA in the
database if the distance ratio between KA and the next nearest neighbor
KB is high enough, and if KA is among the nearest k and the distance
between KA and Q is below a threshold. Under this definition, we can say
the k-NNRatio matching strategy is an extension of the above strategy. We
further integrate it with the nearest neighbor distance ratio employed in
SIFT [32]. The requirement that the distance ratio between KA and KB

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION70

has to be high enough seems ambiguous. We say so because there is no
hard threshold on the distance ratio that the keypoint has to reach to be a
candidate match. Instead, a weight is assigned to each keypoint. A keypoint
with high weighting means that the keypoint is more important in the image
voting process because we have larger confidence that this keypoint is a
correct match. The weight assignment follow the following two principles:

1. If a keypoint is nearer to the query point, it is more likely a correct
match and its weight should be higher. Otherwise, its weight should
be lower.

2. If a keypoint has large distance ratio to its next nearest neighbor, no
other match seems like the correct match and its weight should be
higher. Otherwise, the weight should be lower.

Our motivation to incorporate distance ratio into the weight for deter-
mining candidate matches is that, distance ratio matching strategy has been
shown [22] to perform better than threshold based and nearest neighbor
matching strategy in term of recall and precision. Now we employ it to
determine multiple matches by incorporating it in the weight assignment
process.

To satisfy the above requirements, the weight of a keypoint is formulated
as follow:

Weight(KA) = (
a

k(KA)
)b × (

dist(KB, Q)

dist(KA, Q)
)c (4.1)

where a, b, and c are the real numbers to be empirically determined. dist(K,Q)
is the Euclidean distance between keypoint K and keypoint Q. k(KA) is the
rank number of KA among the k nearest neighbors. That is, if keypoint KA

is the nearest neighbor of Q, then k(KA) is 1. If keypoint KB is the second
nearest neighbor, then k(KB) is 2, and so on. The weight of a keypoint
depends on the rank number of the keypoint among the k nearest neighbors
and also the distance ratio. The term (a

k(KA)
)b is designed to satisfy the first

requirement while the term (dist(KB ,Q)
dist(KA,Q)

)c is designed to satisfy the second re-
quirement. To balance the influence of these two terms, we introduce the
parameters a, b, and c. We will discuss the choice of these values in the
performance evaluation section.

To implement this matching strategy, we first query E2LSH and obtain
the k nearest neighbors of the query point. For each of the nearest neighbors,
we calculate the weight by taking the first nearest neighbor and the second
one into calculation. During the calculation of the weight of the second one,
we take the second nearest neighbor and the third one into calculation.

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION71

There are several immediate advantages using this matching strategy.
Firstly, the nearest neighbor does not always gain high weight. It will not
have high weight if it is far from the query point. Secondly, a keypoint with
higher rank number can still gain high weight if it is far away from all the
other neighbors with higher rank number. Thirdly, the k nearest neighbors
do not get the same weight and thus they have different voting power during
image voting. If there are only two possible matches for a query keypoint,
ideally only two keypoints will get high weights and all the others will get
lower weights. This softens the adverse effect of the fixed value of K and the
threshold.

4.3.2 Verification Processes

After the candidate matches for each query keypoint were selected, they are
first sorted by their image IDs. Recall that each keypoint owns a keypoint
index. Using this keypoint index, we lookup the keypoint lookup table for
the line containing the detail of the keypoint. From that line, we can obtain
an image ID that uniquely identifying the image from which the keypoint is
extracted. By sorting the candidate matches by their image IDs, the key-
points extracted from the same images are brought together. We then group
the keypoints together according to their image IDs. The keypoints in each
group are then filtered based on their geometric relationship so as to reduce
the number of probable false matches. We filter each group through two ver-
ification processes: orientation verification and affine geometric verification
using RANSAC.

These two processes can only filter certain percentage of false matches.
Therefore, we should not flood the inputs of these two processes with a large
number of candidate matches of each image and totally rely on these two
processes to filter out the large number of false matches. In other words, we
should not set the threshold too large when using threshold based matching
or set the K too large when using other matching strategies. This is to say,
the matching strategy just discussed is an important part of the system and
can not be skipped.

These two processes are applicable for IND detection but not applicable
for applications like CBIR. This is because in CBIR, the scenes or objects in-
side the query image and the desired image are not necessary the same. They
may just under to the same semantic topic. The geometrical transformation
from the desired image to the query image may neither be affine transfor-
mation nor perspective transformation. For those applications in which the
geometrical transformation among the matching keypoint pairs can be mod-
eled by affine transformation, the two proposed verification processes will

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION72

work perfectly.
The affine geometric verification process was adopted by Yan Ke [23] in

building his IND detection system. However, we observed that the orienta-
tion of keypoints are not verified in his system. Thus, we propose a verifi-
cation process that can work together with the affine geometric verification
process to further remove probable false matches.

Orientation Verification

The orientation of a keypoint refers to the canonical orientation of the key-
point. It is determined by the image gradients of pixels in both x and y
directions within the feature region. For detail, please see Section 2.4.1. Un-
der most of the image manipulation processes, the orientation of a keypoint
will change in similar amplitude as that of any other keypoints in the same
image. In other words, all keypoints of an image rotates in similar amplitude
as the image is manipulated using the previously discussed manipulation
process. Therefore, the difference of in orientation between any of the query
keypoint and its match should be more or less the same.

The orientation verification process of our system makes use of the con-
sistency of this difference to remove the probable false matches and retains
only the largest set of candidate matches that have consistent differences for
each group.

Here are the steps of the orientation verification process for each group
of candidate keypoint matches:

1. Input a group of keypoint matches.

2. For each candidate keypoint match, obtain the orientations of the query
keypoint and the database keypoint through the keypoint lookup table
using their indexes in the hash table as the indexes to the lookup table.

3. For each candidate keypoint match, subtract the orientation of the
query keypoint from that of the database keypoint to obtain the differ-
ence in orientation. The range of the difference is [−360◦, 360◦].

4. Fit the difference of each match into the range of [0◦, 360◦] by adding
360◦ to it if it is negative.

5. Divide the range of difference into 36 bins, each with 10◦ width. Map
the difference of each keypoint to one of the 36 bins and add the key-
point match pair into that bin.

6. Slide a moving window of the width 3 bins over the 36 bins. Slide for
1 bin each time for 36 times and wrap the window around at the end.

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION73

7. Find the maximum window which is the moving window having the
maximum number of match pairs inside its 3 bins.

8. Replace the list of candidate keypoint matches of the current group
with the list of matches existing in the 3 bins of the maximum window.

With this verification process, the number of false matches are signifi-
cantly reduced. This can be reflected by the recall and precision rate of the
system.

Affine Geometric Verification using RANSAC

The affine transformation between two images can be modeled by the follow-
ing equation:

Ax = b

a00 a01 a02

a10 a11 a12

0 0 1

x0

y0

1

 =

u0

v0

1

where x are the homogenous coordinates of a keypoint in the query image,
b are the homogenous coordinates of the matched keypoint in the database
image, and A is the transformation matrix with six unknowns. To compute
the transformation matrix, we need 3 keypoint match pairs. With the 3
keypoint match pairs (x0,b0), (x1,b1) and (x2,b2), we can compute the
matrix A by solving the following linear equation:

x0 y0 1 0 0 0

x1 y1 1 0 0 0

x2 y2 1 0 0 0

0 0 0 x0 y0 1

0 0 0 x1 y1 1

0 0 0 x2 y2 1

a00

a01

a02

a10

a11

a12

=

u0

u1

u2

v0

v1

v2

Since the large matrix on the left is a square matrix, we can find the least
square solution of the above linear equation by multiplying the inverse of

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION74

that matrix with the vector on the other side:

a00

a01

a02

a10

a11

a12

=

x0 y0 1 0 0 0

x1 y1 1 0 0 0

x2 y2 1 0 0 0

0 0 0 x0 y0 1

0 0 0 x1 y1 1

0 0 0 x2 y2 1

−1

u0

u1

u2

v0

v1

v2

In our implementation, we have employed the LU decomposition function and
backward substitution function in the Numerical Recipes in C++ package
[46] to compute inverse of matrix.

With the matrix A, we can affine warp every query keypoint with ho-
mogenous coordinates x from the query image to the database image by
multiplying the the 3× 3 matrix A with vector x.

We adopt RANdom SAmple Consensus (RANSAC) [10] to eliminate
probable false matches in the group of candidate matches. Here are the
steps of affine geometric verification for each group of candidate keypoint
matches:

1. Check if there are at least 3 pairs of keypoint matches, remove the
whole group from the list of candidate matches and finish the process
if it is false.

2. Randomly pick three keypoint match pairs.

3. Calculate the affine transformation matrix based on these three match
pairs only.

4. For all the other keypoint matches, map the query keypoint onto the
database image and calculate the Euclidean distance between the mapped
coordinates and the coordinates of the database keypoint. Compute
the support of the current transformation by counting the number of
matches with the distance smaller than a preset threshold, which is set
to 10 in our performance evaluation.

5. Loop the above steps for a number of times, which is set to ten times
in our performance evaluation. Find the transformation that receives
the greatest support.

6. Retain only the candidate keypoint matches that support the greatest
support transformation.

This verification process further improves the recall and precision rate of
our system.

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION75

4.3.3 Image Voting

After the verification processes, a large percentage of false matches should
have been removed. However, there usually still remain a number of groups
of candidate matches. Each group represents a different database image that
may be near-duplicate of the query image. To determine which is more likely
to be the the correct match, we compare the support of that group which is
defined as the number of verified candidate matches inside that group. The
larger the support, the greater the probability that the corresponding image is
a near-duplicate of the query image. If the system employs threshold based or
k-NN matching strategy, we sort the groups by their supports in descending
order and remove those that have supports fewer than the minimum support
which is 5. The top N(=10) groups are returned to the user and counted
as a match during performance evaluation. Under the k-NNRatio matching
strategy, not only the “quantity” of a group but also the “quality” is used to
rank the groups. We first calculate the weight of a group which is defined as
the summation of all the weights of the keypoint matches in that group. We
then sort the groups by their weights in descending order instead of simply by
their supports. This makes the more probable keypoint matches contribute
more to the image voting process than those less probable matches. Similarly,
those groups that have weights smaller than the 5 are discarded and the top
10 groups are returned to the user.

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION76

4.4 Performance Evaluation

We have done a number of experiments to show that our proposed approaches
do improve the performance of the whole system and that our system is ef-
fective. We followed [23] to use 150 images as the query images and the
transformed versions of the query images as the database images in the image
database. The images we used are downloaded from [8]. They are photog-
raphy in many different themes. For each image, 8 different transformations
are applied to produce 8 different database images. The transformations
include the followings:

1. Three cropping transformations done by cropping the query image by
50%, 70%, and 90% respectively. All cropped images are resized back
to original size. These image capture both the cropping and the resizing
transformations.

2. Three shearing transformations done by applying an affine warp on the
query image along the x axis by 5◦, 10◦, and 15◦ respectively.

3. Two contrast changing transformations done by increasing the contrast
of the query image by 3× and decreasing it by 3× respectively.

Since each query image produces 8 transformed versions, there are alto-
gether 1200 database images. Before building an index, we extract keypoints
from each image. Each image contains hundreds of keypoints. Thus, the
keypoint database contains 1 million of keypoints.

The parameters k, m and L in E2LSH are set to be 26, 28, and 50
respectively. All of our experiments use a Intel P4 3.2GHz machine with
2GB of memory running on Fedora Core 3 (Linux Kernel 2.6).

4.4.1 Evaluation Metrics

The performance of our system is evaluated using Receiver Operating Char-
acteristic (ROC). We define a correct match as a match between a query im-
age and one of its transformed versions in the database. Any other matches
are false matches. The recall and precision rate are defined as follows:

recall =
number of correct matches

total number of correct matches

precision =
number of correct matches

total number of matches

Intuitively, we want both recall and precision rate to be high.

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION77

4.4.2 Results

Preliminary Comparison on the Three Matching Strategies

In this experiment, we compare the performance of our system with different
matching strategies by making a query using the query image shown in 4.1.
The eight transformed versions are also shown in 4.1.

The setting of each matching strategy is summarized in the table 4.1.
The performance comparison is shown in the table 4.2. From table 4.2, we
can see that the system using threshold based matching performs the worst.
It cannot give any correct match. It is because there are numerous candidate
keypoint matches lie within the threshold R. The image voting seems like
a randomized result and thus no correct match result. As for the proposed
k-NNRatio matching strategy, it gives one more correct match than k-NN
matching strategy. That correctly matched image is the 50%-cropped version
of the query image which is difficult to match correctly. There should have
a few keypoints voting this image. However, under the proposed k-NNRatio
matching strategy, the influence of a few keypoints can be large in image
voting. This contributes to the higher recall rate of the k-NNRatio matching.

(a) Query Image

(b) Crop 50%

(c) Crop 70%

(d) Crop 90%

(e) shear 5 pixels

(f) shear 10 pixels

(g) shear 15 pixels

(h) +3× contrast

(i) −3× contrast

Figure 4.1: The Query Image and its eight transformed versions

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION78

Matching strategies Settings

Threshold based R = 350

k-NN R = 350, K = 10

k-NNRatio R = 350, K = 10, a = b = c = 1

Table 4.1: Table summarizes the experiment’s settings.

Matching strategies b c d e f g h i

Threshold based 0 0 0 0 0 0 0 0

k-NN 0 0 0 67 57 75 17 68

k-NNRatio 10 0 0 41 7 164 10 65

Table 4.2: Table summarizes the results of query under each matching strat-
egy without using any verification process. If any of the images (b) - (i)
are among the top 10 during the image voting step, this table will show the
support / weight of that image in the column that represents that image and
in the row that represents the matching strategy in use.

Result of Orientation Verification

In the this experiment, we evaluate the performance of the orientation ver-
ification process. We query the database using the 150 query images (a)
with orientation verification only, (b) with affine geometric verification only,
and (c) with both verifications. The total number of possible matches is
150× 8 = 1200. The experiment setting is presented in table 4.3.

The results are summarized in the table 4.4. As seen from the table, the
orientation verification contributes to further improve the recall and precision
rate.

Parameter Name Value

Matching strategy k-NN matching strategy

R 350

k 10

Table 4.3: Experiment setting.

Determine parameters a, b, and c of k-NNRatio

To determine the parameters a, b, and c of k-NNRatio matching strategy,
we compare the performance of our system under different choice of a, b, c,

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION79

Verification # correct matches # false matches recall precision

(a) 975 471 81% 67%

(b) 1001 430 83% 70%

(c) 1011 301 84% 77%

Table 4.4: Table summarizing the # correct matches, # false matches, recall,
and precision rate.

and other system parameters listed in the table 4.5.

Parameter Name Value

Matching strategy k-NNRatio matching strategy

Verification Both

R 350

K 10 - 40

N 10 - 40

a 2 - 10

b 0.11 - 1.00

c 1.00 - 8.30

Table 4.5: Experiment setting. Note that the value N limits the maximum
number of images being voted and returned to the user.

Part of the experimental result is shown in table 4.6. This is the part
that shows the best setting of the system. The best a, b, and c parameter
as determined by our experiment are 4, 0.2, and 4 respectively. The best
recall and precision rate are 87% and 85% respectively. Comparing these
results with that performed using k-NN matching strategy, we can see that
the recall and precision rate is increased by 3% and 8% respectively. As seen
from table 4.6, by using k-NNRatio matching, our system can perform 99%
precision rate with just a bit lower recall rate, 84%, which is still higher than
that of k-NN matching.

Running Time

The speed of E2LSH is fast. To query 100 keypoints in a 1 millions keypoint
database, the query takes only 10 seconds to finish. The only problem is that
its memory requirement is large and thus it causes the scalability problem
discussed before.

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION80

N a b c #correct #false recall precision

10 4 1 8.3 933 570 0.78 0.62

10 4 1 4 1041 459 0.87 0.69

10 4 1 2.6 1037 456 0.86 0.69

10 4 1 2 1031 454 0.86 0.69

10 4 1 1.6 1029 449 0.86 0.7

10 4 1 1.3 1029 445 0.86 0.7

10 4 1 1.1 1029 440 0.86 0.7

10 4 1 1 1024 443 0.85 0.7

10 4 0.33 8.3 944 539 0.79 0.64

10 4 0.33 4 1041 205 0.87 0.84

10 4 0.33 2.6 1031 71 0.86 0.94

10 4 0.33 2 1024 33 0.85 0.97

10 4 0.33 1.6 1021 26 0.85 0.98

10 4 0.33 1.3 1017 15 0.85 0.99

10 4 0.33 1.1 1017 14 0.85 0.99

10 4 0.33 1 1015 10 0.85 0.99

10 4 0.2 8.3 950 528 0.79 0.64

10 4 0.2 4 1040 177 0.87 0.85

10 4 0.2 2.6 1027 66 0.86 0.94

10 4 0.2 2 1022 31 0.85 0.97

10 4 0.2 1.6 1017 28 0.85 0.97

10 4 0.2 1.3 1016 19 0.85 0.98

10 4 0.2 1.1 1018 16 0.85 0.98

10 4 0.2 1 1015 18 0.85 0.98

10 4 0.14 8.3 949 527 0.79 0.64

10 4 0.14 4 1039 176 0.87 0.86

10 4 0.14 2.6 1027 67 0.86 0.94

10 4 0.14 2 1022 40 0.85 0.96

10 4 0.14 1.6 1018 27 0.85 0.97

10 4 0.14 1.3 1016 21 0.85 0.98

10 4 0.14 1.1 1013 21 0.84 0.98

10 4 0.14 1 1015 13 0.85 0.99

10 4 0.11 8.3 949 528 0.79 0.64

10 4 0.11 4 1037 192 0.86 0.84

10 4 0.11 2.6 1027 76 0.86 0.93

Table 4.6: A portion of the performance evaluation result using different
setting of value.

CHAPTER 4. IMAGE RETRIEVAL SYSTEM FOR IND DETECTION81

Comparing with Exhaustive Linear Search technique, LSH costs some
setup time building LSH hash tables, R-NN data structure, etc. However,
once the setup is ready, the built LSH hash tables and R-NN data structure
can be used by all the query images. Moreover, during the crawling process
of web image crawler, when an image is downloaded, what the system need
to do is to incrementally add the feature vectors of the downloaded image
into the LSH hash tables. Since the number of feature vectors in one image is
not high, the speed of the incremental adding process is fast. By sacrificing
a small amount of time for adding the feature vectors into the LSH hash
tables, the system can perform fast IND detection.

4.4.3 Summary

We have demonstrated our IND detection system is effective in detecting
near-duplicate images in a large database with high recall and precision rate.
The proposed k-NNRatio matching strategy has been shown to be better than
k-NN matching strategy in terms of system’s recall rate and precision rate.
The proposed orientation verification scheme is also shown to be effective
in removing probable false matches and this is also reflected in the system’s
recall rate and precision rate.

2 End of chapter.

Chapter 5

Shape-SIFT Feature Descriptor

5.1 Overview

Approaches based on invariant local descriptors have been widely employed
in many computer vision applications, including automatic panorama stitch-
ing, image retrieval, and object class recognition [37]. Although these ap-
proaches are generally more robust to clutter background than those using
global descriptors, their recognition performance is still significantly reduced
when the background color changes. This is because a change in background
color will distort the local descriptors sampled near the boundary between
an object and the background. The distortion appears frequently on the de-
scriptors sampled in large feature regions. It degrades the recognition rate
significantly when the target objects are textureless, since the success in rec-
ognizing descriptors near the contours of objects the becomes critical. On
the other hand, invariance of descriptors to changes in object color is not
regarded as important in the recently proposed local descriptors. However,
objects in the images of the same semantic topic can always share the same
shape with different colors. A black car and a white car of the same model,
for example, can both belong to car category or category of car with certain
model number. This raises a need to design a local descriptor that is more
robust to such a change for image retrieval purpose.

In this chapter we propose a new descriptor resembling Scale Invariant
Feature Transform (SIFT) [32] that is also invariant to background and object
color changes. By object color changes, we mean the colors of different parts
of an object may change independently. We observe that if the shape of object
remains the same, significant changes in background or object color can cause
some SIFT descriptors to change significantly because of the flipping of the
image gradient orientations. The flipping of gradient orientation affects not
only the description process but also the orientation assignment process of

82

CHAPTER 5. SHAPE-SIFT FEATURE DESCRIPTOR 83

SIFT. We propose some methods to handle these problems, and design a new
descriptor, Shape-SIFT, for a comprehensive solution. We will also present
how experiments are carried out and the evaluation results.

5.2 Related Work

Since Schmid and Mohr [49] introduce invariant local descriptor for solv-
ing image matching problems, many research tasks have been performed
to further improve the detection, description and matching process of local
descriptors in three interacting aspects: the distinctiveness, the extent of
invariance, and the speed of the process.

SIFT descriptor [32] is one of the state-of-the-art descriptors that is shown
to be very robust to many image transformations. It is a 4 × 4 array of
histograms, each has 8 orientation bins. Each sample point in the detected
feature region is added to the corresponding bin according to its gradient
orientation and is weighted by its gradient magnitude. Gradient magnitudes
m(x, y) and gradient orientations θ(x, y) of each image sample point, L(x, y),
are computed using pixel differences:

m2(x, y) =(L(x + 1, y)− L(x− 1, y))2+

(L(x, y + 1)− L(x, y − 1))2

θ(x, y) = tan−1 L(x, y + 1)− L(x, y − 1)

L(x + 1, y)− L(x− 1, y)

(5.1)

To achieve rotation invariance, the coordinates of the descriptor and the
gradient orientations within the feature region are rotated according to the
canonical orientation which is the most frequent orientation within that re-
gion. After that, the 16× 16 sample region around each keypoint is divided
into 16 subregions with 4×4 samples in each. A 36-bin orientation histogram
covering 360◦ is then created in each subregion and SIFT descriptor is formed
by combining the 16 histograms.

Recently, several SIFT-based descriptors were proposed and were shown
in [22] to be superior to many other types of local feature descriptors on the
feature matching task. They include PCA-SIFT [45] and GLOH [22]. PCA-
SIFT descriptor is a vector of image gradients in x and y directions computed
in the feature region detected by the SIFT’s detection technique and is re-
duced to 36 dimensions with PCA. GLOH descriptor is another extension
to SIFT. It computes the SIFT descriptor with a different arrangement of
subregions and employs PCA to reduce its dimension to 128. Other descrip-
tors that show good performance include Shape Context [4], which is a 3D

CHAPTER 5. SHAPE-SIFT FEATURE DESCRIPTOR 84

histogram of edge point locations and orientations under the implementation
of Mikolajczyk [22].

5.3 SHAPE-SIFT Descriptors

According to our preliminary test, SIFT is robust to a small degree of change
in background and object color. This indicates that both the gradient ori-
entations and gradient magnitudes are robust to a small change due to the
thresholding and normalization process of SIFT. However, as the change
becomes larger, the gradient orientations of the sample points along the con-
tour may flip. This causes significant changes in the features’ orientation
histograms, leading to a great drop in the matching performance. We attack
this problem as follows.

5.3.1 Orientation assignment

Our algorithm, called SSIFT, takes the output of SIFT as the input. From the
keypoint detection and orientation assignment result of SIFT, we recalculate
the gradient orientation θ(x, y) of each image sample point with the following
equation:

θ(x, y) = tan−1 |L(x, y + 1)− L(x, y − 1)

L(x + 1, y)− L(x− 1, y)
| (5.2)

Since we take the absolute value on the fraction of pixel intensity difference,
θ(x, y) covers only 180◦ range of orientations. As flipping of gradient orien-
tations does not affect the values of θ(x, y), it is insensitive to the change
in background and object color. On the other hand, gradient magnitude
m(x, y) is calculated in the same way as SIFT in Eq.(5.1).

5.3.2 Canonical orientation determination

After each image sample point is assigned to a new gradient orientation, a 18-
bin orientation histogram covering 180◦ is created at each keypoint. Sample
points around a keypoint are added to an orientation histogram according to
their θ(x, y). Similar to SIFT, we determine the canonical orientation of the
keypoint based on the peak orientation bin in the histogram. However, since
gradient orientation covers only 180◦ range of orientations, we cannot simply
take the peak orientation as the canonical orientation of the keypoint. We
thus propose the following approaches to solve this problem.

CHAPTER 5. SHAPE-SIFT FEATURE DESCRIPTOR 85

Approach 1 - Duplication
The simplest method to tackle this problem is to create another keypoint
for the same sample point but with different canonical orientations. The
canonical orientations of the two keypoints will be θp and 180◦ + θp, respec-
tively. Since every keypoint is duplicated, the number of features stored in
the database is doubled. This approach solves the problem without lowering
the matching performance but it significantly increases the storage require-
ment, which is not desirable.
Approach 2 - By the distribution of peak orientation
Canonical orientations can be determined using an orientation dependent
statistical value, as long as the statistical value responds to the two candi-
date canonical orientations (θp and 180◦ + θp) differently and is invariant to
common image transformations. We propose to use the distribution of peak
sample points around the keypoint, which have their orientations falling into
the peak orientation bin as the statistical value. This value is calculated
based on the concept behind the first image moment. First, the coordinates
of the descriptor and the gradient orientations of the sample points are ro-
tated by θp. Then the feature region is divided into two halves, region A
and B. The statistical value corresponding to region A, MassA and that to
region B, MassB, are then computed by the following equations:

MassS =
∑

x,y∈S

[w(x, y)×mp(x, y)] where S ∈ {A,B}

where mp(x, y) is the gradient magnitudes of a peak sample point and w(x, y)
is a weighting function depending on the relative position of the point to the
keypoint center. The canonical orientation is then determined by the fol-
lowing rules: (1) If MassA > k ×MassB, then the canonical orientation is
θp, else (2) if MassB > k × MassA, then it is 180◦ + θp. Otherwise (3),
we duplicate the keypoint such that each keypoint takes one of the two can-
didate canonical orientations. If MassA and MassB are too close to each
other, a significant transformation in feature may result in a totally different
canonical orientation, leading to different feature representations. Thus, the
difference between MassA and MassB has to be large enough. This is en-
sured by an empirical threshold k. There are many different ways to divide
and weight the region, four of which show good performance in experiment:
(1) Right-Left Halving Scheme divides the feature region vertically around
the center. Each 16× 16 feature region is divided into 4 x 4 subregions. The
weight of each subregion is represented by the weighting function w(x, y).
The weighting function of this scheme and the following two schemes are
shown in Fig.5.1. As pixels near the dividing line may easily fall into the
other side and add up to its mass, these pixels get lower weights.

CHAPTER 5. SHAPE-SIFT FEATURE DESCRIPTOR 86

(a) A Coloring (b) B Coloring (c) Common contour

(d) R-L Halving (e) Diagonal Halving (f) U-D Halving

Figure 5.1: (a-c) A simple illustration of different coloring to image gradient
orientations. (d-e) Different halving and weighting schemes. The shaded
halve is region A while the unshaded halve is region B.

(2) Diagonal Halving Scheme divides the region diagonally.
(3) Up-Down Halving Scheme divides the region horizontally.
(4) We further suggest Hybrid Halving Scheme which combines the above
three schemes. The MassA and MassB of this scheme is defined as the mul-
tiple of the mass of the above three schemes, MassA and MassB respectively.
The hybrid scheme can further boost the filtering performance.

To evaluate the performance of these halving schemes and to find the best
threshold k for each of them, we conduct assessment by two ratios, filtering
ratio and matching ratio. Filtering ratio equals (1 - # duplicated features
/ # features) while matching ratio equals (# correctly matched features /
Max. # correctly matched features). “Max. # correctly matched features”
is the maximum overall halving schemes in many different choices of the
threshold k. We prefer both the filtering ratio and the matching ratio to be
close to 1. That is, fewer features are to be duplicated and most determined
canonical orientations are stable. Fig.5.2 shows the result used to examine
the effect of varying the threshold k to filtering and matching ratios. The
assessment is performed on data sets from VGG 1 that capture common image
transformations. As expected, the hybrid scheme achieves excellent filtering
ratio but it degrades the matching ratio quite significantly. On the other
hand, the diagonal halving scheme has a high filtering ratio at any threshold
k and achieves nearly the best matching ratio at k = 1.3. Thus, we adopt
the diagonal halving and weighting scheme in creating SSIFT descriptor and
fix k to be 1.3.

1http://www.robots.ox.ac.uk/ vgg/research/affine/index.html

CHAPTER 5. SHAPE-SIFT FEATURE DESCRIPTOR 87

Figure 5.2: Find the best halving scheme and threshold k.

5.3.3 Keypoint descriptor

After the sample region around each keypoint is rotated to its canonical
orientation, it is divided geometrically into 4 × 4 subregions arranged in a
grid pattern like those in Fig.5.1. Each subregion contains 4 × 4 sample
points. Inside each subregion, we build a 4-bin orientation histogram cov-
ering 180◦ by adding all sample points within that subregion into the bins
corresponding to their gradient orientations. Each point added is weighted by
its gradient magnitudes and a Gaussian-weighted circular window fit inside
the region. At last the 64-element descriptor is thresholded and normalized
to unit length so that it is less sensitive to change in illumination. We call
the descriptor built from these histograms SSIFT-64. Since our descriptor
is more invariant to change in background and object color than SIFT, it
is inevitably a bit less distinctive than SIFT in some cases. To compensate
the drop in distinctiveness, another 4-bin orientation histogram is built in
each subregion and appended to the descriptor. A matching mechanism is
designed to retain the performance of our descriptor on changing background
and object color while boosting the performance on other cases. These 4-
bin orientation histograms contain north, east, south and west orientation
bins, covering 360◦ range of orientations. The gradient orientation θ(x, y)of
each sample point covers the 360◦ range of orientations and is calculated by
Eq.(5.1). We name this descriptor SSIFT-128. Matching SSIFT-64 can be
performed by exhaustive searching in the database for the descriptor with the
smallest Euclidean distance ratio [32]. The matching mechanism for SSIFT-
128 descriptor is as follow: we find the best match match64 using the first 64
elements of SSIFT-128 and calculate the distance ratio dr64. Then we refine
the match using also the last 64 elements and calculate the distance ratio
dr128. We further compare the value of dr64 and dr128. If dr64 is smaller,
then we take the match64 as the best match of the descriptor. Otherwise, we

CHAPTER 5. SHAPE-SIFT FEATURE DESCRIPTOR 88

(a) Polygons (b) PSP

(c) dragon (e) basmati

(f) blurring (g) rotation (h) view change (i) dimming

Figure 5.3: (a) shows two synthetic images that are created by changing the
background color of three colored polygons. They capture background color
change. (b) shows a sample pair of real images with color difference. (c)
shows two real sample images that capture background color change. (d)
shows a basmati box [32] and a scene containing an inverted color basmati
box. (f-i) shows sample images with different image transformations from
VGG used in [22].

take match128. This matching mechanism makes the overall performance of
SSIFT-128 better than SSIFT-64, as shown in the next section.

5.4 Performance Evaluation

We evaluate the performance of our descriptor on synthetic images and real
images with background and object color changes as well as with different
geometric and photometric transformations. Sample images of our data sets
are shown in Fig.5.3. We evaluate the performance of our local descriptor
with other descriptors on a keypoint matching problem using the same eval-
uation criterion in [22, 45]. Our evaluation criterion differs from [22] in that:
(1) A correct match is the match with the largest distance ratio but not
the match with distance between the query keypoint and matched keypoint

CHAPTER 5. SHAPE-SIFT FEATURE DESCRIPTOR 89

Table 5.1: Experimental Results

Data Set Primitives PSP Dragon

Descriptor recall 1-prec. recall 1-prec. recall 1-prec.

SSIFT-128 0.58 0.55 0.29 0.95 0.89 0.35

SIFT [32] 0.16 0.87 0.00 1.00 0.83 0.38

GLOH [22] 0.11 0.92 0.05 0.99 0.53 0.73

Shape Context [22] 0.10 0.93 0.05 0.99 0.52 0.74

Data Set Basmati Bikes

Descriptor recall 1-prec. recall 1-prec.

SSIFT-128 0.34 0.88 0.88 0.52

SIFT [32] 0.00 1.00 0.90 0.47

GLOH [22] 0.00 1.00 0.70 0.52

Shape Context [22] 0.00 1.00 0.66 0.55

within a threshold distance, since distance ratio criterion is shown to yield
better overall results. (2) We do not allow the same descriptor to be repeat-
edly matched. (3) We also test the original SIFT executable provided by D.
Lowe 2. (4) Over ten thousands different features are added as distracters.
Due to the above differences, our experimental results are different from those
in [22]. Table 5.1 and Fig.5.4 show the performance of several descriptors
on our data sets. We compare the performance of different variants of our
descriptor, SIFT implemented by D. Lowe, and SIFT, GLOH and shape con-
text implemented by Mikolajczyk et al. [22]. We adopt the feature detectors
that were proposed to use with the corresponding descriptors. That is, the
last three descriptors use Harris-Laplacian detector while other descriptors
use DOG extrema detector.

Fig.5.4(a-c) shows that SSIFT is much more invariant to changes in back-
ground color than other descriptors. Fig.5.4(a-d) shows that SSIFT has sim-
ilar performance with the state-of-the-art descriptor, SIFT, on images with
scale, rotation, viewpoint and illumination changes. Although the precision
rate of SSIFT is a bit poorer than SIFT in Fig.5.4(a-d), its recall rate is as
high as SIFT.

2http://www.cs.ubc.ca/ lowe/keypoints/

CHAPTER 5. SHAPE-SIFT FEATURE DESCRIPTOR 90

(a) viewpoint change (b) rotation

(c) dimming

Figure 5.4: (a-c) Target images have undergone the labeled transformations.
They correspond to the images in Fig.5.3(g-i).

5.5 Summary

This chapter introduces an alternative to SIFT to build orientation his-
tograms for feature descriptor. Our descriptor, SSIFT, is shown to be more
invariant to background and object color changes than any other descriptors
we tested in the experiments. We propose a new canonical orientation de-
termination process to ensure a consistent representation of each descriptor.
The process is shown to be effective in finding a canonical orientation while
keeping the adverse effect to feature matching small. Currently, we are in-
vestigating alternative ways to extend SSIFT-64 to SSIFT-128. Instead of
extending SSIFT-64 with more orientation histograms, we can employ color
histograms which may be a better complement to SSIFT-64.

CHAPTER 5. SHAPE-SIFT FEATURE DESCRIPTOR 91

2 End of chapter.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis proposed a scalable content-based image retrieval system for
searching images of a specific semantic topic over a very large database.
The system is designed to work with a new high dimensional indexing tech-
nique: locality-sensitive hashing (LSH). We have addressed some limitations
and challenges in applying LSH in our system and suggested a parallel and
distributed solution to overcome the problems. We have conducted extensive
empirical evaluations on a large testbed of a million images and shown that
our solution is fast, accurate, and scalable to very large image database.

To refine the quality of the CBIR search, we proposed and implemented an
IND detection system to remove the near-duplicate images during and after
the Web image crawling process. The system is accurate and efficient due
to the integration of powerful feature detector, descriptor, matching scheme,
the new matching strategy, and the new verification process.

Furthermore, the thesis discussed several recent research work on invari-
ant local grayvalue features and evaluated the performance of several popular
feature descriptors. We found that SIFT feature descriptor remains the best
comparing with other descriptors in the experiment. We then introduced
our newly proposed feature descriptor, SSIFT, which extends SIFT feature
descriptor to be invariant to the changes in background and object color. We
evaluated the performance of our descriptor with SIFT and showed that our
descriptor does better in the cases that changes in background and object
color occur.

92

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 93

6.2 Future Work

The query processing power of the proposed parallel and distributed CBIR
system can further be improved by minimizing the usage of Slaves. Currently,
for each search query, the system gets all the Slaves involved and makes all of
them busy searching for similar images, no matter whether a similar image
can be found in each Slave. If we know there is no data point within a
threshold radius from the query point in certain Slave machine, performing
similarity search in that Slave would not be necessary. Therefore, if the
system can decide not to perform similarity search in that Slave, the system
can eventually be able to process more search queries at the same time. To
achieve this, we need a dispatcher in Master that can precisely dispatch a
query to a subset of Slave machines. We suggest to apply PCA to reduce
the dimension of the query point and then apply k-d tree to determine at
which Slaves similar data points of the query point would be located. This
dispatcher will also be employed during the partition distribution process to
assign the data points of the database to the suitable Slaves.

2 End of chapter.

Appendix A

Publication

Published Paper

[1] Yuk-Man Wong, Chu-Hong Hoi and Michael R. Lyu, “An Empirical
Study on Large-Scale Content-Based Image Retrieval,” in Proceedings
of The 2007 IEEE International Conference on Multimedia and Expo
(ICME’2007), Beijing, 2007

2 End of chapter.

94

Bibliography

[1] A. Andoni. http://web.mit.edu/andoni/www/LSH/index.html.

[2] J. R. Bach, C. Fuller, and et al. The virage image search engine: An
open framework for image management. In Proc. SPIE Storage and
Retrieval for Image and Video Databases, volume 2670, pages 76–87,
1996.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree:
An efficient and robust access method for points and rectangles. In
Proceedings of the 1990 ACM SIGMOD International Conference on
Management of Data, Atlantic City, NJ, May 23-25, 1990, pages 322–
331. ACM Press, 1990.

[4] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recog-
nition using shape contexts. PAMI, page 509, 2002.

[5] S.-A. Berrani, L. Amsaleg, and P. Gros. Robust content-based image
searches for copyright protection. In MMDB ’03: Proceedings of the
1st ACM international workshop on Multimedia databases, pages 70–77,
New York, NY, USA, 2003. ACM Press.

[6] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In Proc. 20th Annual
Symposium on Computational Geometry, pages 253–262, New York, NY,
USA, 2004.

[7] J. Dowe. Content-based retrieval in multimedia imaging. In Proc. SPIE
Storage and Retrieval for Image and Video Databases, 1993.

[8] DPChallenge. http://www.dpchallenge.com/.

[9] R. Egas, D. P. Huijsmans, M. S. Lew, and N. Sebe. Adapting k-d trees to
visual retrieval. In Visual Information and Information Systems, pages
533–540, 1999.

95

BIBLIOGRAPHY 96

[10] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography. Commun. ACM, 24(6):381–395, 1981.

[11] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom,
M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker.
Query by image and video content: The qbic system. IEEE Computer,
28(9):23–32, 1995.

[12] A. Guttman. R-trees: a dynamic index structure for spatial searching.
In SIGMOD ’84: Proceedings of the 1984 ACM SIGMOD international
conference on Management of data, pages 47–57, New York, NY, USA,
1984. ACM Press.

[13] C. Harris and M. Stephens. A combined corner and edge detector. In
Alvey88, pages 147–152, 1988.

[14] T. Hertz, N. Shental, A. Bar-Hillel, and D. Weinshall. Enhancing
image and video retrieval: Learning via equivalence constraints. In
Proc. of IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2003.

[15] S. C. Hoi, W. Liu, M. R. Lyu, and W.-Y. Ma. Learning distance metrics
with contextual constraints for image retrieval. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR2006),
New York, US, June 17–22 2006.

[16] S. C. H. Hoi and M. R. Lyu. A novel log-based relevance feedback
technique in content-based image retrieval. In Proc. ACM Multimedia
Conference, New York, US, Oct. 10–16 2004.

[17] S. C. H. Hoi, M. R. Lyu, and R. Jin. A unified log-based relevance
feedback scheme for image retrieval. IEEE Trans. KDE, 18(4):509–524,
2006.

[18] S. Hu. Efficient video retrieval by locality sensitive hashing. In Proc.
IEEE ICASSP, volume 2, pages 449–452, 2005.

[19] P. Indyk and R. Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proc. 13th ACM Symposium
on Theory of computing, pages 604–613, New York, NY, USA, 1998.

[20] A. Jain and A. Vailaya. Image retrieval using color and shape. Pattern
Recognition, 29(8):1233–1244.

BIBLIOGRAPHY 97

[21] A. Jain and A. Vailaya. Shape-based retrieval: A case study with trade-
mark image databases, 1998.

[22] C. S. K. Mikolajczyk. A performance evaluation of local descriptors.
PAMI, 27:1615–1630, 2005.

[23] Y. Ke, R. Sukthankar, and L. Huston. An efficient parts-based near-
duplicate and sub-image retrieval system. In MULTIMEDIA ’04: Pro-
ceedings of the 12th annual ACM international conference on Multime-
dia, pages 869–876, New York, NY, USA, 2004. ACM Press.

[24] W.-C. Lai, C. Chang, E. Chang, K.-T. Cheng, and M. Crandell. Pbir-
mm: multimodal image retrieval and annotation. In MULTIMEDIA ’02:
Proceedings of the tenth ACM international conference on Multimedia,
pages 421–422, Juan-les-Pins, France, 2002.

[25] W.-C. Lai, E. Chang, and K.-T. Cheng. An anatomy of a large-scale
image search engine. In poster proceedings of World Wide Web Confer-
ence.

[26] M. S. Lew. Next-generation web searches for visual content. Computer,
33(11):46–53, 2000.

[27] M. S. Lew, N. Sebe, C. Djeraba, and R. Jain. Content-based multimedia
information retrieval: State of the art and challenges. ACM Trans.
Multimedia Comput. Commun. Appl., 2(1):1–19, 2006.

[28] X. Li, L. Chen, L. Zhang, F. Lin, and W.-Y. Ma. Image annotation
by large-scale content-based image retrieval. In MULTIMEDIA ’06:
Proceedings of the 14th annual ACM international conference on Multi-
media, pages 607–610, Santa Barbara, CA, USA, 2006.

[29] H. Ling and D. Jacobs. Deformation invariant image matching. In
ICCV, pages II: 1466–1473, 2005.

[30] H. Ling and K. Okada. Diffusion distance for histogram comparison. In
CVPR06, 2006.

[31] D. G. Lowe. Object recognition from local scale-invariant features. In
ICCV, pages 1150–1157, 1999.

[32] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
IJCV, 60(2):91–110, 2004.

BIBLIOGRAPHY 98

[33] B. Manjunath, P. Wu, S. Newsam, and H. Shin. A texture descriptor
for browsing and similarity retrieval.

[34] B. S. Manjunath and W. Ma. Texture features for browsing and retrieval
of image data. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI - Special issue on Digital Libraries), 18(8):837–42,
Aug 1996.

[35] S. Mehrotra, Y. Rui, O.-B. Michael, and T. S. Huang. Supporting
content-based queries over images in mars. In Proc. of IEEE Int. Conf.
on Multimedia Computing and Systems, 1997.

[36] B. M. Mehtre, M. S. Kankanhalli, and W. F. Lee. Shape measures for
content based image retrieval: a comparison. Inf. Process. Manage.,
33(3):319–337, 1997.

[37] K. Mikolajczyk, B. Leibe, and B. Schiele. Multiple object class detection
with a generative model. In CVPR, pages I:26–36, 2006.

[38] K. Mikolajczyk and C. Schmid. A performance evaluation of local de-
scriptors. IEEE Trans. Pattern Anal. Mach. Intell., 27.

[39] K. Mikolajczyk and C. Schmid. Indexing based on scale invariant inter-
est points. In ICCV, pages 525–531, 2001.

[40] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,
F. Schaffalitzky, T. Kadir, and L. V. Gool. A comparison of affine
region detectors. IJCV, 65(1-2), 2005.

[41] W. Niblack, R. Barber, and et al. The QBIC project: Querying images
by content using color, texture and shape. In SPIE Storage and Retrieval
for Image and Video Databases, 1994.

[42] A. Pentland, R. Picard, and S. Sclaroff. Photobook: Content-based
manipulation of image databases. IJCV, 18(3):233–254, 1996.

[43] A. Qamra, Y. Meng, and E. Y. Chang. Enhanced perceptual distance
functions and indexing for image replica recognition. IEEE Trans. on
PAMI, 27(3):379–391, 2005.

[44] T. Quack, U. Mönich, L. Thiele, and B. S. Manjunath. Cortina: a system
for large-scale, content-based web image retrieval. In MULTIMEDIA
’04: Proceedings of the 12th annual ACM international conference on
Multimedia, pages 508–511, New York, NY, USA, 2004. ACM Press.

BIBLIOGRAPHY 99

[45] Y. K. Rahul. Pca-sift: A more distinctive representation for local image
descriptors. In CVPR, pages 511–517, 2004.

[46] N. Recipes. http://www.numerical-recipes.com/.

[47] Y. Rui, T. Huang, and S. Chang. Image retrieval: current techniques,
promising directions and open issues. Journal of Visual Communication
and Image Representation, 10(4):39–62, Apr. 1999.

[48] Y. Rui, T. S. Huang, and S. Mehrotra. Relevance feedback techniques
in interactive content-based image retrieval. In Storage and Retrieval
for Image and Video Databases (SPIE), pages 25–36, 1998.

[49] C. Schmid and R. Mohr. Local grayvalue invariants for image retrieval.
PAMI, 19(5):530–535, May 1997.

[50] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain.
Content-based image retrieval at the end of the early years. IEEE Trans.
on PAMI, 22(12):1349–1380, 2000.

[51] J. R. Smith and S.-F. Chang. Visualseek: A fully automated content-
based image query system. In ACM Multimedia, pages 87–98, 1996.

[52] M. Swain and D. Ballard. Indexing via color histograms. In DARPA90,
pages 623–630, 1990.

[53] S. Tong and E. Chang. Support vector machine active learning for image
retrieval. In MULTIMEDIA ’01: Proceedings of the ninth ACM interna-
tional conference on Multimedia, pages 107–118, Ottawa, Canada, 2001.

[54] D. A. White and R. Jain. Similarity indexing: Algorithms and perfor-
mance. In Storage and Retrieval for Image and Video Databases (SPIE),
pages 62–73, 1996.

[55] Y. M. Wong, S. C. Hoi, and M. R. Lyu. An empirical study on large-
scale content-based image retrieval. In IEEE International Conference
on Multimedia & Expo (ICME2007), Beijing, China, July 2007.

[56] P. Wu, B. Manjunath, S. Newsam, and H. Shin. A texture descriptor for
browsing and similarity retrieval. Journal of Signal Processing: Image
Communication, 16(1-2):33–43, Sep 2000.

BIBLIOGRAPHY 100

[57] D.-Q. Zhang and S.-F. Chang. Detecting image near-duplicate by
stochastic attributed relational graph matching with learning. In MUL-
TIMEDIA ’04: Proceedings of the 12th annual ACM international con-
ference on Multimedia, pages 877–884, New York, NY, USA, 2004. ACM
Press.

