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Summary & Conclusions - To encourage a practical applica- 
tion of the N-Version Programming (TWP) technique, a design 
paradigm was proposed and applied in a Six-Language Project. 
The design paradigm improved the development effort of the N- 
Version Software (NVS); however, there were some deficiencies 
of the design paradigm which led to the leak of a pair of coinci- 
dent faults. This paper reports on a similar project that used a 
revised N V P  design paradigm. This project reused the revised 
specification of a real, automatic airplanelanding problem, and 
involved 40 students at the University of Iowa and the Rockwell 
International. Guided by the refmed N V S  development paradigm, 
the students formed 15 independent programming teams to design, 
program, test, and evaluate the application. The paper identifies 
& presents: the impact of the paradigm on the software develop- 
ment process; the improvement of the resulting NVS product; the 
insight, experience, and learning in conducting this project, various 
testing procedures applied to the program versions; several quan- 
titative measures of the resulting NVS product; and some com- 
parisons with previous projects. The effectiveness of our revised 
NVP design paradigm in improving software reliability by the pro- 
vision of fault tolerance is demonstrated. 

We found that no single software engineering experiment or 
product can make revolutionary changes to software development 
practices overnight. Instead, modem software engineering tech- 
niques evolve through the refinement of software development p m  
cesses. This is true for fault-tolerant software techniques. Without 
a paradigm to guide the development and evaluation of NVS, soft- 
ware projects by nature can get out of control easily. The N-Version 
Progpnmhg design paradigm offers a documented process model 
which is subject to readjustment, tailoring, refmement, and im- 
provement. Compared to previous NVS projects, thb: project (based 
on this evolving paradigm) confimed that NVS product improve- 
ment could come largely from the existence and improvement of 
the NVS development process. Only through continuous improve- 
ment in this process evolution could we build enough confidence 

successfully for more practical applications. 
in applying and engineering the N-Version Programrmng * techniques 

Acronyms 
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1. INTRODUCTION 

fault density 
thousand (kilo) lines of code 
Lyu design paradigm [1911 
N-version programming 
N-version software 
N-version executive 
Rockwell Intemational , Collins Avionics Div 
University of Iowa 
U1 and RI 
UCLA/Honeywell %-Language Project. 

NVP approach achieves fault-tolerant NVS systems, 
through the development and use of design diversity [ 11. Such 
systems are usually operated in an NVX environment [2]. The 
idea of NVP was first proposed in [3]. Since then, there have 
been numerous papers on modeling N V S  systems [4-101 and 
on empirical studies of NVS systems [ 11-18]. The effectiveness 
of NVP, however, has remained highly controversial and in- 
conclusive. Most researchers and practitioners agree that a high 
degree of version independence and a low probability of failure 
correlation are important in the success of an NVS deployment. 

To maximize the effectiveness of NVP, the probability of 
similar errors that coincide at the NVS decision points must be 
reduced to the lowest possible value. To achieve this for NVS, 
a rigorous NVP development paradigm (initial L-DP) was pro- 
posed [19]. It provided disciplined practices in modem soft- 
ware engineering techniques, and incorporated recent 
knowledge and experience obtained from fault-tolerant system 
design principles. The main purpose of L-DP was to encourage 
the investigation and implementation of practical NVS 
techniques. 

The first application of L-DP to a real project was reported 
in [18] for an extensive evaluation. Some limitations were 
presented [20], leading to a refined L-DP. To observe the im- 
pact of the refined L-DP, a similar project was conducted at 
UI&RI; this paper is a comprehensive report on this project. 
Section 2 examines the L-DP. Section 3 describes the UI&RI 
project. Sections 4-6 thoroughly evaluate the NVS product, in- 
cluding program metrics and statistics (section 4), operational 
testing and NVS reliability evaluation (section 5), and fault- 
injection testing for a coverage analysis of the NVS systems 
(section 6). Section 7 compares this project with three previous 
projects [16-181. 

'Editors' note: To facilitate reference to this design paradigm, we 
have assigned the acronym L-DP to it. 
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Standard notation & nomenclature are given in “Informa- 
tion for Readers & Authors” at the rear of each issue. 

2. L-DP: ITS ORIGIN & REFINEMENT 

NVP is [3]: “the independent generation of N 1 2 func- 
tionally equivalent programs from the same initial specifica- 
tion.” Independent generation means that the programming ef- 
forts were to be carried out by individuals or groups that did 
not interact with respect to the programming process. The NVP 
approach was motivated by the [3]: “fundamental conjecture 
that the independence of programming efforts will greatly reduce 
the probability of identical software faults occurring in two or 
more versions of the program.” 

The key NVP research effort has been addressed by the 
formation of a set of guidelines for systematic design to imple- 
ment NVS systems, in order to achieve efficient tolerance of 
design faults in computer systems. The evolution of these 
rigorous guidelines & techniques was formulated [ 191 as an N V S  
design paradigm’ by integrating the knowledge and experience 
obtained from both software engineering techniques and fault 
tolerance investigations. 

The 3 objktives of the design paradigm are to: 

Reduce the possibility of oversights, mistakes, and incon- 
sistencies in the process of software development and testing 
Eliminate most perceivable causes of related design faults 
in the independently generated versions of a program, and 
identify causes of those which slip through the design process 
Minimize the probability that two or more versions will pro- 
duce similar erroneous results that coincide in time for a deci- 
sion (consensus) action of an NVX environment. 4 

The application of a proven software development method, 
or of diverse methods forindividual versions, remains the core 
of the NVP process. This process is supplemented by procedures 
that aim to: 

Attain suitable isolation and independence (with respect to 
software faults) of the N concurrent version development 
efforts 
Encourage potential diversity among the multiple versions 
of an NVS system 
Elaborate efficient error detection & recovery mechanisms. 

4 

The first two reduce the chances of related software faults be- 
ing introduced into two or more versions via potential fault links, 
such as: 

casual conversations or mail exchanges, 
common flaws in training or in manuals, 
using the same faulty compiler. 

*A pattern, example, or model that refers to a set of guidelines and 
rules, with illustrations. 

The last procedure increases the probability of discovering 
manifested errors before they are converted to coincident 
failures. Figure 1 describes L-DP. 

Exploit 
Resence of NVS 

Demonstrate 
Acceptance Phase 

I 
Operational Phase 

Figure 1 .  L-DP for N-Version Programming 

L-DP has 2 categories of activities: 

Category 1 (boxes and single-line arrows on the 1.h.s.) con- 
tains typical software development procedures. 
Category 2 (ovals and double-line arrows on the r.h.s.) 
describes the concurrent enforcement of fault-tolerant tech- 
niques under the N-version programming environment. 

Table 1 summarizes the activities and guidelines incorporated 
in each life-cycle phase of software development [ 191. The in- 
itial L-DP was refined from experience [ 181. These refinements 
are not dramatically different from the initial L-DP. Never- 
theless, they are important in avoiding two types of specification- 
related faults: 

Absence of appropriate responses to specification updates 
Incorrect handling of matching features required by an NVX 
environment (eg, the placement of voting routines). 

3. The UI&RI Project 

The main purposes in formulating a design paradigm are to: 

eliminate all identifiable causes of related design faults in 
the independently generated versions of a program, 
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TABLE 1 
Detailed Layout of L-DP 

[*Implies a refinement in the refined L-DP] 

Software Life Cycle Enforcement of 
Phase Fault Tolerance Design Guidelines & Rules 

System Requirement Determine Method of N V S  
Supervision 

1. decide N V S  execution methods and required resources 
2. develop support mechanisms and tools 
3. comply with hardware architecture 

Software Requirement Select Software Design 1. compare random diversity vs. enforced diversity 
2. derive qualitative design diversity metrics 
3. evaluate cost-effectiveness along each dimension 
4. obtain the final choice under particular constraints 

1. prescribe the matching features needed by NVX 
2. avoid diversity-limiting factors 
3. require the enforced diversity 
4. protect the specification against errors 

Diversity Dimensions 

Software Specification Install Error Detection & 
Recovery Algorithms 

Design & Coding’ Conduct N V S  Development 1. derive a set of mandatory rules of isolation 
2. define a rigorous communication and documentation (CBrD) protocol 
3. form a coordinating team 
4. verify every specification update message’ 

Protocol* 

Testing’ Exploit Presence of NVS’  1. explore comprehensive verification procedures 
2. enforce extensive validation efforts 
3. provide opportunities for “back-to-back” testing 
4. perform preliminary NVS test under the designated NVX’ 

1. define NVS acceptance criteria 
2. provide evidence of diversity 
3. demonstrate effectiveness of diversity 
4. make N V S  dependability prediction 

Evaluation & Acceptance Demonstrate Acceptance of NVS 

Operational Choose & Implement NVS 1. assure and monitor NVX basic functionality 
2. keep the achieved diversity work in maintenance 
3. follow the same paradigm for modification & maintenance 

Maintenance Policy 

prevent all potential effects of coincident run-time errors 
4 while executing these program versions. 

An investigation is necessary in which the complexity of the 
application software reflects a realistic size in highly critical 
applications. Such investigation must execute & evaluate the 
design paradigm, and be complete, in the sense that it thoroughly 
explores all aspects of N V S  systems as software fault-tolerant 
systems. This effort was first conducted in the UCLA/H6LP 
[18, 201. There, a real automatic (computerized) airplane 
landing system (autopilot) was developed and programmed by 
six programming teams, in which the L-DP was executed, 
validated, and refined. 

In the fall of 1991, a similar project was conducted at 
UI&RI. Guided by the refined L-DP and a requirement 
specification with the known defects removed, 40 students (33 
from ECE & CS departments at UI, 7 from RI) formed 15 pro- 
gramming teams (12 from UI, 3 from RI) to independently 
design, code, and test the computerized airplane landing system 
as the major requirement for a graduate-level software engineer- 
ing course. 

Sections 3.1 - 3.5 describe: a) how the refined L-DP was 

applied in conducting this project, and b) the resulting project 
characteristics. 

3.1 W S  Supervision Environment 

The operational environment for the application was con- 
ceived as airplane/autopilot interacting in a simulated environ- 
ment. Three or five channels of diverse software independent- 
ly computed a surface command to guide a simulated aircraft 
along its flight path. To ensure that important command errors 
could be detected, random wind turbulence of various levels 
were superimposed to represent difficult flight conditions. The 
individual commands were recorded and compared for 
discrepancies that could indicate the presence of faults. 

The 3-channel flight simulation system (shown in figure 
2) consisted of 3 lanes of control-law computation, three com- 
mand monitors, a servo control, an airplane model, and a tur- 
bulence generator. 

The lane-computations and command-monitors were the ac- 
cepted software versions generated by the 15 programming 
teams. Each lane of independent computation monitored the 
other two lanes. However, no single lane could make the 
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Figure 2. 3-Channel Flight-Simulation Configuration 

decision as to whether another lane was faulty. A separate ser- 
vo control logic function was required to make that decision. 
The aircraft mathematical model provided the dynamic response 
of current medium size, commercial transports in the ap- 
proach/landing flight phase. The three control signals from the 
autopilot computation lanes were inputs to three elevator ser- 
vos. The servos were force-summed at their outputs, so that 
the median of the three inputs became the final elevator com- 
mand. The landing-geometry and turbulence-generator were 
models associated with the airplane simulator. 

Each run of flight simulation was characterized by 5 in- 
itial values regarding the landing position of an airplane: 

initial altitude (about 1500 feet) 
initial distance (about 52800 feet) 
initial nose up relative to velocity (range from 0 to 10 
degrees) 
initial pitch attitude (range from -15 to 15 degrees) 
vertical velocity for the wind turbulence (0 to 10 Wsec). 

Each simulation consisted of about 5280 iterations of lane com- 
mand computations (50 msec each) for a total landing time of 
approximately 264 seconds. 

3.2 Design-Diversity Investigations 

Independent programming teams were the baseline design- 
diversity. The programming teams represented a wide range 
of experience, from very experienced programmers (and/or 
avionics engineers) to novices. Three programming en- 
vironments were provided to the programmers: 

Iowa Computer-Aided Engineering Network (ICAEN) 
Center 
U1 Dept. Electrical 8z Computer Engineering computing 
facility 
RI computing facilities. 

Every programming team was required to use the C program- 
ming language. 

It was hypothesized that various programming en- 
vironments provided different hardware platforms, working at- 

mosphere, and computing tools and facilities which might add 
further development diversity. 

3.3 High Quality Specification with Error Detection & Recovery 

The development of a suitable specification began early 
in 1987; it was initially used in the UCLA/H6LP. During soft- 
ware generation in UCLA/H6LP, several errors and ambiguities 
in the specification were revealed & corrected - including the 
two specification defects resulting in two pairs of identical faults. 
A comprehensive error detection and recovery algorithm was 
imposed on the specification to include: 

2 input routines, 
7 vote routines (cross-check points) to cross-check data, 
1 recovery routine. 

These enhancements were carefully specified and inserted in 
the initial specification. 

The final specification was converted to a single document 
[21] which was given to the 15 programming teams to develop 
their program versions independently. This specification has 
benefited from the scrutiny of more than 16 motivated program- 
mers and researchers. This version of specification followed 
the principle of supplying only minimal (absolutely necessary) 
information to the programmers, so as not to unwittingly bias 
the programmers’ design decisions nor overly restrict the poten- 
tial design diversity. Throughout the program development 
phase, the specification was maintained as consistent and precise 
as possible. 

3.4 W P  Communication Protocol 

This project prohibited the programmers from discussing 
any aspect of their work with members of other teams. Work- 
related communication between programmers and a project 
coordinator were conducted only via electronic mail, which also 
served as a documentation protocol. The programmers directed 
their questions to the project coordinator who was very familiar 
with the NVP process and the specification details. The project 
coordinator responded to each message, usually in less than 24 
hours. The purpose of imposing this isolation rule on program- 
ming teams was to assure the independent generation of pro- 
grams, ie, programming efforts are carried out by individuals 
or groups that do not interact with respect to the programming 
process. 

In the communication protocol, each answer was sent on- 
ly to the team that submitted the question. The answer was 
broadcast to all teams if and only if the answer led to an update 
or clarification of the specification. During the software develop 
ment process, a total of 145 questions were raised by and replied 
to individual programming teams, among which 11 
specification-related message were broadcast for specification 
changes. Thus the individual teams received an average of on- 
ly 20 messages during the program development phase, in con- 
trast to an average of 58 messages in the UCLA/H6LP, and 
to an average of over 150 messages in an NASA Experiment 
[17]. A lesson learned from the UCLA/H6LP, the revised L- 
DP enforced that each program version was verified to comply 
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with all the broadcast specification updates before its final 
acceptance. 

3.5 NVS Software Development Schedule 

in 6 phases: 

Initial Design (4 weeks) 

This phase allowed the programmers to get familiar with 
the problem. At the end of this phase, each team delivered a 
preliminary design document which followed specific guidelines 
and formats for documentation. 

Detailed Design (2 weeks) 

This phase let each team obtain some feedback from the 
coordinator to adjust, consolidate, and complete its final design. 
The feedback related to the feasibility & style of each design 
rather than to any technical corrections, except when the design 
violated the specification updates. Each team was requested to 
conduct at least one design walk-through. At the end of this 
phase, each team delivered a detailed design document and a 
design walk-through report. 

The software development was scheduled and conducted 

coding (3 weeks) 

By the end of this phase, programmers had: a) finished 
coding, b) conducted a code walk-through by themselves, and 
c) delivered the initial compilable code. From this moment on, 
each team was required to use the revision control tool RCS 
(or to include CVS for concurrent versions) for configuration 
management of their program modules. Code-update report 
forms were used for every change made after the code was 
generated. 

Unit Testing (1 week) 

Each team was supplied with sample test data-sets for each 
module to check the basic functionality of that module. They 
were required to build their own test harness for this testing 

purpose. 133 data sets (the same as in UCLA/H6LP) were pro- 
vided to the programmers. 

Integration Testing (2 weeks) 

Four sets of partial flight-simulation test data (the same 
as those in the UCLA/H6LP), together with an automatic testing 
routine, were provided to each programming team for integra- 
tion testing. This test phase was intended to guarantee that the 
software was suitable for a flight-simulation environment in an 
integrated system. 

Acceptance Testing (2 weeks) 

Programmers formally submitted their programs for a 
2-step acceptance test. In step 1 (ATl), each program was run 
in a test harness of four n o d  flight simulation profiles. These 
data sets provided the same coverage as those in the 
UCLAIH6LP. In step 2 ( A n ) ,  one extra simulation profile, 
representing an extremely difficult flight situation, was imposed. 
When a program failed a test, it was returned to the program- 
mers for debugging and resubmission, along with the input case 
on which it failed. In all, there were 23930 executions imposed 
on these programs before they were accepted and subjected to 
the final evaluation. By the end of this phase, 12 programs 
passed the acceptance test and were used in the final evaluation. 

4. PROGRAM METRICS / STATISTICS 

Table 2 gives several comparisons of the 12 versions (iden- 
tified by a Greek letter) with respect to some common software 
metrics. The objective of software metrics is to evaluate the 
quality of the product in a quality assurance environment. 
However, our focus here is the comparison of program ver- 
sions, since design diversity is our major concern. 

Table 2 considers the following metrics. 

LINES: number of lines of code, including comments and blank 
lines 

TABLE 2 
Software Metrics for the 12 Accepted Programs 

Metrics j3 y E t r l  8 K A B  V € o Range 

LINES 

STMTS 
MODS 
STMIM 
STMlCCP 
CALLS 
GBVAR 
LCVAR 
BINDE 

LN-CM 
8769 
4006 
2663 
53 
179 
380 
84 
0 

1326 
233 

2129 1176 
1229 895 
708 706 
11 6 
64 101 
101 loo 
123 16 
55 101 
179 86 
68 152 

1197 
932 
720 
15 
439 
103 
23 
180 
309 
103 

1777 
1477 
1208 

6 
20 1 
173 
37 
86 
553 
224 

1500 
1182 
753 
47 
406 
108 
76 
406 
532 
120 

1360 5139 1778 
1251 2520 1168 
640 1366 759 
17 17 21 
38 80 36 
91 195 108 
31 626 100 
7 0 354 

376 402 294 
115 118 88 

1612 
1070 
810 
24 
35 
115 
106 
423 
258 
112 

2443 
1683 
932 
17 
67 
133 
30 
42 1 
328 
73 

1815 
1353 
858 
11 
78 
123 
66 
26 
329 
131 

7.46 
4.30 
4.16 
8.83 

7.45 
12.5 

39.1 

15.4 
- 

3.29 
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LN-CM: number of lines, excluding comments and blank lines 
STMTS: number of executable statements, such as assignment, 

MODS: number of programming modules (eg, subroutines, 

STM/M: mean number of statements per module 
STMICCP: mean number of statements in between cross-check 

CALLS: number of calls to programming modules 
GBVAR: number of global variables 
LCVAR: number of local variables 
BINDE: number of binary decisions. 

96 faults were found and reported during the life cycle of the 
project. Table 3 classifies the faults according to [19]: 

Implementation Related 

1. typographical (a cosmetic mistake made in typing the 
program) 
2. error of omission (a piece of required code was missing) 
3. incorrect algorithm (a deficient implementation of an 
algorithm); it includes miscomputation, logic fault, initidiza- 
tion fault, and boundary fault. 

Specification Related 

4. specification misinterpretation (a misinterpretation of the 
specification) 
5 .  specification ambiguity (an unclear or inadequate specifica- 

4 

control, YO, or arithmetic 

functions, procedures) 

points [19] 

tion which led to a deficient implementation). 

Fault type 3 is the most frequent. This result is similar to that 
in the UCLA/H6LP. 

Table 4 shows the test phases during which the faults were 
detected, and the faults/KLOC (uncommented), of the original 
and accepted versions. Since the coverage of AT1 data was 
similar to the Acceptance Test data in the UCLA/H6LP, this 
snapshot of program versions was of particular interest to be 
compared with those final versions accepted in the 
UCLA/H6LP. 

There were only 2 incidents of identical faults committed 
by two programs during the whole life cycle. The first fault, 
committed by 0 & p versions, was due to an incorrect initializa- 
tion of a variable. Unit test-data detected this fault when both 
programs were initially tested. The second fault, committed by 
y & X versions, was an incorrect condition for a switch variable 
(a Boolean variable) for a late flight mode. This fault did not 
show up until AT1 where a complete flight simulation was first 
exercised. 

The metrics of this project are compared with those of 
UCLAIH6LP [18], NASA Experiment [17, 221, and Knight- 
Leveson Experiment [ 16, 231. 

Due to the refined L-DP which included a validated design 
process and a cleaner specification with better specification- 
update policy, the program quality obtained from this pro- 
ject was higher. For the 12 finally accepted programs, the 
average FD was 0.05 faults/KLOC. This number is close 
to the field data from the best current industrial software 

TABLE 3 
Number of Faults in Each Type 

1. Typo 0 0 0 1 2 2 0 0 0 0 0 0  5 
2. Omission 0 0 4 0 1 0  3 1 0  0 1 0  10 
3. Incorrect Algorithm 7 1 3  6 2 1 3  3 4 3 6 2 41 
4. Spec. Misinterpretation 2 2 0 1 1 4 3 3 4 2 2 4 28 
5. Spec. Ambiguity 0 4 3 0 0 0 0 1 0 0 1 0  9 
6. Other 0 0 0 1 1 0 0 0 1 0 0 0  3 
Total 9 7 1 0 9 7 7 9 8 9 5 1 0 6 9 6  

TABLE 4 
Fault Types by Phases and Other Attributes 

CodinglUnit Test 2 2 3 1 3 3 5 3 2 1 2 2 2 9  
Integration Test 4 3 4 4 1 0 3 2 2 2 3 1 2 9  
AcceptanceTest 1 (AT1) 1 2 3 4 1 2 1 2 3 2 5 3 29 
AcceptanceTest2(AT2) 1 0 0 0 2 2 0 1 2 0 0 0 8 
Operational Test 1 0 0 0 0 0 0 0 0 0 0 0 1  

Total 9 7 10 9 7 7 9 8 9 5 10 6 96 

Original FD 2.2 5.7 11.2 9.7 4.7 5.9 7.2 3.2 7.7 4.7 5.9 4.4 5.1 
FD after AT1 0.5 0 0 0 1.4 1.7 0 0.4 1.7 0 0 0 0.48 
FD after AT2 0 . 2 0  0 0 0 0  0 0 0 0  0 0  0.05 
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engineering practice. Compared with similar projects, the 
average FD of the finally accepted programs was: 

* 2.1 faults/KLOC in UCLA/H6LP 
- 1.0 faults/KLOC in the NASA Experiment 

> 2.8 faults/KLOC in the Knight-Leveson Experiment. 

Both this project and the UCLA/H6LP were guided by an 
N V S  design paradigm, and the resulting identical faults were 
relative very low. Only two pair of identical faults were 
found in the life cycle of either project (out of a total of 93 
and 96 faults, respectively). In contrast, the NASA Experi- 
ment reported as m y  as 7 types of identical or similar faults 
after acceptance testing (out of a total of 26 faults), and the 
Knight-Leveson Experiment experienced 8 types of identical 
or similar faults after acceptance testing (out of a total of 
45 faults). 
Even though the number of identical or similar faults of this 
project were as low as the UCLA/H6LP, the causes for these 
faults were quite different. In the UCLA/H6LP the two iden- 
tical faults were related to specification, while in this pro- 
ject, both identical faults were due to incorrect program in- 
itialization. Other projects encountered identical or similar 
faults of various kinds, including specification deficiencies, 
voting routine mismatches, program initialization errors, 
code omissions, roundoff problems, and boundary case 
errors. 
In this project and UCLA/H6LP, identical faults involving 
three or more versions have never been observed. On the 
other hand, the NASA Experiment observed identical or 
similar faults involving up to 5 versions, and the Knight- 
Leveson Experiment reported identical or similar faults span- 
ning as many as 4 versions. 

5 .  OPERATIONAL TESTING AND NVS 
RELIABILITY EVALUATION 

During the operational testing phase, 1000 flight simula- 
tions (over 5 x lo6 program executions) were conducted. Only 
one fault (in the fl  version) was found during this operational 
testing phase. To measure the reliability of the NVS system, 
we took the program versions which passed the AT1 for study. 
The reason was: Had the Acceptance Test not included an ex- 
treme situation of AT2, more faults would have remained in 
the program versions. 

Table 5 shows the errors encountered in each single ver- 
sion, while tables 6 & 7 show various error categories under 
all combinations of 3-version and 5-version configurations. We 
examine two levels of granularity in defining execution errors 
and correlated errors: 

by case - based on 1000 test cases. Each case contained 
about 5280 execution time frames. If a version failed at any 
time in a test case, it was considered failed for the whole 
case. If two or more versions failed in the same test case 
(whether at the same time or not), they were said to have 
coincident errors for that test case. 

by time - based on 5280920 execution time frames of the 
1000 test cases. Errors were counted only at the time frame 
in which they manifested themselves, and coincident errors 
were defined to be the multiple program versions failing at 
the same time in the same test case (with or without the same 
variables and values). 

TABLE 5 
Errors in Individual Versions in 1000 Flight Simulations 

error probability 

version number of errors by case (X) by time (10-6) 

P 5 10 51 96.6 

E 0 0 .Ooo 

B 1 . 1  .189 
e 360 36 68.2 
K 0 0 .Ooo 
h 730 73 138 
P 140 14 26.5 
V 0 0 .000 
2: 0 0 .Ooo 
0 0 0 .Ooo 

Y 0 0 .Ooo 

I 0 0 .Ooo 

Average 145 14.5 27.47 

TABLE 6 
Errors by Case in 3-Version and 5-Version Execution 

Configurations 

category 

1. 0 errors 
2. 1 error 
3. 2 coincident errors 
4. 3 coincident errors 
5. 4 coincident errors 
6. 5 coincident errors 

3-version configuration 

incidents prob. (%) 

163370 74.3 
51930 23.6 
4440 2.0 
260 .118 
- - 
- - 

5-version configuration 

incidents prob. (56) 

470970 59.5 
275740 34.8 

36980 4.67 
8220 1.04 

89 .011 
1 .00012 

Total 22oooO 1.00 792000 1.00 

Table 5 shows that the average error probability for single 
version is 14.5% measured by case, or 0.0027% measured by 
time. Table 6 shows that when measured by case, for all the 
3-version combinations the error probability is 2.1 % (categories 
3 & 4), an improvement over the single version by a factor of 
7. In all the combinations of 5-version configuration, the error 
probability is 1 .O% (categories 4 - 6), an improvement by a 
factor of 14. 

Table 7 shows that, when measured by time, for all the 
3-version combinations, the error probability is 0.0002% 
(categories 3 & 4). This is a reduction by a factor of 13 com- 
pared with the single version execution. In all the combinations 
of 5-version configuration, the error probability is further 
reduced to 0 since there was no incidence of more than 2 coin- 
cident errors at the same time in the same case. 
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TABLE 7 
Errors by Time in 3-Version and 5-Version Execution 

Configurations 

3-version configuration 5-version configuration 

category incidents (lo3) prob. (96) incidents (lo3) prob. (%) 
~~~~~ 

1.0  errors 1160744 99.909 6778421 99.733 
2 . 1  error 1056 .0909 18036 .265 
3 . 2  coincident errors 2.7 .ooo2 87.8 .0013 
4 . 3  coincident errors 0 .oooo 0 .oooo 
Total 1161802 100 67%544 100 

If we analyze the error comparison level in more detail 
to define coincident errors as the program versions failing with 
the same variables and values at the same time in the same test 
case, then no such coincident errors exist among the 12 pro- 
gram versions, resulting in perfect reliability in both NVS 
configurations. 

6. FAULT-INJECTION TESTING AND 
COVERAGE ANALYSIS 

To uncover the impact of faults that would have remained 
in the software version, and to evaluate the effectiveness of NVS 
mechanisms, a special type of regression testing by fault- 
injection, similar to mutation testing which is well known in 
the software testing literature [24,25], was investigated in the 
12 versions. The original purpose of mutation testing is to en- 
sure the quality of the test data used to verify a program; our 
concerns here are to examine the relationship of faults and er- 
ror frequencies in each program and to evaluate the similarity 
of program errors among different versions. The fault-injection 
testing procedure is: 

The fault removal history of each program was examined 
and each program fault was analyzed and recreated. 
Mutants3 were generated by injecting faults one by one in- 
to the final version - from which they were removed; eg, 
a fault from program C is injected only into program C. Each 
mutant contains exactly one known software fault. 
Each mutant was executed by the same set of input data in 
the flight simulation environment to observe errors. 
The error characteristics were analyzed to collect error 
statistics and correlations. 4 

The 2 differences between our fault-injection technique and 
the mutation testing are: 

We used “real” mutants, viz, mutants injected with actual 
faults committed by programmers, instead of mutants with 
hypothesized faults. 

3This word is used for lack of a better, more appropriate one. 

Our purpose was to measure the coverage of NVS in detec- 
ting errors during operation, not merely the coverage of the 
test data in detecting mutants during testing. When there are 
multiple realizations of the same application, test data are 
no longer the only means for fault treatment and coverage 
analysis. Study of the error correlations among multiple pro- 
gram versions offers another dimension of investigation in 
fault-injection testing and mutation testing. 

Using the fault removal history of each version, we created 
a total of 96 mutants from the 12 program versions. Several 
error-measures were created. 

Notation 

i serial number of mutant 
n number of mutants 
X software version 
xi 
X XI, ... > x, 
m 

X (x i ,7 )  error frequency function 
p (x i ,7 )  error severity function 
O ( X ; T )  error similarity function 
Ne* (x i ,  7 )  total number of errors 
Ne,, (x i ,7 )  total number of executions 

val(xj,7) 
val ( x , ~ )  
p* ( x i , 7 )  
C,, ( T )  

software version x with mutant i 

population size (for the xi) 
serial number of test data-set 7 

E allowed error deviation (for severity) 
computed (erroneous) value of mutant xi running 7 

anticipated (corrected) value of software x running 7 

relative error: 11 - val (x ,~) /va l (x ,~)  I 
safety coverage factor for an n-mutant system and 7. 

Assumptions 

1. Each mutant contains only one known fault. 
2. Errors produced by each fault are always the same for 

the same test inputs [26]. 
3. E is specified 
4. The NVS supervisory system does not introduce errors 

which corrupt program execution. 4 

0, for p * ( x i , 7 )  < E 

1, for p* (x i ,7 )  > 1 (includes run-time 
exceptions or no results) 

p* (x i ,7 ) ,  otherwise. 

The X(xi ,7)  & p(x i ,7 )  were measured for all the mutants in 
100 flight simulation ( 0 . 5 ~  IO6 executions) of each mutant pro- 
gram. Three types of relationships (for errors in two or more 
versions) are identified [27] : 
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distinct: produced by faults whose erroneous results can be 
distinguished 
similar: two or more erroneous results that are within a small  
range 
identical: erroneous results are identical. 

0, if the majority of {x} produce distinct errors in T 
1, otherwise. 

a(x;7) = 

The a(x;7) were measured for populations of two versions. 
Table 8 shows the reduced 4 x 7 )  matrix for 2-mutant sets.4 
The two incidents of indistinguishable errors shown in table 8, 
ie, 84 (mutant #4 of version #e) - p l  and r6 - X7, result from 
the two pairs of identical faults discussed in section 4. 

TABLE 8 
a ( x ; ~ )  Matrix [reduced] in 2-Mutant Sets 

U 84 P l  Y6 A7 

84 - 1 0 0 
P l  1 - 0 0 

1 Y6 0 0 
XI 0 0 1 

- 
- 

Analysis of 3-mutant sets is much more tedious since a 
3-dimensional matrix is needed. However, it is similar to the 
analysis of 2-mutant sets. The error similarity function of the 
3-mutant sets is also a sparse matrix, since we have not seen 
any common errors affecting more than two mutants. 

Based on the 3 Error Functions we can obtain another 
reliability-related quantity, safety coverage, which is important 
for assessing the effectiveness of fault-tolerant systems. The 
safety coverage factor is defined as [28]: 

Pr { error detection or recovery I a fault has manifested itself}. 

In NVS systems, the safety coverage factor depends on the 
similarity of errors, the severity of errors, and the efficiency 
of the recovery mechanisms to cope with such errors. Thus, 
we need to derive a quantitative definition for measurement. 

The main contribution of the failures of NVS schemes is 
the similar or identical error among multiple program versions. 
We use the mutants (generated in the tests) as the sample-space 
to represent the condition: A fault has been created. Since this 
fault is manifested in errors during program execution, the prob- 
ability that it is covered is related to its severity and its Similarity 
to errors of other program versions. If we assume an equal 
distribution on the mutant population, then the safety coverage 
factor is: 

?he complete matrix is 96x96, but since it is sparse (most entries 
are zero), it was reduced by removing many of the 0 entries. 

x * = x , + l  x l = l  

= 1 - 0.0002193~(1~0.02 + 1.0.056) = 0.99998 

Example 3 

Let: T = 100 data sets, n = 3. 

C ~ ( T )  = 0.99995. 

Example 4 

Let: T = 100 data sets, n > 3. 

C,(T) = 1.00000. 

C2(7) should indeed be greater than C ~ ( T ) ,  since 
2-version systems are more capable of error detection than 
3-version systems. 

These safety coverage factors indicate an enormous im- 
provement of N V S  over 1-version software, which was similarly 
observed in UCLA/H6LP [29]. The coverage defined and 
measured here is limited to the particular mutant population and 
the 100 specific test data sets. Many of the faults injected in 
these mutants could, perhaps, be detected by an ordinary testing 
procedure. However, there is always a non-zero probability for 
each of these faults to slip through all practically applied testing 
schemes in another environment. Consequently, sampling from 
this fault population is valid, and the resulting measures are 
useful evidence for the effectiveness of NVS methodology to 
the assigned application. 

7. COMPAFUSONS WITH OTHER PROJECTS 

This project, guided by an evolving L-DP, revealed some 
major differences in the underlying process and the resulting 
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product compared with similar NVS projects. Table 9 compares 
this project and 3 other NVS projects: Knight-Leveson [16], 
NASA [17], and UCLAlH6LP [MI. 

B. Mehta, R. Miller, C. Minter, R. Mostaert, D. Newmister, 
C. Park, W. Park, C. Rajaraman, R. Reddy, K. Sangareddi, 
S .  Seth, S .  Shafer, M. Steffensmeier, Y. Sun, S .  Sundaram, 

The program quality in our UI&RI project and the associated 
N V S  reliability improvement were superior to those in previous 
projects. In evaluating the differences among these NVS 
development projects, our UI&RI project learned from previous 
projects in many ways: 

A more diversified background of students (from academia 
and industry, in both electrical engineering and computer 
science) and working environment. 
A specification which was less error-prone and less 
ambiguous. 
A better error detection and recovery mechanism. 

P. Sunkemeni, R. Tangirala, J. Trepka, W. Wang, P. Wiley, 
and M. Wolf. 
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