
IEEE TRANSACTIONS ON RELTABILTTY, VOL. 42, NO. 2,1993 JUNE 179

Improving the N-Version Programming Process Through
the Evolution of a Design Paradigm

Michael R. Lyu, Member IEEE

Yu-Tao He, Student Member IEEE
Bell Communications Research, Morristown

The University of Iowa, Iowa City

Key Words - N-Version programming, Desi i paradigm, Ex-
periment, Process evolution, Mutation testing, Reliability analysis,
Coverage analysis

Reader Aids -
purpoSe: Present a practical software-design paradigm
Special math needed for explanations: Probability
Special math needed to use results: None
Results useful to: Fault-tolerant software designerdexperimenters

and reliability analysts

Summary & Conclusions - To encourage a practical applica-
tion of the N-Version Programming (TWP) technique, a design
paradigm was proposed and applied in a Six-Language Project.
The design paradigm improved the development effort of the N-
Version Software (NVS); however, there were some deficiencies
of the design paradigm which led to the leak of a pair of coinci-
dent faults. This paper reports on a similar project that used a
revised N V P design paradigm. This project reused the revised
specification of a real, automatic airplanelanding problem, and
involved 40 students at the University of Iowa and the Rockwell
International. Guided by the refmed N V S development paradigm,
the students formed 15 independent programming teams to design,
program, test, and evaluate the application. The paper identifies
& presents: the impact of the paradigm on the software develop-
ment process; the improvement of the resulting NVS product; the
insight, experience, and learning in conducting this project, various
testing procedures applied to the program versions; several quan-
titative measures of the resulting NVS product; and some com-
parisons with previous projects. The effectiveness of our revised
NVP design paradigm in improving software reliability by the pro-
vision of fault tolerance is demonstrated.

We found that no single software engineering experiment or
product can make revolutionary changes to software development
practices overnight. Instead, modem software engineering tech-
niques evolve through the refinement of software development p m
cesses. This is true for fault-tolerant software techniques. Without
a paradigm to guide the development and evaluation of NVS, soft-
ware projects by nature can get out of control easily. The N-Version
Progpnmhg design paradigm offers a documented process model
which is subject to readjustment, tailoring, refmement, and im-
provement. Compared to previous NVS projects, thb: project (based
on this evolving paradigm) confimed that NVS product improve-
ment could come largely from the existence and improvement of
the NVS development process. Only through continuous improve-
ment in this process evolution could we build enough confidence

successfully for more practical applications.
in applying and engineering the N-Version Programrmng * techniques

Acronyms

FD
KLOC
L-DP
NVP
NVS
NVX
RI
U1
UI&RI
UCLA/H6LP

1. INTRODUCTION

fault density
thousand (kilo) lines of code
Lyu design paradigm [1911
N-version programming
N-version software
N-version executive
Rockwell Intemational , Collins Avionics Div
University of Iowa
U1 and RI
UCLA/Honeywell %-Language Project.

NVP approach achieves fault-tolerant NVS systems,
through the development and use of design diversity [11. Such
systems are usually operated in an NVX environment [2]. The
idea of NVP was first proposed in [3]. Since then, there have
been numerous papers on modeling N V S systems [4-101 and
on empirical studies of NVS systems [11-18]. The effectiveness
of NVP, however, has remained highly controversial and in-
conclusive. Most researchers and practitioners agree that a high
degree of version independence and a low probability of failure
correlation are important in the success of an NVS deployment.

To maximize the effectiveness of NVP, the probability of
similar errors that coincide at the NVS decision points must be
reduced to the lowest possible value. To achieve this for NVS,
a rigorous NVP development paradigm (initial L-DP) was pro-
posed [19]. It provided disciplined practices in modem soft-
ware engineering techniques, and incorporated recent
knowledge and experience obtained from fault-tolerant system
design principles. The main purpose of L-DP was to encourage
the investigation and implementation of practical NVS
techniques.

The first application of L-DP to a real project was reported
in [18] for an extensive evaluation. Some limitations were
presented [20], leading to a refined L-DP. To observe the im-
pact of the refined L-DP, a similar project was conducted at
UI&RI; this paper is a comprehensive report on this project.
Section 2 examines the L-DP. Section 3 describes the UI&RI
project. Sections 4-6 thoroughly evaluate the NVS product, in-
cluding program metrics and statistics (section 4), operational
testing and NVS reliability evaluation (section 5), and fault-
injection testing for a coverage analysis of the NVS systems
(section 6). Section 7 compares this project with three previous
projects [16-181.

'Editors' note: To facilitate reference to this design paradigm, we
have assigned the acronym L-DP to it.

018-9529/93/$3.0 01993 IEEE

- ~~ ____I_- ~~

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 10:00:54 UTC from IEEE Xplore. Restrictions apply.

180

Standard notation & nomenclature are given in “Informa-
tion for Readers & Authors” at the rear of each issue.

2. L-DP: ITS ORIGIN & REFINEMENT

NVP is [3]: “the independent generation of N 1 2 func-
tionally equivalent programs from the same initial specifica-
tion.” Independent generation means that the programming ef-
forts were to be carried out by individuals or groups that did
not interact with respect to the programming process. The NVP
approach was motivated by the [3]: “fundamental conjecture
that the independence of programming efforts will greatly reduce
the probability of identical software faults occurring in two or
more versions of the program.”

The key NVP research effort has been addressed by the
formation of a set of guidelines for systematic design to imple-
ment NVS systems, in order to achieve efficient tolerance of
design faults in computer systems. The evolution of these
rigorous guidelines & techniques was formulated [191 as an N V S
design paradigm’ by integrating the knowledge and experience
obtained from both software engineering techniques and fault
tolerance investigations.

The 3 objktives of the design paradigm are to:

Reduce the possibility of oversights, mistakes, and incon-
sistencies in the process of software development and testing
Eliminate most perceivable causes of related design faults
in the independently generated versions of a program, and
identify causes of those which slip through the design process
Minimize the probability that two or more versions will pro-
duce similar erroneous results that coincide in time for a deci-
sion (consensus) action of an NVX environment. 4

The application of a proven software development method,
or of diverse methods forindividual versions, remains the core
of the NVP process. This process is supplemented by procedures
that aim to:

Attain suitable isolation and independence (with respect to
software faults) of the N concurrent version development
efforts
Encourage potential diversity among the multiple versions
of an NVS system
Elaborate efficient error detection & recovery mechanisms.

4

The first two reduce the chances of related software faults be-
ing introduced into two or more versions via potential fault links,
such as:

casual conversations or mail exchanges,
common flaws in training or in manuals,
using the same faulty compiler.

*A pattern, example, or model that refers to a set of guidelines and
rules, with illustrations.

The last procedure increases the probability of discovering
manifested errors before they are converted to coincident
failures. Figure 1 describes L-DP.

Exploit
Resence of NVS

Demonstrate
Acceptance Phase

I
Operational Phase

Figure 1 . L-DP for N-Version Programming

L-DP has 2 categories of activities:

Category 1 (boxes and single-line arrows on the 1.h.s.) con-
tains typical software development procedures.
Category 2 (ovals and double-line arrows on the r.h.s.)
describes the concurrent enforcement of fault-tolerant tech-
niques under the N-version programming environment.

Table 1 summarizes the activities and guidelines incorporated
in each life-cycle phase of software development [191. The in-
itial L-DP was refined from experience [181. These refinements
are not dramatically different from the initial L-DP. Never-
theless, they are important in avoiding two types of specification-
related faults:

Absence of appropriate responses to specification updates
Incorrect handling of matching features required by an NVX
environment (eg, the placement of voting routines).

3. The UI&RI Project

The main purposes in formulating a design paradigm are to:

eliminate all identifiable causes of related design faults in
the independently generated versions of a program,

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 10:00:54 UTC from IEEE Xplore. Restrictions apply.

LW/HE: IMPROVING THE N-VERSION PROGRAMMING PROCESS THROUGH THE EVOLUTION OF A DESIGN PARADIGM 181

TABLE 1
Detailed Layout of L-DP

[*Implies a refinement in the refined L-DP]

Software Life Cycle Enforcement of
Phase Fault Tolerance Design Guidelines & Rules

System Requirement Determine Method of N V S
Supervision

1. decide N V S execution methods and required resources
2. develop support mechanisms and tools
3. comply with hardware architecture

Software Requirement Select Software Design 1. compare random diversity vs. enforced diversity
2. derive qualitative design diversity metrics
3. evaluate cost-effectiveness along each dimension
4. obtain the final choice under particular constraints

1. prescribe the matching features needed by NVX
2. avoid diversity-limiting factors
3. require the enforced diversity
4. protect the specification against errors

Diversity Dimensions

Software Specification Install Error Detection &
Recovery Algorithms

Design & Coding’ Conduct N V S Development 1. derive a set of mandatory rules of isolation
2. define a rigorous communication and documentation (CBrD) protocol
3. form a coordinating team
4. verify every specification update message’

Protocol*

Testing’ Exploit Presence of NVS’ 1. explore comprehensive verification procedures
2. enforce extensive validation efforts
3. provide opportunities for “back-to-back” testing
4. perform preliminary NVS test under the designated NVX’

1. define NVS acceptance criteria
2. provide evidence of diversity
3. demonstrate effectiveness of diversity
4. make N V S dependability prediction

Evaluation & Acceptance Demonstrate Acceptance of NVS

Operational Choose & Implement NVS 1. assure and monitor NVX basic functionality
2. keep the achieved diversity work in maintenance
3. follow the same paradigm for modification & maintenance

Maintenance Policy

prevent all potential effects of coincident run-time errors
4 while executing these program versions.

An investigation is necessary in which the complexity of the
application software reflects a realistic size in highly critical
applications. Such investigation must execute & evaluate the
design paradigm, and be complete, in the sense that it thoroughly
explores all aspects of N V S systems as software fault-tolerant
systems. This effort was first conducted in the UCLA/H6LP
[18, 201. There, a real automatic (computerized) airplane
landing system (autopilot) was developed and programmed by
six programming teams, in which the L-DP was executed,
validated, and refined.

In the fall of 1991, a similar project was conducted at
UI&RI. Guided by the refined L-DP and a requirement
specification with the known defects removed, 40 students (33
from ECE & CS departments at UI, 7 from RI) formed 15 pro-
gramming teams (12 from UI, 3 from RI) to independently
design, code, and test the computerized airplane landing system
as the major requirement for a graduate-level software engineer-
ing course.

Sections 3.1 - 3.5 describe: a) how the refined L-DP was

applied in conducting this project, and b) the resulting project
characteristics.

3.1 W S Supervision Environment

The operational environment for the application was con-
ceived as airplane/autopilot interacting in a simulated environ-
ment. Three or five channels of diverse software independent-
ly computed a surface command to guide a simulated aircraft
along its flight path. To ensure that important command errors
could be detected, random wind turbulence of various levels
were superimposed to represent difficult flight conditions. The
individual commands were recorded and compared for
discrepancies that could indicate the presence of faults.

The 3-channel flight simulation system (shown in figure
2) consisted of 3 lanes of control-law computation, three com-
mand monitors, a servo control, an airplane model, and a tur-
bulence generator.

The lane-computations and command-monitors were the ac-
cepted software versions generated by the 15 programming
teams. Each lane of independent computation monitored the
other two lanes. However, no single lane could make the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 10:00:54 UTC from IEEE Xplore. Restrictions apply.

182 IEEE TRANSACTIONS ON RELIABILITY, VOL. 42, NO. 2.1993 JUNE

Figure 2. 3-Channel Flight-Simulation Configuration

decision as to whether another lane was faulty. A separate ser-
vo control logic function was required to make that decision.
The aircraft mathematical model provided the dynamic response
of current medium size, commercial transports in the ap-
proach/landing flight phase. The three control signals from the
autopilot computation lanes were inputs to three elevator ser-
vos. The servos were force-summed at their outputs, so that
the median of the three inputs became the final elevator com-
mand. The landing-geometry and turbulence-generator were
models associated with the airplane simulator.

Each run of flight simulation was characterized by 5 in-
itial values regarding the landing position of an airplane:

initial altitude (about 1500 feet)
initial distance (about 52800 feet)
initial nose up relative to velocity (range from 0 to 10
degrees)
initial pitch attitude (range from -15 to 15 degrees)
vertical velocity for the wind turbulence (0 to 10 Wsec).

Each simulation consisted of about 5280 iterations of lane com-
mand computations (50 msec each) for a total landing time of
approximately 264 seconds.

3.2 Design-Diversity Investigations

Independent programming teams were the baseline design-
diversity. The programming teams represented a wide range
of experience, from very experienced programmers (and/or
avionics engineers) to novices. Three programming en-
vironments were provided to the programmers:

Iowa Computer-Aided Engineering Network (ICAEN)
Center
U1 Dept. Electrical 8z Computer Engineering computing
facility
RI computing facilities.

Every programming team was required to use the C program-
ming language.

It was hypothesized that various programming en-
vironments provided different hardware platforms, working at-

mosphere, and computing tools and facilities which might add
further development diversity.

3.3 High Quality Specification with Error Detection & Recovery

The development of a suitable specification began early
in 1987; it was initially used in the UCLA/H6LP. During soft-
ware generation in UCLA/H6LP, several errors and ambiguities
in the specification were revealed & corrected - including the
two specification defects resulting in two pairs of identical faults.
A comprehensive error detection and recovery algorithm was
imposed on the specification to include:

2 input routines,
7 vote routines (cross-check points) to cross-check data,
1 recovery routine.

These enhancements were carefully specified and inserted in
the initial specification.

The final specification was converted to a single document
[21] which was given to the 15 programming teams to develop
their program versions independently. This specification has
benefited from the scrutiny of more than 16 motivated program-
mers and researchers. This version of specification followed
the principle of supplying only minimal (absolutely necessary)
information to the programmers, so as not to unwittingly bias
the programmers’ design decisions nor overly restrict the poten-
tial design diversity. Throughout the program development
phase, the specification was maintained as consistent and precise
as possible.

3.4 W P Communication Protocol

This project prohibited the programmers from discussing
any aspect of their work with members of other teams. Work-
related communication between programmers and a project
coordinator were conducted only via electronic mail, which also
served as a documentation protocol. The programmers directed
their questions to the project coordinator who was very familiar
with the NVP process and the specification details. The project
coordinator responded to each message, usually in less than 24
hours. The purpose of imposing this isolation rule on program-
ming teams was to assure the independent generation of pro-
grams, ie, programming efforts are carried out by individuals
or groups that do not interact with respect to the programming
process.

In the communication protocol, each answer was sent on-
ly to the team that submitted the question. The answer was
broadcast to all teams if and only if the answer led to an update
or clarification of the specification. During the software develop
ment process, a total of 145 questions were raised by and replied
to individual programming teams, among which 11
specification-related message were broadcast for specification
changes. Thus the individual teams received an average of on-
ly 20 messages during the program development phase, in con-
trast to an average of 58 messages in the UCLA/H6LP, and
to an average of over 150 messages in an NASA Experiment
[17]. A lesson learned from the UCLA/H6LP, the revised L-
DP enforced that each program version was verified to comply

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 10:00:54 UTC from IEEE Xplore. Restrictions apply.

LYUIHE: IMPROVING THE N-VERSION PROGRAMMING PROCESS THROUGH THE EVOLUTION OF A DESIGN PARADIGM 183

with all the broadcast specification updates before its final
acceptance.

3.5 NVS Software Development Schedule

in 6 phases:

Initial Design (4 weeks)

This phase allowed the programmers to get familiar with
the problem. At the end of this phase, each team delivered a
preliminary design document which followed specific guidelines
and formats for documentation.

Detailed Design (2 weeks)

This phase let each team obtain some feedback from the
coordinator to adjust, consolidate, and complete its final design.
The feedback related to the feasibility & style of each design
rather than to any technical corrections, except when the design
violated the specification updates. Each team was requested to
conduct at least one design walk-through. At the end of this
phase, each team delivered a detailed design document and a
design walk-through report.

The software development was scheduled and conducted

coding (3 weeks)

By the end of this phase, programmers had: a) finished
coding, b) conducted a code walk-through by themselves, and
c) delivered the initial compilable code. From this moment on,
each team was required to use the revision control tool RCS
(or to include CVS for concurrent versions) for configuration
management of their program modules. Code-update report
forms were used for every change made after the code was
generated.

Unit Testing (1 week)

Each team was supplied with sample test data-sets for each
module to check the basic functionality of that module. They
were required to build their own test harness for this testing

purpose. 133 data sets (the same as in UCLA/H6LP) were pro-
vided to the programmers.

Integration Testing (2 weeks)

Four sets of partial flight-simulation test data (the same
as those in the UCLA/H6LP), together with an automatic testing
routine, were provided to each programming team for integra-
tion testing. This test phase was intended to guarantee that the
software was suitable for a flight-simulation environment in an
integrated system.

Acceptance Testing (2 weeks)

Programmers formally submitted their programs for a
2-step acceptance test. In step 1 (ATl), each program was run
in a test harness of four n o d flight simulation profiles. These
data sets provided the same coverage as those in the
UCLAIH6LP. In step 2 (A n) , one extra simulation profile,
representing an extremely difficult flight situation, was imposed.
When a program failed a test, it was returned to the program-
mers for debugging and resubmission, along with the input case
on which it failed. In all, there were 23930 executions imposed
on these programs before they were accepted and subjected to
the final evaluation. By the end of this phase, 12 programs
passed the acceptance test and were used in the final evaluation.

4. PROGRAM METRICS / STATISTICS

Table 2 gives several comparisons of the 12 versions (iden-
tified by a Greek letter) with respect to some common software
metrics. The objective of software metrics is to evaluate the
quality of the product in a quality assurance environment.
However, our focus here is the comparison of program ver-
sions, since design diversity is our major concern.

Table 2 considers the following metrics.

LINES: number of lines of code, including comments and blank
lines

TABLE 2
Software Metrics for the 12 Accepted Programs

Metrics j3 y E t r l 8 K A B V € o Range

LINES

STMTS
MODS
STMIM
STMlCCP
CALLS
GBVAR
LCVAR
BINDE

LN-CM
8769
4006
2663
53
179
380
84
0

1326
233

2129 1176
1229 895
708 706
11 6
64 101
101 loo
123 16
55 101
179 86
68 152

1197
932
720
15
439
103
23
180
309
103

1777
1477
1208

6
20 1
173
37
86
553
224

1500
1182
753
47
406
108
76
406
532
120

1360 5139 1778
1251 2520 1168
640 1366 759
17 17 21
38 80 36
91 195 108
31 626 100
7 0 354

376 402 294
115 118 88

1612
1070
810
24
35
115
106
423
258
112

2443
1683
932
17
67
133
30
42 1
328
73

1815
1353
858
11
78
123
66
26
329
131

7.46
4.30
4.16
8.83

7.45
12.5

39.1

15.4
-

3.29

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 10:00:54 UTC from IEEE Xplore. Restrictions apply.

184 IEEE TRANSACTIONS ON REL,IAEHLI", VOL. 42. NO. 2,1993 JUNE

LN-CM: number of lines, excluding comments and blank lines
STMTS: number of executable statements, such as assignment,

MODS: number of programming modules (eg, subroutines,

STM/M: mean number of statements per module
STMICCP: mean number of statements in between cross-check

CALLS: number of calls to programming modules
GBVAR: number of global variables
LCVAR: number of local variables
BINDE: number of binary decisions.

96 faults were found and reported during the life cycle of the
project. Table 3 classifies the faults according to [19]:

Implementation Related

1. typographical (a cosmetic mistake made in typing the
program)
2. error of omission (a piece of required code was missing)
3. incorrect algorithm (a deficient implementation of an
algorithm); it includes miscomputation, logic fault, initidiza-
tion fault, and boundary fault.

Specification Related

4. specification misinterpretation (a misinterpretation of the
specification)
5 . specification ambiguity (an unclear or inadequate specifica-

4

control, YO, or arithmetic

functions, procedures)

points [19]

tion which led to a deficient implementation).

Fault type 3 is the most frequent. This result is similar to that
in the UCLA/H6LP.

Table 4 shows the test phases during which the faults were
detected, and the faults/KLOC (uncommented), of the original
and accepted versions. Since the coverage of AT1 data was
similar to the Acceptance Test data in the UCLA/H6LP, this
snapshot of program versions was of particular interest to be
compared with those final versions accepted in the
UCLA/H6LP.

There were only 2 incidents of identical faults committed
by two programs during the whole life cycle. The first fault,
committed by 0 & p versions, was due to an incorrect initializa-
tion of a variable. Unit test-data detected this fault when both
programs were initially tested. The second fault, committed by
y & X versions, was an incorrect condition for a switch variable
(a Boolean variable) for a late flight mode. This fault did not
show up until AT1 where a complete flight simulation was first
exercised.

The metrics of this project are compared with those of
UCLAIH6LP [18], NASA Experiment [17, 221, and Knight-
Leveson Experiment [16, 231.

Due to the refined L-DP which included a validated design
process and a cleaner specification with better specification-
update policy, the program quality obtained from this pro-
ject was higher. For the 12 finally accepted programs, the
average FD was 0.05 faults/KLOC. This number is close
to the field data from the best current industrial software

TABLE 3
Number of Faults in Each Type

1. Typo 0 0 0 1 2 2 0 0 0 0 0 0 5
2. Omission 0 0 4 0 1 0 3 1 0 0 1 0 10
3. Incorrect Algorithm 7 1 3 6 2 1 3 3 4 3 6 2 41
4. Spec. Misinterpretation 2 2 0 1 1 4 3 3 4 2 2 4 28
5. Spec. Ambiguity 0 4 3 0 0 0 0 1 0 0 1 0 9
6. Other 0 0 0 1 1 0 0 0 1 0 0 0 3
Total 9 7 1 0 9 7 7 9 8 9 5 1 0 6 9 6

TABLE 4
Fault Types by Phases and Other Attributes

CodinglUnit Test 2 2 3 1 3 3 5 3 2 1 2 2 2 9
Integration Test 4 3 4 4 1 0 3 2 2 2 3 1 2 9
AcceptanceTest 1 (AT1) 1 2 3 4 1 2 1 2 3 2 5 3 29
AcceptanceTest2(AT2) 1 0 0 0 2 2 0 1 2 0 0 0 8
Operational Test 1 0 0 0 0 0 0 0 0 0 0 0 1

Total 9 7 10 9 7 7 9 8 9 5 10 6 96

Original FD 2.2 5.7 11.2 9.7 4.7 5.9 7.2 3.2 7.7 4.7 5.9 4.4 5.1
FD after AT1 0.5 0 0 0 1.4 1.7 0 0.4 1.7 0 0 0 0.48
FD after AT2 0 . 2 0 0 0 0 0 0 0 0 0 0 0 0.05

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 10:00:54 UTC from IEEE Xplore. Restrictions apply.

LYUIHE: IMPROVING THE N-VERSION PROGRAMMING PROCESS THROUGH THE EVOLUTION OF A DESIGN PARADIGM 185

engineering practice. Compared with similar projects, the
average FD of the finally accepted programs was:

* 2.1 faults/KLOC in UCLA/H6LP
- 1.0 faults/KLOC in the NASA Experiment

> 2.8 faults/KLOC in the Knight-Leveson Experiment.

Both this project and the UCLA/H6LP were guided by an
N V S design paradigm, and the resulting identical faults were
relative very low. Only two pair of identical faults were
found in the life cycle of either project (out of a total of 93
and 96 faults, respectively). In contrast, the NASA Experi-
ment reported as m y as 7 types of identical or similar faults
after acceptance testing (out of a total of 26 faults), and the
Knight-Leveson Experiment experienced 8 types of identical
or similar faults after acceptance testing (out of a total of
45 faults).
Even though the number of identical or similar faults of this
project were as low as the UCLA/H6LP, the causes for these
faults were quite different. In the UCLA/H6LP the two iden-
tical faults were related to specification, while in this pro-
ject, both identical faults were due to incorrect program in-
itialization. Other projects encountered identical or similar
faults of various kinds, including specification deficiencies,
voting routine mismatches, program initialization errors,
code omissions, roundoff problems, and boundary case
errors.
In this project and UCLA/H6LP, identical faults involving
three or more versions have never been observed. On the
other hand, the NASA Experiment observed identical or
similar faults involving up to 5 versions, and the Knight-
Leveson Experiment reported identical or similar faults span-
ning as many as 4 versions.

5 . OPERATIONAL TESTING AND NVS
RELIABILITY EVALUATION

During the operational testing phase, 1000 flight simula-
tions (over 5 x lo6 program executions) were conducted. Only
one fault (in the fl version) was found during this operational
testing phase. To measure the reliability of the NVS system,
we took the program versions which passed the AT1 for study.
The reason was: Had the Acceptance Test not included an ex-
treme situation of AT2, more faults would have remained in
the program versions.

Table 5 shows the errors encountered in each single ver-
sion, while tables 6 & 7 show various error categories under
all combinations of 3-version and 5-version configurations. We
examine two levels of granularity in defining execution errors
and correlated errors:

by case - based on 1000 test cases. Each case contained
about 5280 execution time frames. If a version failed at any
time in a test case, it was considered failed for the whole
case. If two or more versions failed in the same test case
(whether at the same time or not), they were said to have
coincident errors for that test case.

by time - based on 5280920 execution time frames of the
1000 test cases. Errors were counted only at the time frame
in which they manifested themselves, and coincident errors
were defined to be the multiple program versions failing at
the same time in the same test case (with or without the same
variables and values).

TABLE 5
Errors in Individual Versions in 1000 Flight Simulations

error probability

version number of errors by case (X) by time (10-6)

P 5 10 51 96.6

E 0 0 .Ooo

B 1 . 1 .189
e 360 36 68.2
K 0 0 .Ooo
h 730 73 138
P 140 14 26.5
V 0 0 .000
2: 0 0 .Ooo
0 0 0 .Ooo

Y 0 0 .Ooo

I 0 0 .Ooo

Average 145 14.5 27.47

TABLE 6
Errors by Case in 3-Version and 5-Version Execution

Configurations

category

1. 0 errors
2. 1 error
3. 2 coincident errors
4. 3 coincident errors
5. 4 coincident errors
6. 5 coincident errors

3-version configuration

incidents prob. (%)

163370 74.3
51930 23.6
4440 2.0
260 .118
- -
- -

5-version configuration

incidents prob. (56)

470970 59.5
275740 34.8

36980 4.67
8220 1.04

89 .011
1 .00012

Total 22oooO 1.00 792000 1.00

Table 5 shows that the average error probability for single
version is 14.5% measured by case, or 0.0027% measured by
time. Table 6 shows that when measured by case, for all the
3-version combinations the error probability is 2.1 % (categories
3 & 4), an improvement over the single version by a factor of
7. In all the combinations of 5-version configuration, the error
probability is 1 .O% (categories 4 - 6), an improvement by a
factor of 14.

Table 7 shows that, when measured by time, for all the
3-version combinations, the error probability is 0.0002%
(categories 3 & 4). This is a reduction by a factor of 13 com-
pared with the single version execution. In all the combinations
of 5-version configuration, the error probability is further
reduced to 0 since there was no incidence of more than 2 coin-
cident errors at the same time in the same case.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 10:00:54 UTC from IEEE Xplore. Restrictions apply.

186 IEEE TRANSACTIONS ON RELIABU”. VOL. 42, NO. 2,1993 JUNE

TABLE 7
Errors by Time in 3-Version and 5-Version Execution

Configurations

3-version configuration 5-version configuration

category incidents (lo3) prob. (96) incidents (lo3) prob. (%)
~~~~~ 

1.0  errors 1160744 99.909 6778421 99.733 
2 . 1  error 1056 .0909 18036 .265 
3 . 2  coincident errors 2.7 .ooo2 87.8 .0013 
4 . 3  coincident errors 0 .oooo 0 .oooo 
Total 1161802 100 67%544 100 

If we analyze the error comparison level in more detail 
to define coincident errors as the program versions failing with 
the same variables and values at the same time in the same test 
case, then no such coincident errors exist among the 12 pro- 
gram versions, resulting in perfect reliability in both NVS 
configurations. 

6. FAULT-INJECTION TESTING AND 
COVERAGE ANALYSIS 

To uncover the impact of faults that would have remained 
in the software version, and to evaluate the effectiveness of NVS 
mechanisms, a special type of regression testing by fault- 
injection, similar to mutation testing which is well known in 
the software testing literature [24,25], was investigated in the 
12 versions. The original purpose of mutation testing is to en- 
sure the quality of the test data used to verify a program; our 
concerns here are to examine the relationship of faults and er- 
ror frequencies in each program and to evaluate the similarity 
of program errors among different versions. The fault-injection 
testing procedure is: 

The fault removal history of each program was examined 
and each program fault was analyzed and recreated. 
Mutants3 were generated by injecting faults one by one in- 
to the final version - from which they were removed; eg, 
a fault from program C is injected only into program C. Each 
mutant contains exactly one known software fault. 
Each mutant was executed by the same set of input data in 
the flight simulation environment to observe errors. 
The error characteristics were analyzed to collect error 
statistics and correlations. 4 

The 2 differences between our fault-injection technique and 
the mutation testing are: 

We used “real” mutants, viz, mutants injected with actual 
faults committed by programmers, instead of mutants with 
hypothesized faults. 

3This word is used for lack of a better, more appropriate one. 

Our purpose was to measure the coverage of NVS in detec- 
ting errors during operation, not merely the coverage of the 
test data in detecting mutants during testing. When there are 
multiple realizations of the same application, test data are 
no longer the only means for fault treatment and coverage 
analysis. Study of the error correlations among multiple pro- 
gram versions offers another dimension of investigation in 
fault-injection testing and mutation testing. 

Using the fault removal history of each version, we created 
a total of 96 mutants from the 12 program versions. Several 
error-measures were created. 

Notation 

i serial number of mutant 
n number of mutants 
X software version 
xi 
X XI, ... > x, 
m 

X (x i ,7 )  error frequency function 
p (x i ,7 )  error severity function 
O ( X ; T )  error similarity function 
Ne* (x i ,  7 )  total number of errors 
Ne,, (x i ,7 )  total number of executions 

val(xj,7) 
val ( x , ~ )  
p* ( x i , 7 )  
C,, ( T )  

software version x with mutant i 

population size (for the xi) 
serial number of test data-set 7 

E allowed error deviation (for severity) 
computed (erroneous) value of mutant xi running 7 

anticipated (corrected) value of software x running 7 

relative error: 11 - val (x ,~) /va l (x ,~)  I 
safety coverage factor for an n-mutant system and 7. 

Assumptions 

1. Each mutant contains only one known fault. 
2. Errors produced by each fault are always the same for 

the same test inputs [26]. 
3. E is specified 
4. The NVS supervisory system does not introduce errors 

which corrupt program execution. 4 

0, for p * ( x i , 7 )  < E 

1, for p* (x i ,7 )  > 1 (includes run-time 
exceptions or no results) 

p* (x i ,7 ) ,  otherwise. 

The X(xi ,7)  & p(x i ,7 )  were measured for all the mutants in 
100 flight simulation ( 0 . 5 ~  IO6 executions) of each mutant pro- 
gram. Three types of relationships (for errors in two or more 
versions) are identified [27] : 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 10:00:54 UTC from IEEE Xplore.  Restrictions apply. 



LYUIHE: IMPROVING THE N-VERSION PROGRAMMING PROCESS THROUGH THE EVOLUTION OF A DESIGN PARADIGM 187 

distinct: produced by faults whose erroneous results can be 
distinguished 
similar: two or more erroneous results that are within a small  
range 
identical: erroneous results are identical. 

0, if the majority of {x} produce distinct errors in T 
1, otherwise. 

a(x;7) = 

The a(x;7) were measured for populations of two versions. 
Table 8 shows the reduced 4 x 7 )  matrix for 2-mutant sets.4 
The two incidents of indistinguishable errors shown in table 8, 
ie, 84 (mutant #4 of version #e) - p l  and r6 - X7, result from 
the two pairs of identical faults discussed in section 4. 

TABLE 8 
a ( x ; ~ )  Matrix [reduced] in 2-Mutant Sets 

U 84 P l  Y6 A7 

84 - 1 0 0 
P l  1 - 0 0 

1 Y6 0 0 
XI 0 0 1 

- 
- 

Analysis of 3-mutant sets is much more tedious since a 
3-dimensional matrix is needed. However, it is similar to the 
analysis of 2-mutant sets. The error similarity function of the 
3-mutant sets is also a sparse matrix, since we have not seen 
any common errors affecting more than two mutants. 

Based on the 3 Error Functions we can obtain another 
reliability-related quantity, safety coverage, which is important 
for assessing the effectiveness of fault-tolerant systems. The 
safety coverage factor is defined as [28]: 

Pr { error detection or recovery I a fault has manifested itself}. 

In NVS systems, the safety coverage factor depends on the 
similarity of errors, the severity of errors, and the efficiency 
of the recovery mechanisms to cope with such errors. Thus, 
we need to derive a quantitative definition for measurement. 

The main contribution of the failures of NVS schemes is 
the similar or identical error among multiple program versions. 
We use the mutants (generated in the tests) as the sample-space 
to represent the condition: A fault has been created. Since this 
fault is manifested in errors during program execution, the prob- 
ability that it is covered is related to its severity and its Similarity 
to errors of other program versions. If we assume an equal 
distribution on the mutant population, then the safety coverage 
factor is: 

?he complete matrix is 96x96, but since it is sparse (most entries 
are zero), it was reduced by removing many of the 0 entries. 

x * = x , + l  x l = l  

= 1 - 0.0002193~(1~0.02 + 1.0.056) = 0.99998 

Example 3 

Let: T = 100 data sets, n = 3. 

C ~ ( T )  = 0.99995. 

Example 4 

Let: T = 100 data sets, n > 3. 

C,(T) = 1.00000. 

C2(7) should indeed be greater than C ~ ( T ) ,  since 
2-version systems are more capable of error detection than 
3-version systems. 

These safety coverage factors indicate an enormous im- 
provement of N V S  over 1-version software, which was similarly 
observed in UCLA/H6LP [29]. The coverage defined and 
measured here is limited to the particular mutant population and 
the 100 specific test data sets. Many of the faults injected in 
these mutants could, perhaps, be detected by an ordinary testing 
procedure. However, there is always a non-zero probability for 
each of these faults to slip through all practically applied testing 
schemes in another environment. Consequently, sampling from 
this fault population is valid, and the resulting measures are 
useful evidence for the effectiveness of NVS methodology to 
the assigned application. 

7. COMPAFUSONS WITH OTHER PROJECTS 

This project, guided by an evolving L-DP, revealed some 
major differences in the underlying process and the resulting 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 10:00:54 UTC from IEEE Xplore.  Restrictions apply. 



188 IEEE, TRANSACTIONS ON RELIABILITY, VOL. 42, NO. 2,1993 JUNE 

product compared with similar NVS projects. Table 9 compares 
this project and 3 other NVS projects: Knight-Leveson [16], 
NASA [17], and UCLAlH6LP [MI. 

B. Mehta, R. Miller, C. Minter, R. Mostaert, D. Newmister, 
C. Park, W. Park, C. Rajaraman, R. Reddy, K. Sangareddi, 
S .  Seth, S .  Shafer, M. Steffensmeier, Y. Sun, S .  Sundaram, 

The program quality in our UI&RI project and the associated 
N V S  reliability improvement were superior to those in previous 
projects. In evaluating the differences among these NVS 
development projects, our UI&RI project learned from previous 
projects in many ways: 

A more diversified background of students (from academia 
and industry, in both electrical engineering and computer 
science) and working environment. 
A specification which was less error-prone and less 
ambiguous. 
A better error detection and recovery mechanism. 

P. Sunkemeni, R. Tangirala, J. Trepka, W. Wang, P. Wiley, 
and M. Wolf. 

REFERENCES 

[l] A. Aviifienis, “The N-version approach to fault-tolerant software”, 
IEEE Trans. Software Engineering, vol SE-11, 1985 Dec, pp 

A. AvXienis, Lyu, Schrytz, Tso, Voges, “DEDIX 87 - A supervisory 
system for design diversity experiments at UCLA”, Sofnvare Diversi- 
ty in Computerized Control Systems (ed U. Voges), 1988, pp 129-168; 
Springer-Verlag . 
A. AvXienis, L. Chen, “On the implementation of n-version program- 

1491-1501. 
[2] 

[3] 
A coordinator who was more familiar with the NVS develop- 
ment protocol. 
A better validation policy to enforce specification updates 
@art of L-DP revisions). 
A smoother team communication procedure. 
An initial testing under a designated NVX environment (part 
of L-DP revisions). 

* A more thorough & elaborate acceptance procedure for pro- 
gram versions. 

ming for software fault-tolerance during program executio21, proc. 

A. Costes, C. Landrault, I.  C. Laprie, “Reliability and availability 
models for maintained systems featuring hardware failures and design 
faults”, IEEE Trans. Computers, vol C-27, 1978 Jun, pp 548-560. 
A. Gmarov, J. Arlat, A. Avb!ienis, “On the performance of software 
fault-tolerance strategies”, Digest l o h  Ann. Int? Symp. Fault-Tolerant 
Computing, 1980, pp 251-253; Kyoto, Japan. 
D. E. Eckhardt, L. D. Lee, “A theoretical basis for the analysis of 
multiversion software subject to coincident errors”, IEEE Trans. Soft- 
ware Engineering, vol SE-11, 1985 Dec, pp 1511-1517. 
A R. K. Scott, J. W. Gault, D. F. McAllister, “Fault tolerant soft- 
ware reliability modeling”, IEEE Trans. Software Engineering, vol 
SE-13, 1987 May, pp 582-592. 
B. Littlewood, D. Mier ,  “Conceptual modeling of coincident failures 
in multiversion software”, IEEE Trans. Sojware Engineering, vol 15, 

COMPSAC 77, 1977, pp 149-155. 
[4] 

[5] 

[6] 

[7] These improvements were due to the refined L-DP and the ex- 
perience in conducting the process associated with this L-DP. 

[8] 

ACKNOWLEDGMENT 1989 DE, pp 1596-1614. 
[9] V. F. Nicola, A. Goyal, “Modeling of correlated failures and com- 

munity error recovery in multiversibn software”, IEEE Trans. Soft- 
ware Engineering, vol 16, 1990 Mar, pp 350-359. 
J. C. Laprie, K. Kanoun, “X-ware reliability and availability model- 
ing“, BEE T m .  Sofhtvlre Engineering, vol18,1992 Feb, pp 130-147. 

PhD Dissertation, ENG-7843, 1978 Aug; UCLA Computer Science 
Department, Los Angeles, California. 

We are pleased to thank the following people who par- 
ticipated in as m & ~  project: B. ~ j ~ ~ ~ ,  T. B=-, N. 

S .  Evans, D. Goetzinger, V. Goyal, D. Haverkamp, W. 
Headlee, J. Hsu, J. Kohl, M. Krenz, J. Laird, S. Lee, J. Lumpp, 

[lo] 
Bloom, S .  Caswell, B. Cholasamvdram, D. Clark, R. Dietz, L. then, “Improving softwarereliabiliwby n ~ v e r s i o n p m ~ g ~ ~ ,  

TABLE 9 
Comparison of Several NVS Projects 

Item Knight-Leveson NASA UCLAfH6LP UIlRI 

number of teams 
number of accepted versions 
program acceptance rate 
average messages received/team 
average size, with comments (lines) 
average size, uncommented (lines) 
number of inherent faults 
number of faults during operation 
inherent faults/KLOC 
accepted-version faults/KLOC 
number of ident/sim faults 
max. span of ident/sim faults 
3-version improvement’ 
5-version improvement’ 

27 
27 
100% 
n.a. 
3600 
n.a. 
n.a. 
45 
n.a. 
> 2.8 
8 
4 
n.a. 
n.a. 

20 
20 
100% 
150 
2175 
1246 
162 
26 
6.5 
1 .o 
7 
5 
2 to 5 (est) 
8 to 20 (est) 

~~~ 

6
6
100%
58
1782
1209
93
11
18
2.1
2
2
2.3 (by time)
18 (by time)

~~~~ 

15 
12 
80% 
20 
2558 
1564 
% 
1 (9 after ATl) 
8.1 
0.05 (0.48 after AT1) 
2 

13 (by time) 
(by time) 

~~ ~ ~ ~~ 

n.a. = not available; ident/sim = identical or similar; est = estimated 
‘improvement is the factor by which the failure probability is reduced, compared to 1-version. 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 10:00:54 UTC from IEEE Xplore.  Restrictions apply. 



LYU/HE: IMPROVING THE N-VERSION PROGRAMMING PROCESS THROUGH THE EVOLUTION OF A DESIGN PARADIGM 189 

1121 L. Gmeiner, U. Voges, “Software diversity in reactor e o n  systems: 
An experiment”, Proc. IFAC Workshop SAFECOMP’79, 1979 May, pp 
75-79; Stuttgart, Germany. 

[13] C. V. Ramammrthy, Mok, Bastani, Chin, Suzuki, “Application of a 
methodology for the development and validation of reliable process con- 
trol software”, IEEE Trans. Sofhvare Engineering, vol SE-7,1981 Nov, 

[14] J. P. J. Kelly, A. Aviiienis, “A specification oriented multi-version soft- 
ware experiment”, Digest lYh Ann. Int ’I S y q .  FaulrTolermt Com- 
puting, 1983 Jun, pp 121-126; Milan, Italy. 

[15] P. G. Bishop, Esp, Barnes, Humphreys, Dahl, Lahti, “PODS - A pro- 
ject of diverse software”, IEEE Tmns. Sofhvare Engineering, vol SE-12, 
1986 Sep, pp 929-940. 

[16] J. C. Knight, N. G. Leveson, “An experimental evaluation of the assump 
tion of independence in multiversion programming”, IEEE Trans. Soft- 
ware Engineering, vol SE-12, 1986 Jan, pp 96-109. 

[17] D. E. Eckhardt, Caglavan, Knight, Lee, McAllister, Vouk, Kelly, “An 
experimental evaluation of software redundancy as a strategy for improving 
reliability”, IEEE Trans. Software Engineering, vol 17, 1991 Jul, pp 

[18] A. Aviiienis, M.R. Lyu, W. Schdltz, “In search of effective diversity: 
a six-language study of fault-tolerant flight control software”, Proc. I @  
Ann. Int? Symp. Fault Tolerant Coqut ing ,  1988 Jun; Tokyo, Japan. 

[19] M. R. Lyu, “A design paradigm for multi-version software”, PhDDisser- 
rm‘on, 1988 May; UCLA Computer Science Dept, Los Angeles, 
California. 

[20] M. R. Lyu, A. AviZienis, “Assuring design diversity in n-version soft- 
ware: a design paradigm for n-version programming”, Proc. 2“ Inr? 
Working a n $  Depenahble Compuringfor Critical Applications, 1991 Feb, 
pp 89-98; Tucson, Arizona. 

[21] M. R. Lyu, “Software requirements document for a fault-tolerant flight 
control computer”, ECE55:195 Project Specification, 1991 Sep, p 64; 
Iowa City, Iowa. 

[22] M. A. Vouk, McAllister, Caglayan, Walker Jr., Eckhardt, Kelly, Knight, 
“Analysis of faults detected in a large-scale multi-version software develop 
ment experiments environment”, DASC’W Proceedings, pp 378-385. 

[23] S. S.  Brilliant, J. C. Knight, N. G. Leveson, “Analysis of faults in an 
n-version software experiment”, IEEE Trans. Software Engineering, vol 
16, 1990 Feb, pp 238-247. 

[24] T. A. Budd, R. J. Lipton, F. G. Sayward, R. A. DeMillo, “The design 
of a prototype mutation system for program testing”, Proceedings NCC, 

[25] W. E. Howden, “Weak mutation testing and completeness of test sets”, 

pp 537-555. 

692-702. 

1978, pp 623-627. 

IEEE Trans. Software Engineering, vol SE-8, 1982 Jul, pp 371-379. 
[26] J. D. Mum, A. Iannino, K. Okumoto, Software Reliability - Measure- 

ment, Prediction, Application, 1987; McGraw-Hill. 
[27] A. AviZienis, J.-C. Laprie, “Dependable computing: from concepts to 

design diversity”, Proc. IEEE, vol 74, 1986 May, pp 629-638. 
[28] W. G. Bouricius, W. C. Carter, P. R. Schneider, “Reliability modeling 

techniques for self-repairing computer systems”, Proc. 24m Nar? Con$ 

[29] M. R. Lyu, “Software reliability measurements in n-version software ex- 
ecution environment”, Proc. I992 Int’l Symp. Software Reliability 
Engineering, 1992 Oct, pp 254-263; Raleigh, North Carolina. 

ACM, 1969, pp 295-383. 

AUTHORS 

Dr. Michael R. Lyu; Bell Communications Research MRE-2D363; 445 South 
Street; Morristown, New Jersey 07960 USA. 

Michael R. Lyu (S’84, M’88) is a Member of Technical Staff at the Soft- 
ware Process and Methods Research Group at the Bell Communications Research 
(Bellcore). He received his BS in Electrical Engineering in 1981 from the Na- 
tional Taiwan University, Taipei; his MS in Electrical & Computer Engineer- 
ing in 1984 from the University of California, Santa Barbara; and his PhD in 
Computer Science in 1988 from the University of California, Los Angeles. Dr. 
Lyu was a Member of Technical Staff at Jet Propulsion Laboratory, California 
Institute of Technology, Pasadena from 1988 to 1990. He was an Assistant Pro- 
fessor at the Electrical & Computer Engineering at the University of Iowa from 
1990 to 1992. His research interests include software reliability, software 
engineering, fault-tolerant computing, and distributed systems. 

Yu-Tao He; Department of Electrical and Computer Engineering; University 
of Iowa; Iowa City, Iowa 52242 USA. 

Yu-Tao He (S’92) received the BE in Electrical Engineering from 
Tsinghua University, Beijing in 1990. He is pursuing an MS in Electrical & 
Computer Engineering at the University of Iowa, Iowa City. He was the Testing 
Manager in F’risma Software Company, Cedar Falls in 1992 May to August. 
His research interests are software engineering, software testing, fault-tolerant 
computing, parallel and distributed systems. He is a student member of the 
IEEE and Association of Computing Machinery. 

Manuscript TR92-301 received 1992 May 6; revised 1992 December 1. 

IEEE Log Number 07619 4 T R b  

1 1994 Annual Reliability & Maintainability Symposium 1994 I 
I Plan now to attend. January 44-47 I Anaheim, California USA 

For further information, write to the Managing Editor. Sponsor members will receive more information in the mail. 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 10:00:54 UTC from IEEE Xplore.  Restrictions apply. 


