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Abstract

In this paper, we propose a unified method to jointly
learn optical flow and stereo matching. Our first intuition is
stereo matching can be modeled as a special case of optical
flow, and we can leverage 3D geometry behind stereoscopic
videos to guide the learning of these two forms of corre-
spondences. We then enroll this knowledge into the state-of-
the-art self-supervised learning framework, and train one
single network to estimate both flow and stereo. Second,
we unveil the bottlenecks in prior self-supervised learning
approaches, and propose to create a new set of challeng-
ing proxy tasks to boost performance. These two insights
yield a single model that achieves the highest accuracy
among all existing unsupervised flow and stereo methods on
KITTI 2012 and 2015 benchmarks. More remarkably, our
self-supervised method even outperforms several state-of-
the-art fully supervised methods, including PWC-Net and
FlowNet2 on KITTI 2012.

1. Introduction
Estimating optical flow and stereo matching are two fun-

damental computer vision tasks with a wide range of ap-

plications [6, 31]. Despite impressive progress in the past

decades, accurate flow and stereo estimation remain a long-

standing challenge. Traditional stereo matching estimation

approaches often employ different pipelines compared with

prior flow estimation methods [13, 2, 36, 19, 40, 37, 12, 11,

7]. These methods merely share common modules, and they

are computationally expensive.

Recent CNN-based methods directly estimate optical

flow [4, 15, 32, 39, 14] or stereo matching [20, 3] from

two raw images, achieving high accuracy with real-time

speed. However, these fully supervised methods require a

large amount of labeled data to obtain state-of-the-art per-

formance. Moreover, CNNs for flow estimation are drasti-

cally different from those for stereo estimation in terms of

network architecture and training data [4, 28].
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Figure 1. Illustration of 12 cross-view correspondnce maps among

4 stereoscopic frames. We leverage all these geometric consis-

tency constraints, and train one single network to estimate both

flow and stereo.

Is it possible to train one single network to estimate both

flow and stereo using only one set of data, even unlabeled?

In this paper, we show conventional self-supervised meth-

ods can learn to estimate these two forms of dense cor-

respondences with one single model, when fully utilizing

stereoscopic videos with inherent geometric constraints.

Fig. 2 shows the geometric relationship between stereo

disparity and optical flow. We consider stereo matching

as a special case of optical flow, and compute 12 cross-

view correspondence maps between images captured at dif-

ferent time and different view (Fig. 1. This enables us

to train one single network with a set of photometric and

geometric consistency constraints. Besides, after digging

into conventional two-stage self-supervised learning frame-

work [25, 26], we show that creating challenging proxy

tasks is the key for performance improvement. Based on

this observation, we propose to employ additional challeng-

ing conditions to further boost the performance.

These two insights yield a method outperforming all

existing unsupervised flow learning methods by a large

margin, with Fl-noc = 4.02% on KITTI 2012 and Fl-

all = 11.10% on KITTI 2015. Remarkably, our self-

supervised method even outperforms several state-of-the-

art fully supervised methods, including PWC-Net [39],

FlowNet2 [15], and MFF [34] on KITTI 2012. More impor-
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tantly, when we directly estimate stereo matching with our

optical flow model, it also achieves state-of-the-art unsuper-

vised stereo matching performance. This further demon-

strates the strong generalization capability of our approach.

2. Related Work
Optical flow and stereo matching have been widely stud-

ied in the past decades [13, 2, 36, 38, 45, 48, 49, 29, 21, 11].

Here, we briefly review recent deep learning based methods.

Supervised Flow Methods. FlowNet [4] is the first end-

to-end optical learning method, which takes two raw im-

ages as input and output a dense flow map. The followup

FlowNet 2.0 [15] stacks several basic FlowNet models and

refines the flow iteratively, which significantly improves ac-

curacy. SpyNet [32], PWC-Net [39] and LiteFlowNet [14]

propose to warp CNN features instead of image at differ-

ent scales and introduce cost volume construction, achiev-

ing state-of-the-art performance with a compact model size.

However, these supervised methods rely on pre-training on

synthetic datasets due to lacking of real-world ground truth

optical flow. The very recent SelFlow [26] employs self-

supervised pre-training with real-world unlabeled data be-

fore fine-tuning, reducing the reliance of synthetic datasets.

In this paper, we propose an unsupervised method, and

achieve comparable performance with supervised learning

methods without using any labeled data.

Unsupervised & Self-Supervised Flow Methods. Label-

ing optical flow for real-world images is a challenging task,

and recent studies turn to formulate optical flow estimation

as an unsupervised learning problem based on the bright-

ness constancy and spatial smoothness assumption [17, 35].

[30, 44, 16] propose to detect occlusion and exclude oc-

cluded pixels when computing photometric loss. Despite

promising progress, they still lack the ability to learn opti-

cal flow of occluded pixels.

Our work is most similar to DDFlow [25] and SelF-

low [26], which employ a two-stage self-supervision strat-

egy to cope with optical flow of occluded pixels. In this

paper, we extend the scope to utilize geometric constraints

in stereoscopic videos and jointly learn optical flow and

stereo disparity. This turns out to be very effective, as our

method significantly improves the quality of flow predic-

tion in the first stage. Recent works also propose to jointly

learn flow and depth from monocular videos [52, 53, 47,

33, 24] or jointly learn flow and disparity from stereoscopic

videos [22, 43]. Unlike these methods, we make full use

of geometric constraints between optical flow and stereo

matching in a self-supervised learning manner, and achieve

much better performance.

Unsupervised & Self-Supervised Stereo Methods. Our

method is also related to a large body of unsupervised stereo

learning methods, including image synthesis and warping

ܱ ܱ
ݕ

ݖ

௧ܘ ௧ܘ

௧ܲ

ܟ ܟ

∆ܲ

ܤ
݂

ݔ

௧ܲାଵ

௧ାଵܘ ௧ାଵܘ

Figure 2. 3D geometric constraints between optical flow (wl and

wr) and stereo disparity from time t to t + 1 in the 3D projection

view.

with depth estimation [5], left-right consistency [8, 51, 9],

employing additional semantic information et al. [46], co-

operative learning [23], self-adaptive fine-tuning et al. [41,

50, 42]. Different from all these methods that design a spe-

cific network for stereo estimation, we train one single uni-

fied network to estimate both flow and stereo.

3. Geometric Relationship of Flow and Stereo
In this section, we review the geometric relationship be-

tween optical flow and stereo disparity from both the 3D

projection view [10] and the motion view.

3.1. Geometric Relationship in 3D Projection

Fig. 2 illustrates the geometric relationship between

stereo disparity and optical flow from a 3D projection view.

Ol and Or are rectified left and right camera centers, B is

the baseline distance between two camera centers.

Suppose P (X,Y, Z) is a 3D point at time t, and it moves

to P + ΔP at time t + 1, resulting in the displacement as

ΔP = (ΔX,ΔY,ΔZ). Denote f as the focal length, p =
(x, y) as the projection point of P on the image plane, then

(x, y) = f
s
(X,Y )

Z , where s is the scale factor that converts

the world space to the pixel space, i.e., how many meters

per pixel. For simplicity, let f ′ = f
s , we have (x, y) =

f ′ (X,Y )
Z . Take the time derivative, we obtain

(Δx,Δy)

Δt
= f ′ 1

Z

(ΔX,ΔY )

Δt
− f ′ (X,Y )

Z2

ΔZ

Δt
(1)

Let w = (u, v) be the optical flow vector (u denotes motion

in the x direction and v denotes motion in the y direction)

and the time step is one unit (from t to t + 1), then Eq. (1)
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Figure 3. Our self-supervised learning framework contains two stages: In stage 1, we add geometric constraints between optical flow and

stereo disparity to improve the quality of confident predictions; In stage 2, we create challenging proxy tasks to guide the student model

for effective self-supervised learning.

becomes,

(u, v) = f ′ (ΔX,ΔY )

Z
− f ′ΔZ

Z2
(X,Y ) (2)

For calibrated stereo cameras, we let P in the coordinate

system of Ol. Then Pl = P = (X,Y, Z) in the coordinate

system of Ol and Pr = (X − B, Y, Z) in the coordinate

system of Or. With Eq. (2), we obtain,{
(ul, vl) = f ′ (ΔX,ΔY )

Z − f ′ΔZ
Z2 (X,Y )

(ur, vr) = f ′ (ΔX,ΔY )
Z − f ′ΔZ

Z2 (X −B, Y )
, (3)

This can be further simplified as,{
ur − ul = f ′BΔZ

Z2

vr − vl = 0
, (4)

Suppose d is the stereo disparity (d ≥ 0), according to the

depth Z and the distance between two camera centers B,

we have d = f ′B
Z . Take the time derivative, we have

Δd

Δt
= −f ′ B

Z2

ΔZ

Δt
(5)

Similarly, we set time step to be one unit, then

dt+1 − dt = −f ′B
ΔZ

Z2
(6)

With Eq. (4) and (6), we finally obtain,{
ur − ul = (−dt+1)− (−dt)
vr − vl = 0

. (7)

Eq. (7) demonstrates the 3D geometric relationship be-

tween optical flow and stereo disparity, i.e., the difference

between optical flow from left and right view is equal to the

difference between disparity from time t to t+ 1. Note that

Eq. (7) also works when cameras move, including rotating

and translating from t to t + 1. Eq. (7) assumes the focal

length is fixed, which is common for stereo cameras.

Next, we review the geometric relationship between flow

and stereo in the motion view.

3.2. Geometric Relationship in Motion

Optical flow estimation and stereo matching can be

viewed as one single problem: correspondence matching.

Optical flow describes the pixel motion between two ad-

jacent frames recorded at different time, while stereo dis-

parity represents the pixel displacement between two stereo

images recorded at the same time. According to stereo ge-

ometry, the correspondence pixel shall lie on the epipolar

line between stereo images. However, optical flow does not

have such a constraint, this is because both camera and ob-

ject can move at different times.

To this end, we consider stereo matching as a special

case of optical flow. That is, the displacement between

stereo images can be seen as a one dimensional movement.

For rectified stereo image pairs, the epipolar line is hori-

zontal and stereo matching becomes finding the correspon-

dence pixel along the horizontal direction x.

In the following, we consider stereo disparity as a form

of motion between stereo image pairs. For simplicity, let

I1, I3 denote the left-view images at time t and t+1, I2, I4
denote the right-view images at time t and t+1 respectively.

Then we let w1→3 denote the optical flow from I1 to I3,

w1→2 denote the stereo disparity from I1 to I2. For stereo

disparity, we only keep the horizontal direction of optical

flow. For optical flow and disparity of other directions, we

denote them in the same way.

Apart from optical flow in the left and right view, dispar-

ity at time t and t+1, we also compute the cross-view opti-

cal flow between images captured at different time and dif-

ferent view, such as w1→4 (green row in Fig. 1). In this case,
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Figure 4. Qualitative evaluation on KITTI 2015 optical flow benchmark. For each case, the top row is optical flow and the bottom row is

error map. Our model achieves much better results both quantitatively and qualitatively (e.g., shaded boundary regions). Lower Fl is better.

we compute the correspondence between every two images,

resulting in 12 optical flow maps as shown in Fig. 1. We em-

ploy the same model to compute optical flow between every

two images.

Suppose pl
t is a pixel in I1, pr

t , pl
t+1, pr

t+1 are its cor-

respondence pixels in I2, I3 and I4 respectively, then we

have, ⎧⎪⎨⎪⎩
pr
t = pl

t + w1→2(pl
t)

pl
t+1 = pl

t + w1→3(pl
t)

pr
t+1 = pl

t + w1→4(pl
t)

. (8)

A pixel directly moves from I1 to I4 shall be identical to the

movement from I1 to I2 and from I2 to I4. That is,

w1→4(pl
t) = (pr

t+1 − pr
t ) + (pr

t − pl
t)

= w2→4(pr
t ) + w1→2(pl

t).
(9)

Similarly, if the pixel moves from I1 to I3 and from I3 to

I4, then

w1→4(pl
t) = (pr

t+1 − pl
t+1) + (pl

t+1 − pl
t)

= w3→4(pl
t+1) + w1→3(pl

t).
(10)

From Eq. (9) and (10), we obtain,

w2→4(pr
t )−w1→3(pl

t) = w3→4(pl
t+1)−w1→2(pl

t). (11)

For stereo matching, the correspondence pixel shall lie on

the epipolar lines. Here, we only consider rectified stereo

cases, where epipolar lines are horizontal. Then, Eq.(11)

becomes{
u2→4(pr

t )− u1→3(pl
t) = u3→4(pl

t+1)− u1→2(pl
t)

v2→4(pr
t )− v1→3(pl

t) = 0
.

(12)

Note Eq. (12) is exactly the same as Eq. (7).

In addition, since epipolar lines are horizontal, we can

re-write Eq. (9) and (10) as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
u1→4(pl

t) = u2→4(pr
t ) + u1→2(pl

t)

v1→4(pl
t) = v2→4(pr

t )

u1→4(pl
t) = u3→4(pl

t+1) + u1→3(pl
t)

v1→4(pl
t) = v1→3(pl

t)

. (13)

This leads to the two forms of geometric constraints we

used in our training loss functions: quadrilateral constraint

(12) and triangle constraint (13).

4. Method
In this section, we first dig into the bottlenecks of the

state-of-the-art two-stage self-supervised learning frame-

work [25, 26]. Then we describe an enhanced proxy learn-

ing approach, which can improve its performance greatly in

both two stages.

4.1. Two-Stage Self-Supervised Learning Scheme

Both DDFlow [25] and SelFlow [26] employ a two-

stage learning approaches to learning optical flow in a self-

supervised manner. In the first stage, they train a teacher

model to estimate optical flow for non-occluded pix-

els. In the second stage, they first pre-process the input

images, e.g., cropping and inject superpixel noises to create

hand-crafted occlusions, then the predictions of teacher

model for those non-occluded pixels are regarded as

ground truth to guide a student model to learn optical flow

of hand-crafted occluded pixels.

The general pipeline is reasonable, but the definition

of occlusion is in a heuristic manner. At the first

stage, forward-backward consistency is employed to detect

whether the pixel is occluded. However, this brings in

errors because many pixels are still non-occluded even

they violate this principle, and vice versa. Instead, it would

be more proper to call those pixels reliable or confident if

they pass the forward-backward consistency check. From
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Table 1. Quantitative evaluation of optical flow estimation on KITTI. Bold fonts highlight the best results among supervised and unsuper-

vised methods. Parentheses mean that training and testing are performed on the same dataset. fg and bg denote results of foreground and

background regions respectively.

Method

KITTI 2012 KITTI 2015

Train train test train test

Stereo EPE-all EPE-noc EPE-all EPE-noc Fl-all Fl-noc EPE-all EPE-noc Fl-all Fl-fg Fl-bg

S
u
p
er

v
is

ed

SpyNet [32] � 3.36 – 4.1 2.0 20.97% 12.31% – – 35.07% 43.62% 33.36%

FlowFieldsCNN [1] � – – 3.0 1.2 13.01% 4.89% – – 18.68% 20.42% 18.33%

DCFlow [45] � – – – – – – – – 14.86% 23.70% 13.10%

FlowNet2 [15] � (1.28) – 1.8 1.0 8.80% 4.82% (2.3) – 10.41% 8.75% 10.75%

UnFlow-CSS [30] � (1.14) (0.66) 1.7 0.9 8.42% 4.28% (1.86) – 11.11% 15.93% 10.15%

LiteFlowNet [14] � (1.05) – 1.6 0.8 7.27% 3.27% (1.62) – 9.38% 7.99% 9.66%

PWC-Net [39] � (1.45) – 1.7 0.9 8.10% 4.22% (2.16) – 9.60% 9.31% 9.66%

MFF [34] � – – 1.7 0.9 7.87% 4.19% – – 7.17% 7.25% 7.15%
SelFlow [26] � (0.76) – 1.5 0.9 6.19% 3.32% (1.18) – 8.42% 7.61% 12.48%

U
n
su

p
er

v
is

ed

BackToBasic [17] � 11.3 4.3 9.9 4.6 43.15% 34.85% – – – – –

DSTFlow [35] � 10.43 3.29 12.4 4.0 – – 16.79 6.96 39% – –

UnFlow-CSS [30] � 3.29 1.26 – – – – 8.10 – 23.30% – –

OccAwareFlow [44] � 3.55 – 4.2 – – – 8.88 – 31.2% – –

MultiFrameOccFlow-None [16] � – – – – – – 6.65 3.24 – – –

MultiFrameOccFlow-Soft [16] � – – – – – – 6.59 3.22 22.94% – –

DDFlow [25] � 2.35 1.02 3.0 1.1 8.86% 4.57% 5.72 2.73 14.29% 20.40% 13.08%

SelFlow [26] � 1.69 0.91 2.2 1.0 7.68% 4.31% 4.84 2.40 14.19% 21.74% 12.68%

Lai et al. [22] � 2.56 1.39 – – – – 7.134 4.306 – – –

UnOS [43] � 1.64 1.04 1.8 – – – 5.58 – 18.00% – –

Our+Lp+Lq+Lt � 4.91 0.84 – – – – 7.88 2.24 – – –

Ours+Lp+Lq+Lt+Self-Supervision � 1.45 0.82 1.7 0.9 7.63% 4.02% 3.54 2.12 11.10% 16.67% 9.99%

this point of view, creating hand-crafted occlusions can

be regard as creating more challenging conditions, under

which the prediction would be less confident. Then in the

second stage, the key point is to let confident predictions to

supervise those less confident predictions.

During the self-supervised learning stage, the student

model is able to handle more challenging conditions. As

a result, its performance improves not only for those oc-

cluded pixels, but also for non-occluded pixels. Because

when creating challenging conditions, both occluded re-

gions and non-occluded regions become more challenging.

The reason why optical flow for occluded pixels improves

more than non-occluded regions is that, during the first

stage, photometric loss does not hold for occluded pixels,

the model just does not have the ability to predict them. In

the second stage, the model has the ability to learn opti-

cal flow of occluded pixels for the first time, therefore its

performance improves a lot. To lift the upper bound of con-

fident predictions, we propose to utilize stereoscopic videos

to reveal their geometric nature.

4.2. Proxy Learning Scheme

Following [25, 26], our proxy learning scheme contains

two stages and our network structure is built upon PWC-

Net [39].

Stage 1: Predicting confident optical flow with geomet-
ric constraints. With the estimated optical flow map wi→j ,

we warp the target image Ij toward the reference image Ii.
Then we measure the difference between the warped target

image Iwj→i and the reference image Ii with a photometric

loss. Similar to [30, 25, 26], we employ forward-backward

consistency check to compute a confident map, where value

1 indicates the prediction is confident, 0 indicates the pre-

diction is non-confident.

Apart from photometric loss, we also apply geometric

constraints to our teacher model, including the triangle con-

straint and quadrilateral constraint. Note that geometric

constraints are only applied to those confident pixels. This

turns out to highly effective and greatly improves the accu-

racy of those confident predictions.

Stage 2: Self-supervised learning from teacher model to
student model. As discussed earlier, the key point of self-

supervision is to create challenging input-output pairs. In

our framework, we create challenging conditions by ran-

dom cropping input image pairs, injecting random noise

into the second image, random scale (down-sample) the in-

put image pairs, to make correspondence learning more dif-

ficult. These hard input-output pairs push the network to

capture more information, resulting in a large performance

gain in practice.

Different from [25, 26], we do not distinguish between

occluded and non-occluded pixels anymore in the self-

supervision stage. As forward-backward consistency check

cannot perfectly determine whether a pixel is occluded,

there may be many erroneous judgments. In this case, the

confident prediction from teacher model will provide guid-

ance for both occluded or non-occluded pixels no matter

forward-backward check is employed or not.

Next, we describe our training losses for each stage.
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Figure 5. Qualitative evaluation with other unsupervised stereo matching methods on KITTI 2015 training dataset. For each case, the top

row is stereo disparity and the bottom row is error map. Our models estimate more accurate disparity maps (e.g., image boundary regions

and moving-object boundary regions). Lower D1 is better.

Table 2. Quantitative evaluation of stereo disparity on KITTI training datasets (apart from the last columns). Our single model achieves the

highest accuracy among all unsupervised stereo learning methods. * denotes that we use their pre-trained model to compute the numbers,

while other numbers are from their paper. Note that Guo et al. [9] pre-train stereo model on synthetic Scene Flow dataset with ground truth

disparity before fine-tuning on KITTI dataset.

Method
KITTI 2012 KITTI 2015

EPE-all EPE-noc EPE-occ D1-all D1-noc D1-all (test) EPE-all EPE-noc EPE-occ D1-all D1-noc D1-all (test)

Joung et al. [18] – – – – – 13.88% – – – 13.92% – –

Godard et al. [8] * 2.12 1.44 30.91 10.41% 8.33% – 1.96 1.53 24.66 10.86% 9.22% –

Zhou et al. [51] – – – – – – – – – 9.41% 8.35% –

OASM-Net [23] – – – 8.79% 6.69% 8.60% – – – – – 8.98%

SeqStereo et al. [46] * 2.37 1.63 33.62 9.64% 7.89% – 1.84 1.46 26.07 8.79% 7.7% –

Liu et al. [24] * 1.78 1.68 6.25 11.57% 10.61% – 1.52 1.48 4.23 9.57% 9.10% –

Guo et al. [9] * 1.16 1.09 4.14 6.45% 5.82% – 1.71 1.67 4.06 7.06% 6.75% –

UnOS [43] – – – – – 5.93% – – – 5.94% – 6.67%

Ours+Lp 1.73 1.13 27.03 7.88% 5.87% – 1.79 1.40 25.24 9.83% 7.74% –

Ours+Lp+Lq+Lt 1.62 0.94 29.26 6.69% 4.69% – 1.67 1.31 19.55 8.62% 7.15% –

Ours+Lp+Lq+Lt+Self-Supervision 1.01 0.93 4.52 5.14% 4.59% 5.11% 1.34 1.31 2.56 6.13% 5.93% 6.61%

4.3. Loss Functions

For stage 1, our loss function mainly contains three parts:

photometric loss Lp, triangle constraint loss Lt and quadri-

lateral constraint loss Lq . For stage 2, we only apply self-

supervision loss Ls.

Photometric loss. Photometric loss is based on the bright-

ness consistency assumption, which only works for non-

occluded pixels. During our experiments, we employ cen-

sus transform, which has shown to be robust for illumina-

tion change [30, 25, 26]. Denote Mi→j as the confident

map from Ii to Ij is Mi→j , then Lp is defined as,

Lp =
∑
i,j

∑
p ψ(Ii(p)− Iwj→i(p))�Mi→j(p)∑

p Mi→j(p)
, (14)

where ψ(x) = (|x| + ε)q . During our experiments, we set

ε = 0.01 and q = 0.4.

Quadrilateral constraint loss. Quadrilateral constraint de-

scribes the geometric relationship between optical flow and

stereo disparity. Here, we only employ Lq to those con-

fident pixels. Take w1→4, w2→4, w1→2 and w3→4 for an

example, we first compute the confident map for quadrilat-

eral constraint Mq(p) = M1→2(p)�M1→3(p)�M1→4(p).
Then according to Eq. (12), we divide Lq into two compo-

nents on the x direction Lqu and y direction Lqv respec-

tively:

Lqu =
∑

pl
t

ψ(u1→2(pl
t) + u2→4(pr

t )− u1→3(pl
t)−

u3→4(pl
t+1))�Mq(pl

t)/
∑

pl
t

Mq(pl
t)

(15)

Lqv =
∑

pl
t

ψ(v2→4(pr
t )−v1→3(pl

t))�Mq(pl
t)/

∑
pl
t

Mq(pl
t)

(16)

where Lq = Lqu + Lqv . Quadrilateral constraint loss at

other directions are computed in the same way.

Triangle constraint loss. Triangle constraint describes

the relationship between optical flow, stereo disparity and
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cross-view optical flow. Similar to quadrilateral constraint

loss, we only employ Lt to confident pixels. Take w1→3,

w2→4, w1→2 as an example, we first compute the confident

map for triangle constraint Mt(p) = M1→2(p)�M1→4(p),
then according to Eq. (9), Lt is defined as follows,

Ltu =

∑
pl
t
ψ(u1→4(pl

t)− u2→4(pr
t )− u1→2(pl

t))�Mt(p)∑
pl
t
Mt(pl

t)

(17)

Ltv =
∑

pl
t

ψ(v1→4(pl
t)− v2→4(pr

t ))�Mt(p)
∑

pl
t

Mt(pl
t),

(18)

where Lt = Ltu + Ltv . Triangle constraint losses at other

directions are computed in the same way.

The final loss function for teacher model is L = Lp +
λ1Lq + λ2Lt, where we set λ1 = 0.1 and λ2 = 0.2 during

experiments.

Self-Supervision loss. During the first stage, we train

our teacher model to compute proxy optical flow w and con-

fident map M , then we define our self-supervision loss as,

Ls =
∑
i,j

∑
p ψ(wi→j(p)− w̃i→j(p))�Mi→j(p)∑

p Mi→j(p)
.

(19)

At test time, only the student model is needed, and we can

use it to estimate both optical flow and stereo disparity.

5. Experiments
We evaluate our method on the challenging KITTI 2012

and KITTI 2015 datasets and compare our method with

state-of-the-art unsupervised and supervised optical flow

learning methods. Besides, since our method is able to pre-

dict stereo disparity, we also compare its stereo matching

performance with related methods.

5.1. Experimental Setting

During training, we use the raw multi-view extensions of

KITTI 2012 [6] and KITTI 2015 [31] and exclude neighbor-

ing frames (frame 9-12) as [35, 44, 25, 26]. For evaluation,

we use the training sets of KITTI 2012 and KITTI 2015 with

ground truth optical flow and disparity. We also submit our

results to optical flow and stereo matching benchmarks for

comparison with current state-of-the-art methods.

We implement our algorithm using TensorFlow with

Adam optimizer. For teacher model, we set batch size to

be 1, since there are 12 optical flow estimations for the 4

images. For student model, batch size is 4. We adopt sim-

ilar data augmentation strategy as [4]. During training, we

random crop [320, 896] as input, while during testing, we

resize images to resolution [384, 1280]. We employ a two-

stage training procedure as [25, 26]. The key difference

is that during the first stage, we add geometric constraints

which enable our model to predict more accurate reliable

predictions. Besides, during the second stage, we do not

distinguish between occluded and non-occluded pixels, and

set all our confident predictions as ground truth. For each

experiment, we set initial learning rate to be 1e-4 and decay

it by half every 50k iterations.

For evaluation metrics, we use the standard EPE (average

end-point error) and Fl (percentage or erroneous pixels). A

pixel is considered as correctly estimated if end-point error

is <3 pixel or <5%. For stereo matching, there is another

metric D1, which shares the same definition as Fl.

5.2. Main Results

Our method achieves the best unsupervised results for

all evaluation metrics on both KITTI 2012 and KITTI 2015

datasets. More notably, our unsupervised results are even

comparable with state-of-the-art supervised learning meth-

ods. Our approach bridges the performance gap between

supervised learning and unsupervised learning methods for

optical flow estimation.

Optical Flow. As shown in Tab. 1, our method outper-

forms all unsupervised learning method for all metrics on

both KITTI 2012 and KITTI 2015 datasets. Specially, on

KITTI 2012 dataset, we achieve EPE-all = 1.45 pixels,

which achieves 14.2% relative improvement than previous

best SelFLow [26]. For testing set, we achieve EPE = 1.7

pixels, resulting in 22.7% improvement. More notably, we

achieve FL-all = 7.68% and Fl-noc = 4.02%, which is even

better than state-of-the-art fully supervised learning meth-

ods including PWC-Net [39], MFF [34], and is highly com-

petitive with LiteFlowNet [14] and SelFlow [26].

On KITTI 2015, the improvement is also impressive. For

the training set, we achieve EPE-all = 3.54 pixels, resulting

in 26.9% relative improvement than previous best method

SelFlow. On the testing benchmark, we achieve Fl-all =

11.10%, which is not only better than previous best unsu-

pervised learning methods by a large margin (21.8% rela-

tive improvement), but also competitive with state-of-the-

art supervised learning methods. To the best of our knowl-

edge, this is the first time that an unsupervised method

achieves comparable performance compared with state-of-

the-art fully supervised learning methods. Qualitative com-

parisons with other methods on KITTI 2015 optical flow

benchmark are shown in Fig. 4.

Stereo Matching. We directly apply our optical flow model

to stereo matching (only keeping the horizontal direction

of flow), it achieves state-of-the-art unsupervised stereo

matching performance as shown in Tab. 2. Specially, we

reduce EPE-all from 1.61 pixels to 1.01 pixels on KITTI

2012 training dataset and from 1.71 pixels to 1.34 pixels on

KITTI 2015 dataset.

Compared with previous state-of-the-art method

UnOS [43], we reduce Fl-all from 5.93% to 5.11% on
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Table 3. Ablation study on KITTI training datasets. For self-supervision, v1 means employing self-supervision of [25, 26], v2 means not

distinguishing between occluded and non-occluded pixels, v3 means adding more challenging conditions (our final model), and v4 means

adding geometric constraints in the self-supervision stage (slightly degrade the performance).

Lp Lq Lt
Self-Supervision KITTI 2012 KITTI 2015

v1 v2 v3 v4 EPE-all EPE-noc EPE-occ Fl-all Fl-noc EPE-all EPE-noc EPE-occ Fl-all Fl-noc

� � � � � � � 4.41 1.06 26.54 14.18% 5.13% 8.20 2.85 42.01 19.50% 9.97%

� � � � � � � 5.15 0.84 33.74 13.53% 3.42% 8.24 2.33 45.46 18.31% 8.15%

� � � � � � � 4.98 0.86 32.33 12.64% 3.54% 7.99 2.34 43.50 17.89% 8.14%

� � � � � � � 4.91 0.84 31.81 12.57% 3.47% 7.88 2.24 43.92 17.68% 7.97%

� � � � � � � 1.92 0.95 7.86 6.56% 3.82% 5.85 2.96 24.17 13.26% 9.06%

� � � � � � � 1.89 0.93 7.76 6.44% 3.76% 5.48 2.78 22.05 12.62% 8.53%

� � � � � � � 1.62 0.89 6.21 5.62% 3.38% 4.12 2.36 15.04 10.93% 8.31%

� � � � � � � 1.45 0.82 5.52 5.29% 3.27% 3.54 2.12 12.58 10.04% 7.57%
� � � � � � � 1.56 0.86 6.20 5.83% 3.41% 3.66 2.16 13.18 10.44% 7.80%

KITTI 2012 testing dataset and from 6.67% to 6.61%

on KITTI 2015 testing dataset. This is a surprisingly

impressive result, since our optical flow model performs

even better than other models specially designed for stereo

matching. It also demonstrates the generalization capability

of our optical flow model toward stereo matching. Qualita-

tive comparisons with other unsupervised stereo matching

approaches are shown in Fig. 5.

5.3. Ablation Study

We conduct a thorough analysis for different components

of our proposed method.

Quadrilateral and Triangle Constraints. We add both

constraints during our training in the first stage, aiming to

improve the accuracy of confident pixel, since only these

confident pixels are used for self-supervised training in the

second stage. confident pixels are usually non-occluded in

the first stage, because we optimize our model with pho-

tometric loss, which only holds for non-occluded pixels.

Therefore, we are concerned about the performance over

those non-occluded pixels (not for all pixels). As shown in

the first 4 rows of Tab. 3, both constraints significantly im-

prove the performance over those non-occluded pixels, and

the combination of them produces the best results, while

the EPE-occ may degrade. This is because we are con-

cerned about the performance over those non-occluded pix-

els, since only confident pixels are used for self-supervised

training. Specially, EPE-noc decreases from 1.06 pixels to

0.84 pixels on KITTI 2012 and from 2.85 pixels to 2.24 pix-

els on KITTI 2015. It is because that we achieve more accu-

rate confident flow predictions, we are able to achieve much

better results in the second self-supervision stage. We also

achieve big improvement for stereo matching performance

over non-occluded pixels as in Tab. 2.

Self-Supervision. We employ four types of self-

supervision (check comparison of row 5, 6, 7, 8 in Tab. 3).

For row 5 and row 6 (v1 and v2), we show that it

does not make much difference to distinguish occluded

or non-occluded pixels denoted by forward-backward con-

sistency check. Because forward-backward consistency

predicts confident or non-confident flow predictions, but

not occluded or non-occluded pixels. Therefore, the self-

supervision will be employed to both occluded and non-

occluded pixels whenever forward-backward check is em-

ployed. Comparing row 6 and row 7 (v2 and v3), we show

that after adding additional challenging conditions, flow es-

timation performance is improved greatly. Currently, we

are not able to successfully apply geometric constraints in

the self-supervision stage. As shown in row 7 and row 8 (v2
and v3), geometric constraints will slightly degrade the per-

formance. This is mainly because there is a correspondence

ambiguity within occluded pixels, and it is challenging for

our geometric consistency to hold for all occluded pixels.

6. Conclusion
We have presented a method to jointly learning optical

flow and stereo matching with one single model. We show

that geometric constraints improve the quality of those con-

fident predictions, which further help in the self-supervision

stage to achieve much better performance. Besides, after

digging into the self-supervised learning approaches, we

show that creating challenging conditions is the key to im-

prove the performance. Our approach has achieved the best

unsupervised optical flow performance on KITTI 2012 and

KITTI 2015, and our unsupervised performance is com-

parable with state-of-the-art supervised learning methods.

More notably, our unified model also achieves state-of-the-

art unsupervised stereo matching performance, demonstrat-

ing the generalization capability of our model.

7. Acknowledgment.
This work was partially supported by the Research

Grants Council of the Hong Kong Special Administra-

tive Region, China (RGC C5026-18GF and No. CUHK

14210717 of the General Research Fund).

6654

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 30,2020 at 15:14:57 UTC from IEEE Xplore.  Restrictions apply. 



References
[1] Christian Bailer, Kiran Varanasi, and Didier Stricker. Cnn-

based patch matching for optical flow with thresholded hinge

embedding loss. In CVPR, 2017.

[2] Thomas Brox and Jitendra Malik. Large displacement opti-

cal flow: descriptor matching in variational motion estima-

tion. TPAMI, 2011.

[3] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo

matching network. In CVPR, 2018.

[4] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip

Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van

Der Smagt, Daniel Cremers, and Thomas Brox. Flownet:

Learning optical flow with convolutional networks. In ICCV,

2015.

[5] Ravi Garg, BG Vijay Kumar, Gustavo Carneiro, and Ian

Reid. Unsupervised cnn for single view depth estimation:

Geometry to the rescue. In ECCV, 2016.

[6] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In CVPR, 2012.

[7] Andreas Geiger, Martin Roser, and Raquel Urtasun. Efficient

large-scale stereo matching. In ACCV, 2010.

[8] Clement Godard, Oisin Mac Aodha, and Gabriel J. Bros-

tow. Unsupervised monocular depth estimation with left-

right consistency. In CVPR, 2017.

[9] Xiaoyang Guo, Hongsheng Li, Shuai Yi, Jimmy Ren, and

Xiaogang Wang. Learning monocular depth by distilling

cross-domain stereo networks. In ECCV, 2018.

[10] Sang Hyun Han, Yan Sheng, and Hong Jeong. Geometric

relationship between stereo disparity and optical flow and an

efficient recursive algorithm. Journal of Pattern Recognition
Research.

[11] Heiko Hirschmuller. Stereo processing by semiglobal match-

ing and mutual information. TPAMI, 2008.

[12] Heiko Hirschmuller and Daniel Scharstein. Evaluation of

cost functions for stereo matching. In CVPR, 2007.

[13] Berthold KP Horn and Brian G Schunck. Determining opti-

cal flow. Artificial Intelligence, 1981.

[14] Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. Lite-

flownet: A lightweight convolutional neural network for op-

tical flow estimation. In CVPR, 2018.

[15] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,

Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolu-

tion of optical flow estimation with deep networks. In CVPR,

2017.
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