
272 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 2, FEBRUARY 2000

[3] C. J. Alpert, J.-H. Huang, and A. B. Kahng, “Multilevel circuit
partitioning,” in Proc. ACM/IEEE Design Automation Conf., 1997, pp.
530–533.

[4] C. J. Alpert and A. B. Kahng, “Recent directions in netlist parti-
tioning—A survey,”Integration, vol. 19, pp. 1–81, 1995.

[5] A. E. Caldwell, A. B. Kahng, and I. L. Markov. GSRC bookshelf
for VLSI CAD algorithms. [Online]. Available: HTTP: http://vl-
sicad.cs.ucla.edu/GSRC/bookshelf.

[6] , “Partitioning with terminals—A ~‘new’ problem and new bench-
marks,” presented at the ISPD-99.

[7] J. A. Davis, V. K. De, and J. D. Meindl, “A stochastic wire-length dis-
tribution for gigascale integration (GSI)—Part I: Derivation and valida-
tion,” IEEE Trans. Electron Devices, vol. 45, pp. 580–589, Mar. 1998.

[8] A. E. Dunlop and B. W. Kernighan, “A procedure for placement of stan-
dard cell VLSI circuits,”IEEE Trans. Computer-Aided Design, vol. 4,
pp. 92–98, Jan. 1985.

[9] S. Dutt and W. Deng, “VLSI circuit partitioning by cluster-removal
using iterative improvement techniques,” inProc. IEEE Int. Conf.
Computer-Aided Design, 1996, pp. 194–200.

[10] C. M. Fiduccia and R. M. Mattheyses, “A linear time heuristic for im-
proving network partitions,” inProc. ACM/IEEE Design Automation
Conf., 1982, pp. 175–181.

[11] D. J. Huang and A. B. Kahng, “Partitioning-based standard cell global
placement with an exact objective,” inProc. ACM/IEEE Int. Symp. Phys-
ical Design, 1997, pp. 18–25.

[12] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hyper-
graph partitioning—Applications in VLSI design,” inProc. ACM/IEEE
Design Automation Conf., 1997, pp. 526–529.

[13] B. Landman and R. Russo, “On a pin versus block relationship for
partitioning of logic graphs,”IEEE Trans. Comput., vol. C-20, pp.
1469–1479, Dec. 1971.

[14] P. R. Suaris and G. Kedem, “Quadrisection—A new approach to stan-
dard cell layout,” inProc. IEEE/ACM Int. Conf. Computer-Aided De-
sign, 1987, pp. 474–477.

[15] D. Sylvester and K. Keutzer, “Getting to the bottom of deep-submicron,”
presented at the IEEE Int. Conf. Computer-Aided Design, Nov. 1998.

Slicing Floorplans with Range Constraint

F. Y. Young, D. F. Wong, and Hannah H. Yang

Abstract—In floorplanning, it is important to allow users to specify
placement constraints. Floorplanning with preplaced constraint is con-
sidered recently in Murata et al. (1997) and Young and Wong (1998).
In this paper, we address a more general kind of placement constraint
called range constraint in which a module must be placed within a given
rectangular region in the floorplan. This is a more general formulation
of the placement constraint problem and any preplaced constraint can
be written as a range constraint. We extend the Wong-Liu algorithm
(1986) to handle range constraint. Our main contribution is a novel
shape curve computation which takes range constraint into consideration.
Experimental results show that the extended floorplanner performs very
well and, in particular, it out-performs the floorplanner in [13] when
specialized to handle preplaced modules.

Index Terms—Floorplanning, placement constraint, physical design,
simulated annealing, slicing floorplan.

Manuscript received June 1, 1999; revised September 29, 1999. This work
was supported in part by a grant from the Intel Corporation. This paper was
recommended by Associate Editor D. Hill.

F. Y. Young is with the Department of Computer Science and Engineering,
The Chinese University of Hong Kong, New Territories, Hong Kong.

D. F. Wong is with the Department of Computer Sciences, The University of
Texas at Austin, Austin, TX 78712-1188 USA.

H. H. Yang is wit the Intel Corporation, Hillsboro, OR 97124-5961 USA.
Publisher Item Identifier S 0278-0070(00)01800-5.

I. INTRODUCTION

Floorplan design is an important step in physical design of very
large scale integration circuits. It is the problem of placing a set of
circuit modules on a chip to minimize the total area and interconnect
cost. In this early stage of physical design, most of the modules are
not yet designed and, thus, are flexible in shape (soft modules), while
some are reused modules and their shapes are fixed (hard modules).
There are two kinds of floorplans: slicing and nonslicing. Many ex-
isting floorplanners are based on slicing floorplans [1], [2], [7], [10],
[11]. There are several advantages of using slicing floorplans. Firstly,
focusing only on slicing floorplans significantly reduces the search
space which in turn leads to a faster runtime, especially when the sim-
ulated annealing method is used. Secondly, the shape flexibility of the
soft modules can be fully exploited to give a tight packing based on
an efficient shape curve computational technique [8], [9]. It has been
shown mathematically that a tight packing is achievable [12] for slicing
floorplans.

There are some interesting results in the direction of nonslicing
floorplans recently. Two methods, sequence-pair [4] and bound-slice-
line-grid (BSG) [6], have been proposed for placement of hard
modules. The sequence-pair method has later been extended to handle
preplaced modules [3] and soft modules [5]. In order to handle soft
modules, it has to solve a mathematical programming problem to
determine the exact shape of each module numerous times in the
floorplanning process, and this results in long runtime.

In floorplanning, it is important to allow users to specify place-
ment constraints. Three common types of placement constraints
are preplaced constraint, boundary constraint, and range constraint.
For preplaced constraint, we require a module to be placed exactly
at a certain position in the final packing. In fact, the problem of
floorplanning with obstacles can be solved by treating the obstacles as
preplaced modules. This problem has been considered in both slicing
and nonslicing floorplans [3], [5], [13]. For boundary constraint, we
require a module to be placed along one particular side of the final
floorplan: on the left, on the right, at the bottom, or at the top. This
is useful when users want to place some specific modules along the
boundary for input–output connections. This problem is considered
recently in a slicing floorplanner [14]. In this paper, we consider the
range constraint problem as an enhancement and extension of [13].
In this problem, we require a module to be placed within a given
rectangular region in the final packing. This is indeed a more general
formulation of the placement constraint problem and any preplaced
constraint can be written as a range constraint by specifying the
rectangular region such that it has the same size as the module itself.
This less-restrictive constraint is useful in practice, but no previous
work is reported on it before.

In this paper, we address this range constraint problem by extending
the Wong–Liu algorithm [11]. Our main contribution is a novel shape
curve computation which takes range constraint into consideration.
When our algorithm is specialized to handle preplaced modules, we
out-perform the floorplanner in [13]. Note that the floorplanner in
[13] is also based on the Wong–Liu algorithm [11]. It extends the
shape curve computation to understand preplaced constraint using
the notion of reference point and a more complicated set of moves
in the annealing process. In this paper, we use a simplier approach
which uses only the original set of simple moves in [11]. Experimental
results show that the extended floorplanner performs very well. The
rest of the paper is organized as follows. We first define the problem
formally in Section II. Section III presents our method to handle range
constraint. Experimental results are shown in Section IV.

S0278–0070/00$10.00 © 2000 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 2, FEBRUARY 2000 273

Fig. 1. An example of the preplaced constraint and range constraint.

II. PROBLEM DEFINITION

A moduleA is a rectangle of heighth(A) and widthw(A): Let
area(A) = h(A) � w(A) denotes the area ofA: The aspect ratio
of A is defined ash(A)=w(A): A floorplan for n modules consists
of an enveloping rectangle subdivided by horizontal and vertical line
segments inton nonoverlapping rectangles such that each rectangle
must be large enough to accommodate the module assigned to it. A
supermoduleis a subfloorplan which contains one or more modules.
There are two kinds of floorplans:slicing and nonslicing. A slicing
floorplan is a floorplan which can be obtained by recursively cutting
a rectangle into two parts by either a vertical line or horizontal line. A
nonslicing floorplan is a floorplan which is not restricted to be slicing.
A module can either behard or soft. The height and width of a hard
module are fixed but the module is free to rotate. The shape of a soft
module can be changed as long as the area remains a constant and the
aspect ratio is within a given range. We assume that the floorplan is in
the first quadrant with its lower-left corner at the origin and we consider
two types of placement constraints:

1) Preplaced constraint:Given a hard moduleA with fixed orien-
tation and a point(x1; y1) in the first quadrant,A must be placed with
its lower left corner at(x1; y1) in the final floorplan.

2) Range constraint:Given a hard moduleA and a rectangular re-
gionR1 = f(x; y)jx1 � x � x2; y1 � y � y2g; A must be placed
insideR1 in the final floorplan.

An example is shown in Fig. 1. In Fig. 1, moduleA has size3 � 2
and it must be placed with its lower left corner at (3, 2) (preplaced
constraint). ModuleB has size 1 × 1 and it must be placed within the
dotted line regionf(x; y)j1 � x � 4; 1 � y � 4g (range constraint).
The floorplan shown in Fig. 1 is a feasible one in which both constraints
are satisfied.

In our problem, we are given two kinds of modulesM =Mf [Mp

whereMf contains modules which do not have any constraint in place-
ment andMp contains modules which have either preplaced constraint
(P) or range constraint(R): We assume that the preplaced modules
are given as nonoverlapping and all of them lie in the first quadrant
of thex-y plane. We also assume that they do not form a nonslicing
structure. (If they are given as nonslicing, we can preprocess them by
cutting their total occupied area into a slicing structure.) Notice that
preplaced constraint is a special kind of range constraint in which the
module has no freedom of movement. (For example, in Fig. 1, the pre-
placed constraint for moduleA can be specified by a range constraint
requiring the module to be placed within the regionf(x; y)j3 � x �
6; 2 � y � 4g:) Therefore, we will focus on solving the more gen-
eral range constraint problem. Apacking is a nonoverlap placement

Fig. 2. Slicing tree representation and Polish expression representation of a
slicing floorplan.

of all the modules inM: A feasible packingis a packing in the first
quadrant such that all the placement constraints are satisfied, and the
widths and heights of all the soft modules are consistent with their as-
pect ratio constraints and area constraints. Our objective is to construct
a feasible floorplanF to minimizeA + �W whereA is the total area
of the packing,W is an estimation of the interconnect cost, and� is
a user-specified constant which controls the relative importance ofA
andW in the cost function. We require that the aspect ratio of the final
packing is between two given numbersrmin andrmax:

III. FLOORPLANNING WITH RANGE CONSTRAINT

In the Wong–Liu algorithm, a slicing floorplan is represented by an
oriented rooted binary tree, called a slicing tree (Fig. 2). Each internal
node of the tree is labeled by a� or a+operator, corresponding to a ver-
tical or a horizontal cut, respectively. Each leaf corresponds to a basic
module and is labeled by a number from one ton: No dimensional in-
formation on the position of each cut is specified in the slicing tree. If
we traverse a slicing tree in postorder, we obtain aPolish expression.
A Polish expression is said to benormalizedif there is no consecutive
�’s or+’s in the sequence. It is proved in [11] that there is a 1–1 corre-
spondence between the set of normalized Polish expressions of length
2n�1 and the set of slicing floorplans withnmodules. The Wong–Liu
algorithm can fully exploit the shape flexibility of the soft modules to
select the “best” floorplan among all the equivalent ones represented
by the same slicing structures. This is done by representing the shape
of each module by a shape curve. A shape curve is a piecewise linear
decreasing curve which represents the tradeoff between the height and
width of a module. Starting from the basic modules at the leaves of the
slicing trees, the algorithm works upwards to the root, computing the
shape curve at each internal node. At the end, the shape curve at the
root represents all possible shapes of the final floorplan, and we select
one such that the aspect ratio is within the required bounds.

Now some of the basic modules at the leaves have placement con-
straints. A key observation is that when we put together two modules
at least one of which has range constraint, the combined supermodule
will also have range constraint. The range constraint information will,
thus, be propagated upward from the leaves to the root, and we need
to keep in the shape curves both the dimensional information, i.e., the
height and width, and the placement constraint information. LetX be
a basic module or a supermodule with range constraint, we use four
variables to represent the constraint.

• right(X): The shortest distance of the right boundary ofX from
they-axis.

• left(X): The longest distance of the left boundary ofX from the
y-axis.

• top(X): The shortest distance of the upper boundary ofX from
thex-axis.

• bottom(X): The longest distance of the lower boundary ofX
from thex-axis.

274 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 2, FEBRUARY 2000

Fig. 3. An example of a module with range constraint.

An example is shown in Fig. 3. In Fig. 3, moduleX has widthw and
heighth and it is constrained to be placed inside the dotted line rec-
tanglef(x; y)jx1 � x � x2; y1 � y � y2g: Thenright(X) = x1 +
w; left(X) = x2 �w; top(X) = y1 + h andbottom(X) = y2 � h:

Similarly, we work upwards from the basic modules at the leaves to
the root. We compute shape curve at each internal node from the shape
curves of its two children, taking into account the placement constraint
information. Finally, the shape curve at the root represents the possible
shapes of the final floorplan as well as its possible positions on the
xy-plane. Consider an internal nodev in the slicing tree, let� and�
be the shape curves of its two children, we will combine� and� point
by point to obtain a shape curve forv: (Note that� and� are piecewise
linear with a finite number of corners.) For each pair of pointsp1 and
p2 wherep1 2 � andp2 2 �; we combine the module represented
by the pointp1 with the module represented by the pointp2 to obtain
a module which will be represented by a point on the resultant shape
curve. We should combine pairwise the points on� and�. However,
we found from practice that it is much more efficient if we just add
the two shape curves, i.e., combining only those pairs of points with
the samex values ifv corresponds to a+ operation, and combining
only those pairs of points with the samey values ifv corresponds to
a � operation, and there is no observable degradation in performance.
The details of combining two modules with range constraints will be
described in Section III-A.

A. Combining Modules with Range Constraints

In this section, we will show how to compute the range constraint
of a combined supermodule based on the range constraints of its two
children modules. We consider combining two modulesA andB ver-
tically to obtainAB+; i.e., putting moduleB above moduleA: The
case where we combine two modules horizontally to obtainAB� can
be considered similarly. Assuming that at least one of the two modules
has range constraint, there are three different cases.

1) OnlyA has range constraint:ModuleB has no placement con-
straint, so we can put it wherever above moduleA (Fig. 4). LetX be the
combined supermodule, i.e.,X = AB+; thenh(X) = h(A)+h(B);
w(X) = maxfw(A); w(B)g; right(X) = maxfw(X); right(A)g;
left(X) = left(A); top(X) = top(A) + h(B) andbottom(X) =
bottom(A):

2) OnlyB has range constraint:There is a condition which must
be satisfied in this case, which is,bottom(B) � h(A); because
moduleA will be placed below thex-axis otherwise (Fig. 5). If this
condition is satisfied, we can put moduleA wherever below module
B as long as they are both in the first quadrant (Fig. 6). LetX be the
combined supermodule, i.e.,X = AB+; thenh(X) = h(A)+h(B);
w(X) = maxfw(A); w(B)g; right(X) = maxfw(X); right(B)g;

Fig. 4. Only moduleA has range constraint inAB+:

Fig. 5. The necessary condition when only moduleB has range constraint in
AB+:

Fig. 6. Only moduleB has range constraint inAB+:

left(X) = left(B); top(X) = maxfh(X); top(B)g, and
bottom(X) = bottom(B) � h(A):

3) BothA and B have range constraints:There is a condition
which must be satisfied in this case, which is,bottom(B) � top(A);
becauseA andB will overlap vertically otherwise (Fig. 7). If this
condition is satisfied, we can computeX = AB+ by considering the
vertical and horizontal directions separately.

Vertical Direction—We consider two different cases:

Case1) Assume that the range ofA does not overlap with the range
of B vertically as shown in Fig. 8. We want to putA and
B as close to each other as possible, soh(X) = top(B) �

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 2, FEBRUARY 2000 275

Fig. 7. The necessary condition when bothA andB have range constraints in
AB+:

Fig. 8. The ranges ofA andB do not overlap vertically.

Fig. 9. The ranges ofA andB overlap vertically.

bottom(A): The combined supermoduleX is fixed in position
vertically. top(X) = top(B) andbottom(X) = bottom(A):

Case2) Assume that the range ofA andB overlap vertically as
shown in Fig. 9. In order to have the smallest combined area,
we will put B right aboveA; so h(X) = h(A) + h(B):
For top(X); it is constrained by eithertop(A) or top(B);
so top(X) = maxftop(B); top(A) + h(B)g: Similarly,
bottom(X) is constrained by eitherbottom(A) orbottom(B);
sobottom(X) = minfbottom(B)� h(A); bottom(A)g:

Combining the above two cases, we obtainh(X) = maxftop(B)�
bottom(A); h(A) + h(B)g; top(X) = maxftop(B); top(A) +
h(B)g andbottom(X) = minfbottom(A); bottom(B)� h(A)g:

Fig. 10. The ranges ofA andB do not overlap horizontally.

Fig. 11. The ranges ofA andB overlap horizontally.

Horizontal Direction—Again, we consider two different cases:

Case1) Assume that the range ofA does not overlap with the range
of B horizontally as shown in Fig. 10. We will putA andB as
close to each other as possible. If the range ofA is on the right,
w(X) = right(A) � left(B); right(X) = right(A), and
left(X) = left(B): Otherwise,w(X) = right(B)� left(A);
right(X) = right(B) andleft(X) = left(A): Putting them
togetherw(X) = maxfright(A) � left(B); right(B) �
left(A)g; right(X) = maxfright(A); right(B)g, and
left(X) = minfleft(A); left(B)g:

Case2) Assume that the ranges ofA and B overlap horizon-
tally as shown in Fig. 11. If the length of the overlap
in the x-direction is greater than eitherw(A) or w(B)
[Fig. 11(a)–(c)],w(X) = maxfw(A); w(B)g: Otherwise
[Fig. 11(d)], we will putA andB as close to each other as
possible, sow(x) = right(A) � left(B) if the range of
A is on the right, andw(x) = right(B) � left(A) oth-
erwise. Putting them together,w(X) = maxfright(A) �
left(B); right(B) � left(A); w(A); w(B)g: For right(X);
it is constrained by eitherright(A) or right(B); so
right(X) = maxfright(A); right(B)g: Similarly,
left(X) is constrained by eitherleft(A) or left(B); so
left(X) = minfleft(A); left(B)g:

276 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 2, FEBRUARY 2000

Fig. 12. Result packing of ami33-rc5. Module 1, 2, and 3 are constrained to be placed within the dotted rectangle.

Combining the above two cases, we havew(X) =
maxfright(A) � left(B); right(B) � left(A); w(A); w(B)g,
right(X) = maxfright(A); right(B)g; and
left(X) = minfleft(A); left(B)g:The following formulas
summarize the above discussions for the case when bothA andB
have range constraints. The formulas for the case of putting moduleB

horizontally on the right ofA can be derived similarly.

1) X = AB+
Necessary condition:bottom(B) � top(A)
Computations:

w(X) = maxfright(A)� left(B); right(B)

� left(A); w(A); w(B)g

h(X) = maxftop(B)� bottom(A); h(A) + h(B)g

top(X) = maxftop(B); top(A) + h(B)g

bottom(X) = minfbottom(A); bottom(B)� h(A)g

right(X) = maxfright(A); right(B)g

left(X) = minfleft(A); left(B)g:

2) X = AB�
Necessary condition:left(B) � right(A)
Computations:

w(X) = maxfright(B)� left(A); w(A) + w(B)g

h(X) = maxftop(A)� bottom(B); top(B)

� bottom(A); h(A); h(B)g

top(X) = maxftop(A); top(B)g

bottom(X) = minfbottom(A); bottom(B)g

right(X) = maxfright(B); right(A) + w(B)g

left(X) = minfleft(A); left(B)� w(A)g:

B. Moves, Cost Function and Annealing Schedule

We use the same set of moves (M1, M2, and M3) as in [11]. The cost
function is defined asA + �W +
D whereA is the total area of the
packing obtained from the shape curve at the root of the slicing tree.
In our current implementation,W is the half perimeter estimation of

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 2, FEBRUARY 2000 277

Fig. 13. Result packing of ami49-rc5. Module 1, 2, and 3 are constrained to be placed above the dotted horizontal line.

the interconnect cost. Clearly, this term can be replaced by any more
sophisticated interconnect cost estimation.D is a penalty term which
is zero when the packing is feasible, and is otherwise an estimation of
the total distance of the modules which have range constraints from
their desired positions. Notice that if a Polish expression does not cor-
respond to a feasible packing, we will pack the modules in the usual
way as if there is no range constraint and the penalty termD will be
the total distance of the constrained modules from the ranges they are
constrained to. This gives a good estimation of how far the modules
are from their desired positions.D will drop to zero as the annealing
process proceeds. This can be done by puttingγ very large because
D becomes the most important factor to be minimized in this case.
λ is usually set such that the area term and the interconnect term are
approximately balanced. Note that we need to accept infeasible inter-
mediate solutions in the annealing process because it may happen in
some cases that good feasible solutions can only be reached from an
initial starting point with some infeasible intermediate solutions in the
searching process.

The temperature schedule is of the formT (k) = rT (k � 1) for
all k � 1: A typical value forr is 0.9. At each temperature, enough
number of moves are attempted until there areN downhill moves or
the total number of moves exceeds2N; whereN = np; p is a user
defined constant andn is the total number of modules. The annealing
process terminates when the number of accepted moves is less than 5%
of all moves made at a certain temperature or when the temperature is
low enough.

TABLE I
RESULTS OF TESTING THE PRE-PLACED

CONSTRAINT. COLUMNS 4 AND 5 ARE OBTAINED BY OUR FLOORPLANNER.
COLUMNS 6 AND 7 ARE RESULTS FROM[13]

IV. EXPERIMENTAL RESULTS

We tested our floorplanner on a set of MCNC benchmark data. For
each experiment, the starting temperature is decided such that an ac-
ceptance ratio is 100% at the beginning. The temperature is lowered at
a constant rate and the number of iterations in one temperature step is
proportional to the number of modules. All the experiments were car-
ried out on a 300-MHz Pentium II Intel processor.

We carried out two sets of experiments. For the first set, we want to
compare with [13] in handling preplaced constraint. We use exactly the

278 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 2, FEBRUARY 2000

TABLE II
RESULTS OFTESTING THERANGE CONSTRAINT

same data in [13] and the comparisons are shown in Table I. Columns 4
and 5 are obtained by our floorplanner and columns 6 and 7 are results
from [13]. We can see that our floorplanner has improved over [13]
in both efficiency and quality when handling preplaced modules. This
can be explained by the fact that we have used a better penalty function
here. In [13], the packing process will stop once a violation is found and
the penalty is computed by estimating the overlapping area between
the free modules and the preplaced modules. Now, in case of infeasible
packing, we will still pack all the modules as if there is no placement
constraint and the penalty is computed as the total distance of the pre-
placed modules from their desired positions. This penalty term can de-
scribe the error more accurately. Besides, the formulas to combine two
shape curves with range constraint are much simplier than those in [13]
for preplaced modules and this leads to a faster runtime.

In the second set of experiments, we work on the three largest MCNC
benchmarks, ami33, ami49, and playout. We selected three modules
from each benchmark and derived 15 data by imposing different range
constraints on them. In most cases, we picked three different range con-
straints (may or may not overlap) for the selected modules, so there are

actually multiple range constraints which can reflect better the real de-
sign situations. The three selected modules are hard modules while all
the other modules have shape flexibility that their aspect ratio can range
between 0.25 and 4.0. The results are shown in Table II. Fig. 12 is the
result packing of ami33-rc5 where module 1, 2, and 3 are constrained to
be placed within the dotted line rectangle. Fig. 13 is the result packing
of ami49-rc5 where module 1, 2, and 3 are constrained to be placed
above the dotted line. We can see from Table II that the performance in
both quality and execution time are good.

We can conclude from the above experimental results that the ex-
tended slicing floorplanner can handle preplaced constraint and range
constraint very well. Although the current estimation of the intercon-
nect cost is very simple, we can always replace it with a more sophis-
ticated one given the efficiency of our algorithm.

REFERENCES

[1] K. Bazargan, S. Kim, and M. Sarrafzadeh, “Nostradamus: A floor-
planner of uncertain design,” inProc. Int. Symp. Physical Design, 1998,
pp. 18–23.

[2] D. P. Lapotin and S. W. Director, “A global floor-planning tool,” inProc.
IEEE Int. Conf. Computer-Aided Design, 1985, pp. 143–145.

[3] H. Murata, K. Fujiyoushi, and M. Kaneko, “VLSI/PCB placement with
obstacles based on sequence-pair,” inProc. Int. Symp. Physical Design,
1997, pp. 26–31.

[4] H. Murata, K. Fujiyoushi, S. Nakatake, and Y. Kajitani, “Rectangle-
packing-based module placement,” inProc. IEEE Int. Conf. Computer-
Aided Design, 1995, pp. 472–479.

[5] H. Murata and E. S. Kuh, “Sequence-pair based placement method
for hard/soft/preplaced modules,” inProc. Int. Symp. Physical Design,
1998, pp. 167–172.

[6] S. Nakatake, K. Fujiyoushi, H. Murata, and Y. Kajitani, “Module place-
ment on BSG-structure and IC layout applications,” inProc. IEEE Int.
Conf. Computer-Aided Design, 1996, pp. 484–491.

[7] R. H. J. M. Otten, “Automatic floorplan design,” inProc. 19th
ACM/IEEE Design Automation Conf., 1982, pp. 261–267.

[8] , “Efficient floorplan optimization,” inProc. IEEE Int. Conf. Com-
puter Design, 1983, pp. 499–502.

[9] L. Stockmeyer, “Optimal orientations of cells in slicing floorplan de-
signs,”Inform. Contr., vol. 59, pp. 91–101, 1983.

[10] T. Tamanouchi, K. Tamakashi, and T. Kambe, “Hybrid floorplanning
based on partial clustering and module restructuring,” inProc. IEEE Int.
Conf. Computer-Aided Design, 1996, pp. 478–483.

[11] D. F. Wong and C. L. Liu, “A new algorithm for floorplan design,” in
Proc. 23rd ACM/IEEE Design Automation Conf., 1986, pp. 101–107.

[12] F. Y. Young and D. F. Wong, “How good are slicing floorplans,”Inte-
gration VLSI J., vol. 23, pp. 61–73, 1997; also appeared in ISPD-97.

[13] , “Slicing floorplans with preplaced modules,” inProc. IEEE Int.
Conf. Computer-Aided Design, 1998, pp. 252–258.

[14] F. Y. Young, D. F. Wong, and H. H. Yang, “Slicing floorplans with
boundary constraints,”IEEE Trans. Computer-Aided Design, vol. 18,
pp. 1385–1389, Sept. 1999.

