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Abstract

Given a set of modules with flexibility in shape, we show that there exists a slicing
floorplan F’ such that area(F') < min{(1 + ﬁ), %, (14 «)} Atorar where Aypqp is the

total area of all the modules, A,,,, is the maximum module area, o = ,/% and
ota

r > 2 is the shape flexibility of each module. Our result shows that slicing floorplans
can provably pack modules tightly when the modules have flexibility in shape.
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1 Introduction

Floorplan design plays an important role in the design of VLSI circuits in today’s deep
submicron technology. A slicing floorplan is a floorplan which can be obtained by recursively
dividing a rectangle into two parts with either a vertical line or a horizontal line. Since slicing
floorplans have very simple solution representations (e.g. slicing tree [4], Polish expression
[6] etc.), it is easier to design efficient strategies to search for optimal slicing floorplans. As
a result, slicing floorplans are used in many existing floorplanning systems [4, 3, 6, 5]. The
only possible disadvantage of slicing floorplans is that even the optimal one may not pack the
modules tightly and hence results in large chip area. Although, there are empirical evidences
showing that slicing floorplans are quite good in packing modules tightly, it is important to
have assurance of their performance by mathematical analysis.

Let R be a rectangle. We use height(R), width(R) and area(R) to denote the height, the
width and the area of R respectively. The aspect ratio of R is the ratio height(R)/width(R).
A soft rectangle is one which can have different shapes as long as the area remains the same.
The shape flexibility of a soft rectangle specifies the range of its aspect ratio. A soft rectangle
of area A is said to have a shape flexibility r if and only if R can be represented by any
rectangle of area A as long as:

1 height(R)

-< ——= <K 1

r — width(R) — " (1)
In our floorplan design problem, we are given n soft rectangles of area A; for: =1,2,...,n

and a shape flexibility r, we want to obtain an upper bound on the area of the optimal
slicing floorplan. This is done by constructing a slicing floorplan F' of these rectangles
such that every rectangle satisfies the aspect ratio constraint in (1) and the area of F'is as
small as possible. We use Ay to denote 377 A; and use A4, to denote maxi<i<,{A;}.
Our objective is to minimize the dead space in F, A(F), which is defined as A(F) =
area(F') — Atoral

In this paper, we show an upper bound for the area of the optimal slicing floorplan. We
prove that if the rectangles have a shape flexibility of r > 2, there exists a slicing floorplan #
of these rectangles such that area(F') < min{(1+ ﬁ), %, (14 )} Avotar where o = ,/iiﬁ,
and the shape of the constructed floorplan resembles a square closely. The first term favors
large r, e.g. when r =9, (1 4 ﬁ) = 2. The second term gives a better bound than the
first one when r is small. The third term takes into account the relative sizes of the areas
and it gives a good bound when all the areas are small comparing with the total area, e.g.
when r =2 and A4 = %, the percentage of dead space in the optimal slicing floorplan
is at most 9%.

We will prove the main result in section 2 and section 3 gives some concluding remarks.
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Figure 1: Upper bound on the area of optimal slicing floorplan v.s. relative mazimum area.
Assume r = 2.

2 Main Result

Our goal is to understand how good slicing floorplans are in packing soft modules. We have
the following theorem:

Theorem 1 Given a set of soft rectangles of total area Ay, mazimum area A, and
shape flexibility r > 2, there exists a slicing floorplan F' of these rectangles such that

1

_ 5
area(F') < min{(1 + m)a T (

where o = /28mae - Moreover, we have
rAtotal

L+ o)} Avota (2)

1+ =) area(F) < (1 + =) Avorals
height(F) (5 L\/FJ) () < E) L\/FJ) total
= width(F) ~ 4 area(F) < 5 Atotal,
o v area(F) < (1 + O‘)Atotal-

Figure 1 shows the relationships in (2). We assume that r = 2, so the first term does
not have any effect. The second term dominates until % > 16. Then the upper bound on

the area of the optimal slicing floorplan drops with increasing 4ttt until reaching the lower

Amaa:

bound A;y;, when all the areas are infinitely small comparing with Az



Theorem 1 follows directly from Lemma 1, Lemma 2 and Lemma 3. Notice that Lemma
1 applies only when the shape flexibility r is at least four, but when 2 < r < 4, the term
(14 ﬁ) > % > %. Therefore Theorem 1 still holds. We will prove Lemmas 1-3 in the
following subsections.

2.1 A General Upper Bound

In the following, we want to show that if the shape flexibility of the soft rectangles is at least

four, there exists a slicing floorplan F' in which dead space is at most ﬁ of Aspta;. The

. . height(F) 1
shape of F' resembles a square as r increases in such a way that 1 < width(F) < (1+ m)

For example, when r = 9, F' has at most iAtoml dead space and 1 < }j;g;f((p < %

The analysis is done by constructing a simple slicing floorplan of those given soft rectan-
gles. The areas are classified into groups such that area A is in group ¢ when r% <A< r%l

fori=1,2,3,... An area A from group i will be represented by a rectangle I of width 1/7“11_71

and height rT A, We pack the rectangles one at a time from the largest to the smallest.
When we pack a rectangle, it is always put on the lowest possible level and is pushed to the
leftmost position on that level. Since the widths of the rectangles decrease by Lrj from one
group to another, there must be enough horizontal space when packing a rectangle. No dead
space occur in the final floorplan, except those along the upper boundary. An example is
shown in Figure 2 in which we assume that » = 9, so the widths of the rectangles decrease by
% from one group to another, and the packing is perfect except along the upper boundary.
This result gives a relationship between the size of the dead space and the shape flexibility
r. It is obvious that the amount of dead space will decrease with the flexibility and it becomes

infinitely small when the rectangles have very large flexibility.

Lemma 1 Given a set of soft rectangles of total area Aipq; and shape flexibility r > 4,
there exists a slicing floorplan F' of these rectangles such that

1
area(F') < (14 W)Atotal
and
height(F') 1
= wiamm) = AT

Proof In the following, we assume that the given shape flexibility r is a perfect square.
If this is not the case, we will take r as the largest perfect square smaller than the given
shape flexibility. W.l.o.g. we assume that A;,;,; = 1. The areas are classified into groups
according to their sizes such that area A is in group ¢ if and only if ri, <AL r%l for
1 = 1,2,3,... We will construct a slicing floorplan F' by packing the areas one at a time



from the largest to the smallest. F' has a width one. ( Note that the areas are scaled to
have A = 1. ) An area A from group 7 will be represented by a rectangle R of width
1/7“% and height r'5" A. Notice that }jzjtf;f((g)) =r"1A, so 1< % < 1 and the aspect
ratio constraint is not violated. During packing, a rectangle is always put on the lowest
possible level and is pushed to the leftmost position on that level. Since the widths of the

rectangles decrease by % from one group to another, there must be enough horizontal space
when packing a rectangle on the lowest possible level. The packing is perfect except some
dead space occurs along the irregular upper boundary. Consider the highest rectangle R’
in F', its lower boundary must be at a level below one, because A;yq; > 1 otherwise. Thus
the maximum height of the rectangles gives an upper bound on the size of the dead space.
Table 1 tabulates the areas, the heights and the widths of different groups. Since group 1 will
not create any dead space, the dead space size is upper bounded by %7’] It is not difficult
to see that the final packing gives a slicing floorplan. An example is shown in Figure 2.

Area A Width w Height A

1 F<A< w = F<h<1
2 L <A< w= = L <h< L
re - r r /T r

T T — 1 T 1

s SA<S w=; 2 <h<s
24 %§A<,,2@%1 w = 2i1—1 2i1+1 §h<%
- T T “ 7 21
22"‘1 2t 1 §A<ﬁ er—l il §h<7’_l

Table 1: Classification of Areas in Lemma 1

2.2 A Better Bound for Small Shape Flexibility

The result of Lemma 1 gives a good upper bound when the shape flexibility r is large.
For small r, we can obtain a better bound by modifying the packing strategy and post-
processing the constructed floorplan. The areas are also classified into groups and areas
in different groups are represented by rectangles of different widths. Again we pack the
rectangles one at a time from the largest to the smallest, and we always put a rectangle on
the lowest possible level and push it to the leftmost position on that level. One big difference
from the proof of Lemma 1 is that the widths of the rectangles now decrease by half from
one group to another. In Lemma 1, the widths of the rectangles are dependent on r, but

a



Assumer = 9. The numbers on the blocks
show the groups to which the blocks belong.
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Figure 2: A simple example on the slicing floorplans constructed by Lemma 1

this is not the case here. Another difference is that after packing all the rectangles, we need
to do some post-processing steps to rearrange some rectangles in order to obtain the desired
bound. Again no dead space occurs in the interior, except those along the upper boundary.
An example is shown in Figure 3.

In the following, we assume that the shape flexibility r is at least two, and we can
construct a slicing floorplan in which dead space is at most i of the total area A:yrq;.

Lemma 2 Given a set of soft rectangles of total area Aipq; and shape flexibility r > 2,
there exists a slicing floorplan F' of these rectangles such that

5
area(F) < ZAtoml

and

height(F) 5
<L IR 2
~ width(F) — 4

Proof W.lo.g. we assume that A, = 1. Again we classify the areas into groups and
an area A is in group ¢ if and only if 22%1 <A< 22,%3 for e =1,2,3,... The widths of the
rectangles are halved from one group to another. Table 2 tabulates the areas, the widths
and the heights of different groups. Here we cannot obtain an upper bound of i directly



The widths are halved from one group to another.

1

Figure 3: A simple example on the slicing floorplans constructed by Lemma 2

from the height. Consider the highest rectangle R in the constructed floorplan F'. Let the
height of R be h and the width be w. Suppose (1 — a)wh of R, where a < 1, is above the
unit level. It is easy to see from Figure 4 that:

(1 — a)wh

(a4

a(l —w)h (3)
w (4)

(AVARVAN

Therefore we can use (1 — w)h to upper bound the size of the dead space. However
(1 — w)h may exceed 1 in group 2 ( when + < A < 1) and in group 3 (when £ < A< 1 ).
we will post-process the packing in F' to obtain the desired bound. Lets consider all the
cases in which the highest rectangle R have height h and width w such that A(1 — w) > i:

Case 1 The highest rectangle comes from group 2. There are only two possibilities in which

the highest rectangle has an area between X

1 . :
5 and 5 exclusively:

Subcase (i) There are one rectangle of area % < A; <1 and one rectangle of area
i < Ay < %:
Let Ay = %—I—l‘ where 0 < z < i. (z< i since A; + Ay > %—I—l‘ ) Consider three
separate cases:

A, < g—%. Then height(Ay)+height(As) < (%—I—x)—l—(%—%)/% = %—I—:z:—l—%—:z; = %.

The bound is not exceeded.



Ay > % — 7 and /2A4; > %. ( That means Ay can be a rectangle of width %. )
Then 1 — A; — A, < 1—(%—|—:1;)—(§—Z) = L1_ 2 <1 Therefore all the

8 2 8 2 8
remaining rectangles have width w < i. We can pack A, as a rectangle of width

% ( Figure 5 ). Then height(A1) + height(Az) < (% + )+ (% — :1;)/% < g. The
bound is not exceeded.

Ay > % — 5 and 24, < %. ( That means the longest side of Ay cannot be %. )
Then A, < %. SinceA2>%—§,:L'> %. 1—A1—A2<1—(%—|—:1;)—(%—§):
1 T

s — 35 < % Therefore all the remaining rectangles have width w < é. We can

pack A as a rectangle of width 2 ( Figure 6 ). ( Notice that \/g < 2<V24;.)
Then height( A1) + height(As) < (% +a)+ %/% = % + < %. The bound is not
exceeded.

Subcase (ii) There are three rectangles of area ; < A < L:
Let A; = i—l—x, Ay = i—l—yand As = i—l—zwherex—l—y—l—zg

r <y < z. Consider two separate cases:

1
1

v +y < +. Then height(Ay) + height(Ay) < (3 +2)/2 + (3 +y)/3 < 2. So the

bound is not exceeded.

T4y > é. Since ¢ +y > é, z < é. That means all z, y and z are less than é.
Besides @ 4+ y > é, thus y > 11—6 and so as z. Consider x +y + z > é—l—z > %.
Therefore 1 —A; —As— A3 = 1—(i—|—:1;)—(i—|—y)—(i—l—z) < %, which means the total
area of the remaining rectangles is less than %. We shuffle the positions of A; ( the

smallest one ) and As ( the largest one ), and pack Az as a rectangle of width 3
as in Figure 7. ( Notice that 11—6 <z < é, SO 15—6 <A< % and \/% < % < V2A5.)
Then height(Az)+ height(As) = (i —I—y)/% + (i —I-Z)/% = %—I—Zy—l— % + 432 < %. The
bound is not exceeded. For the remaining rectangles, we can pack them in the
empty space sitting beside Az, which has width i and height at least % ( because
the height of Az is (i + Z)/% = % + 432 > % + % = % ). Since the total area of
the remaining rectangles is less than %, we only need a space of i X (i X %) by
arguing inductively on the number of rectangles, where the base case is the trivial

condition that there is only one rectangle.

Case 2 The highest rectangle comes from group 3:
Let % <A< é be the area of the highest rectangle.

Subcase (i) Besides A;, a width of at least 1 is above the unit level in the final

packing ( Figure 8(a) ). Let (1 — «) of A is above the unit level where o < 1.
Then (1—a)h><§§ c“Th,soozz %,and (1 —a)h < % x%: i. The bound is not
exceeded.



Subcase (ii) Besides Ay, a width of less than 1 is above the unit level in the final

packing ( Figure 8(b) ). Consider two separate cases:
Except Ay, no % < Ay < é in the region above the unit level ( shaded in
Figure 9(a) ). Since /2A; < %, we can pack A; as a rectangle of width /24,

( Figure 9 ). Besides /4L < 1. so the bound is not exceeded.

4

Another -5 < A; < £ in the region above the unit level ( shaded in Figure 10(a) ).

Let the height of A3 be A’ and (1 — «) of Ay is above the unit level where a < 1.

Then(l—a)h’xixZﬁ%,soaz%and(l—a)h’géx%:i. Thus the

height of Ay does not exceed the bound. Similarly, we can pack A; as a rectangle
of width /24, < § ( Figure 10 ). Since % < %, the bound is not exceeded by

A, neither.
Area A Width w | Height A | B =h(1 —w)
1 T<A<] w=1 | ;<h<1 0
1 1 _ 1 1 1 1
5 m§A<m w = 15 §§h<§ m§B<m

Table 2: Classification of Areas in Lemma 2

2.3 Another Bound Considering the Relative Sizes of the Areas

In the above analyses, we did not take into account the relative sizes of the rectangles. It
should be reasonable to predict a better packing if all the rectangles are small comparing
with Ayoe;. We will consider this factor in the following.

The floorplan is divided into columns of equal width W initially where the value W
depends on A,,,,. We classify the areas into groups such that area A is in group ¢ when

% <A< % fore=1,2,3,... An area A from group ¢ is represented as a rectangle R
of width Wl_l and height zl;le. Note that the widths of the rectangles decrease by half from

one group to another. Then we pack the areas one at a time from the largest to the smallest,
using the same strategy, i.e. pack the rectangle on the lowest possible level ( among all the
columns ) and push it to the rightmost position “within that column”. An example is shown

9
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Figure 4: An example showing the relationship in equation (3)

The remaining
rectangles
are put here
Az | A, |
| Put A 5, down |
\_> 1 ¥4
Aq A1
1 1
@ (b)

Figure 5: A post-processing step in case 1(i) of Lemma 2
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The remaining

rectangles
are put here
Az | A, |
| Put A 5, down |
=
Aq A1
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Figure 6: A post-processing step in case 1(i) of Lemma 2

The remaining
rectangles
are put here
A | % |
1 ; ShuffleA | As ;
: with A 3 and 3 :
put A 5 down 4 1
—> 1 |
A
A 2 3 A 2 A 1
1 1
@ (b)

Figure 7: A post-processing step in case 1(ii) of Lemma 2
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Thehighest A width of at least 1/2 Thehighest A width of lessthan 1/2

rectangle above the unit level rectangle above the unit level
T _ T l
E A, 212 I Ay <V2
1 1
1 1
@ (b)

Figure 8: An example showing the situation in case 2(i) and case 2(ii) of Lemma 2

The highest
receta}\%jle ~N2A
=
[ —— Sl ] o
T A1 <1/, 2 <1/
14—
Put A1 down
R E— T
1 1
@ (b)

Figure 9: A post-processing step in case 2(ii) of Lemma 2
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Figure 10: A post-processing step in case 2(ii) of Lemma 2

V Atotal

in Figure 11 in which we assume that [ ¥5tetel | = 3, so there are totally three columns. Again
no dead space occurs in the interior, except those along the upper boundary.

We can show that the dead space in the resulting floorplan is at most ,/% of Asotal.

For example, when r = 2, A,.. = %, the percentage of dead space is at most 9%.
Therefore, the smaller the maximum area comparing with the total, the better can be the
packing. This result gives a good bound when all the areas are small in comparison with the

total area.

Lemma 3 Given a set of soft rectangles of total area Ajpia, mazimum area A,,.. and shape
flexibility r > 2, there exists a slicing floorplan F' of these rectangles such that

area(l") < (14 a)Asorar

2Ama.r

. Moreover, we have
rAtotal

where o =

- he.zght(F) - 14+«
~ width(F) — (1 —22)2

2

Proof  We construct a slicing floorplan F' by dividing it into columns of fixed width W
and packing the rectangles into these columns simultaneously. The areas are again classified
into groups. The areas, the widths and the heights of different groups are shown in Table 3.
We use a similar packing technique as before. Given a rectangle, we always put it on the
lowest possible level ( among all the columns ) and push it to the leftmost position on that
level “within the same column” ( Figure 11 ).

13



If we set W = \/%, the height is at most \/QA% in every group. Therefore we can

upper bound the size of the dead space by h X, where X = L—WJ x W is the width of the
floorplan F':

V Atotal
w

S 2Amal’ \/ Atotal

7

[2A
_ maxA .
rAtotal totat

— aAtotal

A(F) < hl | x W

where o = ,/%. Consider the aspect ratio of the final floorplan, it must be at least one
since the width of F'is at most v/ Aspa. Also,

. 1+aAtota
height(F') < \/KTTM%WZ
wldth(F) - \ Atotal - W
B 1+«
= ——w
(1 \/Atotal)
B 1+«
-3y
Area A Width w | Height A
1 [ W <A<A,,, | w=W [ h<Ane
2 | WA | =W | p <2
W2 W2 —_ W W

Table 3: Classification of Areas in Lemma 3

14



Atotal
Assume Liw J = 3. The number on each
block shows the group to which the block belongs.
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Figure 11: An example on the slicing floorplans constructed by Lemma 3

3 Concluding Remarks

Experimental results show that slicing floorplans can actually do better than what we have
proved mathematically. We applied the system in [6] to 25 test problems, each with 100
soft rectangles of shape flexibility two. On the average, 2.2% of dead space was obtained.
We have also applied the system to the same 25 test problems using a cost function which
takes into consideration both the area and the wiring. On the average, we obtained 4.9%
dead space, which is higher than before but still quite reasonable. These show that slicing
floorplans are good. We hope to be able to incorporate wiring into our analyses in the future.

Finally, note that our problem is quite different from 2-D bin packing [2, 1]. In 2-D bin
packing, one considers packing hard rectangles ( no flexibility in shape ) into a long strip of
a constant width and the aim is to minimize the total height. Since the width of the strip
is fixed and is independent of the areas of the rectangles, so the resulted packing is usually
a long narrow piece with very large aspect ratio. However, we want the resulting shape to
be close to a square in floorplan design and the width is thus dependent on the total area of
the rectangles. Another difference is that 2-D bin packing considers packing hard rectangles,
so their analyses do not take into account the shape flexibility which is, on the contrary, an
important issue in our case.
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