On extending slicing floorplans
to handle L/T-shaped modules and abutment constraints

F.Y. Young', Hannah H. Yang? and D.F. Wong?

! Department of Computer Science and Engineering
The Chinese University of Hong Kong
fyyoung@cse.cuhk.hk

2Intel Corporation
Hillsboro, OR 97124-5961
hyang@ichips.intel.com

*Department of Computer Sciences
The University of Texas at Austin
wong@cs.utexas.edu

ABSTRACT

In floorplanning, it is common that a designer wants to have
certain modules abutting with one another in the final pack-
ing. Unfortunately, few floorplanning algorithm can han-
dle abutment constraints although this feature is useful in
practice. The problem of controlling the relative positions
of an arbitrary number of modules is non-trivial. Slicing
floorplans have an advantageous feature that the topologi-
cal structure of the packing can be found without knowing
the module dimensions. This feature is good for handling
placement constraints in general. In this paper, we make
use of 1t to solve the abutment problem in the presence of
L-shaped and T-shaped modules. This is done by a proce-
dure which explores the topological structure of the packing
and find the neighborhood relationship between every pair
of modules in linear time. This enables us to check and fix
the abutment constraints and to handle the L-shaped and
T-shaped modules. There are many previous works on recti-
linear block packing but none of them can handle rectilinear
blocks with soft modules efficiently. Our main contribution
is a method which can handle abutment constraints in the
presence of L-shaped or T-shaped modules in such a way
that the shape flexibility of the soft modules can still be
fully exploited to obtain a tight packing. We tested our
floorplanner with some benchmark data and the results are
promising. We can pack 62 modules, 10% of which are L-
shaped or T-shaped, with twelve abutment constraints in
about 15 minutes giving less than 6% deadspace using a 143
MHz UltraSPARC workstation.

1. INTRODUCTION

Floorplanning is an important step in physical design of
VLSI circuits. It is the problem of placing a set of cir-
cuit modules on a chip to optimize the circuit performance.
It is not just a simple packing problem. Besides optimiz-
ing the packing area and interconnect cost, there are some
constraints that the designers may want to impose on the
final packing for different reasons. For example, a designer

may want to have the logic modules in a pipeline of a cir-
cuit to abut one after another to favor the transmission of
data between them. This abutment problem is very com-
mon in practice but few floorplanning algorithm can handle
these constraints. The problem of controlling the relative
positions of an arbitrary number of modules is non-trivial.
In most stochastic floorplanning algorithms, the abutment
information is not known until the exact dimensions of the
modules are taken into account and there is no systematic
method to fix the violated constraints.

In the floorplanning stage, most of the modules are not yet
designed and thus are flexible in shape (soft modules), while
some of them are re-used and their shapes are fixed (hard
modules). A good floorplanning algorithm should be able
to handle both soft and hard modules effectively. There are
two kinds of floorplans: slicing and non-slicing. A slicing
floorplan is a floorplan which can be obtained by recursively
cutting a rectangle into two parts by either a vertical line
or a horizontal line. A non-slicing floorplan is one not re-
stricted to be slicing. There are several advantages of using
slicing floorplans although non- slicing floorplans are more
general. Firstly, focusing only on slicing floorplans signif-
icantly reduces the search space which in turn leads to a
faster runtime. Secondly, the shape flexibility of the soft
modules can be fully exploited to give a tight packing based
on an efficient shape curve computational technique [3; 4].
It has been shown mathematically that a tight packing is
achievable [7] for slicing floorplans.

Slicing floorplans have another advantageous feature that we
can find out the topological structure of the packing with-
out knowing the module dimensions. This feature is good
for handling placement constraints in general We can check
and fix the constraints given those topological information.
In the case of abutment constraints, we devised a procedure
called Neighbor which can find out the neighborhood rela-
tionship between all pairs of modules in linear time and the
results of which enable us to check whether two modules
abut as required and to fix a violated constraint by shuf-

C
A A ¢
D
E E
B = G D = G

@ (b)

Both C and D areright A and B now abut
neighbors of A. horizontally.

Figure 1: Shuffling modules to obtain a feasible packing.

fling the modules. An example is shown in Figure 1. In
this example, module A is constrained to abut with mod-
ule B horizontally. Figure 1(a) is the original packing in
which the constraint is violated. By examining the topolog-
ical structure of the packing, we find the neighbors of A, i.e.
C and D in this example. Shuffling B with a right neighbor
of A gives us a similar packing with the constraint satisfied
(Figure 1(b)). This approach is actually an extension and
generalization of the method used in [8] to handle bound-
ary constraints. This work is however more general as we
are finding out the neighborhood relationship between every
pair of modules, not just between the modules and the chip
boundary.

We have also made used of this feature to handle rectilinear
blocks in slicing floorplans. Because of the recent advance
in semiconductor manufacturing technology, new packag-
ing schemes such as Multi-Chip Modules (MCMs) and in-
tegrated circuit components often have their shapes more
complex than a simple rectangle. A lot of works have been
reported on placement of rectilinear blocks but none of them
can handle rectilinear blocks with soft modules efficiently.
[2] proposes the bounded 2D contour searching algorithm to
handle arbitrarily shaped rectilinear and soft modules but
their method focuses mainly on area minimization [6] ex-
tends the idea of slicing floorplan to handle L-shaped mod-
ules, but only hard modules and L-shaped modules can be
handled. Only [1] can handle soft modules with a greedy
heuristic method but it takes about 3.54 hours to pack a set
of 50 modules on a Sun SPARC 20 Workstation.

Slicing floorplans are well known to be effective in handling
soft modules. It is not obvious how it can handle L-shaped
or T-shaped modules because of the nature of slicing floor-
plans that the regions inside must be rectangular in shape.
A common practise is to partition the L-shaped or T-shaped
modules into rectangular sub-modules. These sub-modules
are packed independently initially. A post-processing step
will later move them back together to form the original
shapes. This method is unnatural as we will repeatedly
move the sub-modules to different places and move them
back together in every iteration. The post-processing step
is complicated and time-consuming. In our work, we treat
the L-shaped or T-shaped modules as single modules but
they will be expanded to their original shapes when being
packed. An example is shown in Figure 2. In this exam-
ple, module D is Li-shaped. The initial packing is shown in
Figure 2(a). We will expand D to its original shape before
computing the total area and interconnect cost. The pack-
ing after expansion is shown in Figure 2(b). The expansions
are dependent on the relative positions of the L-shaped or

H |clc H [cle
A = Expand D A

D
EID B E| | B

@ (b)

Figure 2: An Ezample of module expansion. D is L-shaped.

T-shaped modules in the original packing. Again, we ex-
plore the topological structure of the packing and expand
the modules accordingly. After calculating the total area
and interconnect cost, they are treated as single modules
again before the floorplan is transformed in the next itera-
tion of the stochastic process.

Our main contribution is a method which can handle abut-
ment constraints in the presence of L-shaped or T-shaped
modules in such a way that the shape flexibility of the soft
modules can still be fully exploited to obtain a tight pack-
ing. We tested our floorplanner using some benchmark data.
The experiments give very promising results. We can pack
62 modules, 10% of which are L-shaped or T-shaped mod-
ules, with twelve abutment constraints in about 15 minutes
giving less than 6% deadspace using a 143 MHz UltraSPARC
workstation. The rest of the paper is organized as follows.
We first define the problem formally in Section 2. Section
3 presents our method to handle abutment constraints with
L-shaped and T-shaped modules. Experimental results are
shown in Section 4.

2. PROBLEM DEFINITION

We consider three kinds of modules M = Mr U My U Mt
where Mg is a set of rectangular modules, My is a set of
L-shaped modules and Myt is a set of T-shaped modules.
A rectangular module A is a rectangle of height h(A) and
width w(A). The aspect ratio of A is defined as h(A)/w(A).
A rectangular module can either be hard or soft. The height
and width of a hard module are fixed but the module is free
to rotate. The shape of a soft module can be changed as
long as the area remains a constant and the aspect ratio is
within a given range. An L-shaped module B (Figure 3(a))
consists of two rectangular sub-modules By and Bz, where
w(B1) and w(B) are aligned and h(B;) > h(B2). A T-
shaped module C (Figure 3(b)) consists of three rectangular
sub-modules 1, C2 and Cs where w(Ch), w(C>) and w(Cs)
are aligned and h(C1) > max{h(C:),h(Cs)}. We assume
that all T-shaped and L-shaped modules are hard modules.

In general, two modules A and B are said to be abut horizon-
tally (Figure 4), denoted by Habut(A,B)if a vertical bound-
ary la of module A and a vertical boundary Iz of module
B abut such that {4 lying immediately on the left of [5 and
the length of the abutment is at least min{len(l4),len(iz)}
where len(l4) is the length of 14 and len(ls) is the length
of Ig. The abutment in the vertical direction is defined sim-
ilarly.

A floorplan for n modules is a dissection of a rectangle by
horizontal and vertical lines into n non-overlapping regions
such that each region must be large enough to accommo-
date the module assigned to it. A packingis a non-overlap

B; By |hy

WZ: Wll W3
@ 0

Figure 3: L-shaped Modules and T-shaped Modules

W W

P wl P3
P4 W2 p7
hil
A s h2
P5 P8
P2 P6
la=(P4,P5) o= (P3, P6)

Habut(A, B) iff x >= min{h1, h2}

Figure 4: An Abutment Example

placement of all the modules in M. A feasible packing is
a packing such that all the abutment constraints are satis-
fied and the widths and heights of all the soft modules are
consistent with their aspect ratio constraints and area con-
straints. Our objective is to construct a feasible packing F
to minimize A+ AW where A is the total area of the packing,
W is an estimation of the interconnect cost and A is a user-
specified constant which controls the relative importance of
A and W in the cost function. We require that the aspect
ratio of the final packing is between two given numbers 7,y
and rmaz-

3. SLICING FLOORPLANS

A slicing floorplan can be represented by an oriented rooted
binary tree, called a slicing tree (Figure 5). Each internal
node of the tree is labeled by a * or a 4+ operator, corre-
sponding to a vertical or a horizontal cut respectively. Each
leaf corresponds to a basic module and is labeled by a num-
ber from 1 to n. No dimensional information on the position
of each cut is specified in the slicing tree. If we traverse a
slicing tree in postorder, we obtain a Polish expression. A
Polish expression is said to be normalized if there is no con-
secutive *’s or +’s in the sequence. It is proved in [5] that
there 1s a 1-1 correspondence between the set of normalized
Polish expressions of length 2n — 1 and the set of slicing
floorplans with n modules. Our method is developed based
on the simulated annealing algorithm in [5].

7\
NERES AVAS
1 AWAN

/N

Polish expression: 16+35* 2+* 74+*

Figure 5: Slicing tree representation and Polish ex-
pression representation of a slicing floorplan

4. OUR APPROACH

4.1 An Overview

The algorithm Main below outlines the flow of our method.
In each step of the annealing process, we consider a partic-
ular Polish expression. We will scan the expression once to
find out the topological structure of the packing and, in par-
ticular, the neighborhood relationship between every pair of
modules. This is possible because the operators + and * in
a Polish expression have orientations, e.g. AB+ means that
A is right below B and ABx* means that A is on the left of B
immediately. We will scan the expression once to mark the
left, right, top and bottom neighbors of every module. Fig-
ure 6 shows a simple example in which the neighbors of every
module are marked in a table after this step. Then we will
shuffle the modules to satisfy as many abutment constraints
as possible. Please refer back to Figure 1 as an example. In
this example, module A is constrained to abut with module
B horizontally, i.e. Habut(A,B), but this constraint is vio-
lated in the original packing (Figure 1(a)). After finding the
neighborhood information between all pairs of modules, we
will shuffle B with a closest right neighbor of A, i.e. module
D in this example, to obtain a similar packing (Figure 1(b))
which satisfys the constraint. After this shuffling step, the
abutting modules will stay together unless some later moves
break them apart.

After fixing the abutment constraints, we will ezpand the
I-shaped or T-shaped modules into their original shapes.
This 1s done by modifying the Polish expression to embed
the sub-modules of the rectilinear blocks in such a way that
the relative positions between all the modules in the orig-
inal Polish expression are preserved. Please refer back to
Figure 2 as an example. In this example, module D is L-
shaped. The initial packing is shown in Figure 2(a). We will
expand D to its original shape before computing the total
area and interconnect cost. The packing after expansion is
shown in Figure 2(b). After expansion, we can do the shape
curve computation as usual to obtain the total area of the
final floorplan. The implementation is simple and the flex-
ibility of the soft modules can still be fully exploited. We
will describe the steps in details in the following sections.

Algorithm Main
Input: The size, shape and interconnection of a set of
modules M = Mgr U Mp U Mrp, where Mg s a
set of rectangular modules, My, is a set of L-
shaped modules and Mt is a set of T-shaped
modules, a set of horizontal abutment cons-
traints and a set of vertical abutment constraints.
Output: A feasible packing of the modules in M
1. Inttialization.
2. Repeat:
Transform the Polish expression aoiq to .
4. Scan « to find the neighbors of every module.
5 Modify o to apew by shuffling modules to fix the
violated abutment constraints.
4. FExpand the L-shaped or T-shaped modules in aneqy
to obtain a new Polish expression 3.

o

5. Calculate the total area and interconnect cost of the
floorplan represented by 3.
6. Decide whether to accept apew. If yes, aoid = Anew.

7. Until Cost < k.

Module| left |right| top |bottom

C|D|E A X |BC| X X

A B A | X |[CDE|[X
B (] A D X B

D C E X B

E D X X B

x : no known neighbor in that direction

Figure 6: Neighborhood information can be ob-
tained from the Polish expression

4.2 Handling Abutment Constraints

4.2.1 Finding the Neighbors of a Module

We can find the neighborhood of a module from the Polish
expression because the operators in the expression have ori-
entations, e.g. AB+ means that A is right below B and ABx*
means that A is on the left of B immediately. These topo-
logical relationship is independent of the dimensions of the
modules. For example, Figure 7 is a packing corresponding
to the expression AB+CDE+ F +*xG+ H +*. We can tell
from the Polish Expression the neighborhood relationship
as shown in the table. This information can be obtained by
scanning the expression once and update the table whenever
an operator is seen, i.e. when two sub-floorplans are com-
bined by either a + operator (vertical cut) or a * operator
(horizontal cut). The algorithm Neighborbelow outlines the
step to find this neighborhood information. Notice that the
variables Lside[X], Rside[X], Tside[X] and Bside[X] de-
note the set of modules lying along the left boundary, right
boundary, top boundary and bottom boundary of a sub-
floorplan X. Consider combining two sub-floorplans X and
Y horizontally as in XY*. If both Rside[X] and Lside[Y]
have more than one modules, the top module in Rside[X]
will abut horizontally with the top module in Lside[Y] and
the bottom module in Rside[X] will abut horizontally with
the bottom module in Lside[Y]. Lets explain with the exam-
ple in Figure 7. When we combine the sub-floorplan contain-
ing A and B and the sub-floorplan containing C, D, E, F,G
and H by the * operator, we know that B will abut with
H horizontally and A will abut with C' horizontally. No-
tice that we do not know whether G will abut with A or B
or both because this is dependent on the dimensions of the
modules, so we will not say anything about the abutment
of G. However, if any one of Rside[X] or Lside[Y] has only
one module, every module in Rside[X] will abut with every
module in Lside[Y] horizontally. For example, in Figure 7,
when we combine the sub-floorplan containing C' and the
sub-floorplan containing D, £ and F' by the % operator, we
know that C' will abut with I, ' and F horizontally. Sim-
ilarly, we can derive the vertical neighborhood relationship
from the + operator.

Algorithm Neighbor

Input: A Polish expression o = a1z ... van—1

Output: For each module A, find the modules abutting
with A in all four directions.

1. Fori=1to2n—1:

2. If a; is a module name:

Module| left | right| top |bottom

—_— A X C B X
B B | X| H| x| A
G [@ A IDEF| G X
F D C X E X
A c c E c| x | F D
F C X G E

G X X H CF
H B X X G

X : no known neighbor in that direction

Figure 7: Abutment between modules

Lside[a;] = Rsidea;] = T'side[a;] = Bside[a;]

3. Push a;.
4. If a; 18 a * operator:
5. Pop Y. Pop X.
6. If Rside[X] or Lside[Y] has only one module:
7. Habut[A, B] is true for all A € Rside[X] and
B € LsidelY].
8. Else:
9. Habut[A1, B1] and Habut[Az, Bz] are true where

A1, Az are the top and bottom modules in
Rside[X] resp., and B1, B2 are the top and
bottom modules in Lside[Y] resp..
10. Rside[a;] = RsidelY], Lside[a;] = Lside[X],
Tside[a;] = T'side[X] + T'side[Y],
Bside[a;] = Bside[X]+ Bside[Y].
11. Push a;.
12. If a; is a + operator:
13. Pop Y. Pop X.
14. If T'side[X] or Bside[Y] has only one module:

15. Vabut[A, B] is true for all A € Tside[X] and
B € Bside[Y].
16. FBlse:
17. Vabut[A1, B1] and Vabut[Az, B2] are true where

A1, Az are the left and right modules in
Tside[X] resp., and B1, B are the left and
right modules in Bside[Y] resp..
18. Tside[a;] = T'side[Y], Bside[a;] = Bside[X],
Rside[a;] = Rside[X]|+ Rside[Y],
Lside[a;] = Lside[X] + Lside[Y].
19. Push a;.

4.2.2 Shuffling Modulesto Fix Violated Abutment Con-
straints

If a Polish expression does not satisfy all the abutment con-
straint, we can fix it as much as possible by shuffling the
modules. An example is shown in Figure 8. In this ex-
ample, assume that module B is required to abut with F'
vertically, i.e. Vabut(B, F), but it is violated initially as
shown in Figure 8(a). We will then try to move F' to the
top of B or move B to the bottom of F. In the first case,
B has two neighbors at the top: ¢ and D. Since F' is closer
to D than to C in the Polish expression, we will shuffle F'
and D in order to fix this violated constraint. In general,
if an abutment constraint Vabut(X,Y) is violated, we will
first try to move Y to the top of X by shuffling Y with
the closest top neighbor of X in the Polish expression. If it
is failed, e.g. all the top neighbors of X are fixed in posi-
tion, we will try to move X to the bottom of ¥ by shuffling

F D
c| E c| E
A o | A
B B
(a (b)

ABCDE+F+*+*

Figure 8: Shuffling modules to fix violated abutment
constraints

X with the closest bottom neighbor of Y. The procedure
for the horizontal direction is defined similarly. Notice that
(Please refer to Main) we will not shuffle the modules back
to their original positions if an expression is accepted, i.e.
the constrained modules will stay together unless some later
moves break them apart.

It is possible that some constraints are still violated after all
the possible shufflings. We include an abutment constraint
term in the total cost to penalize the remaining violated con-
straints. All violations will be eliminated as the annealing
process proceeds in most of the cases.

4.3 Handling L-shaped and T-shaped Mod-
ules

Instead of partitioning into rectangular sub-modules, L.-shaped

and T-shaped modules are treated as single modules in the
annealing process. They will be expanded to their original
shapes when being packed and the expansions are dependent
on their topological positions in the original Polish expres-
sion. After calculating the total area and interconnect cost,
they are treated as single modules again in the floorplan
transformation.

4.3.1 Expansion of L-shaped Modules

Consider an L-shaped module X in a Polish expression «,
we will expand it into its sub-modules X; and X> by modi-
fying the expression according to the relative position of X
in «. There are four different cases as shown in Figure 9.
The subtree labeled “1” can either be a basic module or a
subtree of modules. We are trying to pack modules into the
unoccupied area of the L-shaped modules. The L-shaped
module is oriented differently in different cases so as to pre-
serve as much as possible the relative position between all
the other modules in the original Polish expression.

4.3.2 Expansion of T-shaped Modules

Similar to an L-shaped module, we will expand a T-shaped
module X into its sub-modules X1, X2 and X3 by modifying
the Polish expression « according to the relative position of
X in a. There are two different cases, depending on the
sibling u of X in the slicing tree. If u is an internal node
and the two children subtrees of u are not parts of the same
module, we will pack the sub-modules of X with the children
subtrees of u as shown in Figure 10 and 11. The subtree
labeled “1” or “2” can either be a basic module or a subtree
of modules. Again, we are trying to pack modules into the
two unoccupied areas of the T-shaped module, and the T-
shaped module is oriented differently in different cases to
preserve as much as possible the relative positions between
all the other modules in the original Polish expression. If

1 ® R ®
A B — @ OR Hma
1

1]
A A
1" ispart of amodule
on theright.

1f "1" is part of amodule
atthetop.

2 ® ®
R @ﬂ _/\
A®m — R @ A O
A

®
k — & W[R ®
IE
A\ A\
1f "1 is part of amodule
on theright.

‘R A R

DA — O BA] R [B Q
A 1 |

] & A

1f "1" is part of amodule
atthetop.

Figure 9: Expansion of an L-shaped Module

u 1s a single basic module or that the two children subtrees
of u belong to the same module (so we cannot pack them
apart as shown in Figure 10 and 11), we will label C as a
degenerated T-shaped module which will be expanded into
its sub-modules as described in Figure 12.

>
2

N‘P
3

2 [As
AL
1| Az
3 ® ®
& L ® ® zAAz
1 1
O S-V e

4
&

®
>
2
>
a

i . -

9\®
E/E
B>
=

Figure 10: Expansion of a T-shaped Module which
is a right child

4.3.3 Expansion Order

The result of the expansion will depend on the order in which
the modules are expanded. An example is shown in Fig-
ure 13. Assume that both module A and B in the figure are
L-shaped. Expanding B followed by A will give us the pack-
ing in (a), while expanding in the reverse order will give us
the packing in (b). If the order is not defined well, we may
need to scan the Polish expression once for each L-shaped
or T-shaped module. In our implementation, we will first
expand the T-shaped modules. This requires scanning the

[~

>
I
>
&

Ad 2

P
B /A
A&l AL
&)
3 @
Al & @ Ad 2
®A =

Az‘l

s

‘ Q . g T,
A / Al
& As|

Figure 11: Expansion of a T-shaped Module which
is a left child

expression twice. The first scan expands all the T-shaped
modules which are right children, and the second scan ex-
pands all the T-shaped modules which are left children. The
degenerated T-shaped modules are labeled on the way. Af-
ter these two scans, any T-shaped module will either be ex-
panded or labeled as degenerated. We will then expand the
remaining l.-shaped modules and the degenerated T-shaped
modules. This also requires scanning the expression twice.
The first scan expands all the L-shaped modules or degen-
erated T-shaped modules which are right children, and the
second scan expands those which are left children. The al-
gorithm is described by the algorithm Fzpansion below. We
need to scan the expression four times in total. An example
of expansion is shown in Figure 14. In this example, module
A is T-shaped and module B is L-shaped. A is expanded
first because it 1s a T-shaped module and a right child. After
that, we should expand the T-shaped modules which are left
children followed by the [.-shaped modules which are right
children, but there is none of them. Finally, we will expand
B which is an L-shaped module and a left child.

Algorithm Expansion

Input: A Polish expression o with a set of modules M
=Mr UMy UMz, where Mg is a set of
rectangular, modules My is a set of L-shaped
modules and Mt is a set of T-shaped modules.

Output: A Polish expression 8 with all the modules in
Mp and Mt expanded to their corresponding
sub-modules.

1. Scan o from left to right and generate a new Polish

expression a1 by:
2. For any T-shaped module X which s a right child:
If the sibling u of X is an internal node and the

o

children subtrees of u are not parts of one module:

FExpand X as described in Figure 10.
Else:

Label X as a degenerated T-shaped module.
. Scan a1 from left to right and generate a new Polish
expression az by:

N s

©) ®

w & ®
7 P4 19

14
unth \ﬁpﬁ!vfamodu\e
2 ® ® }2@
/A . R \/®} OR \
A\
]
~
L[

If "1" is part of amodule
at thetop.

: s 2
S gR o AR

1]

] =
[A
JX

H“l“\sp;mfamodu\e
@
Fado

on therit

A

(A I
I

141 fspartof amocke
at the t

Figure 12:
Module

Expansion of a degenerated T-shaped

8. For any T-shaped module X which is a left child:

9. If the sibling u of X is an internal node and the
children subtrees of u are not parts of one module:

10. FExpand X as described in Figure 11.

11. Else:

12. Label X as a degenerated T-shaped module.

13. Scan az from left to right and generate a new Polish
expression as by:
14. For any L-shaped module or degenerated T-shaped
module X which is a right child:
15. If X is an L-shaped module:

16. Ezpand X as in case 1-2 of Figure 9.
17. Else:
18. Ezpand X as in case 1-2 of Figure 12.

19. Scan as from left to right and generate a new Polish
expression 3 by:
20. For any L-shaped module or degenerated T-shaped
module X which is a left child:
21. If X is an L-shaped module:

22, Ezpand X as in case 3-4 of Figure 9.
23. Else:

24. Ezpand X as in case 3-4 of Figure 12.
25. Output 3.

4.4 Time Complexity

We need to scan the Polish expression once to find the neigh-
bors of every module. This takes O(n) time where n is total
number of modules. Then shuffling modules to fix violated
abutment constraints takes another O(ng) time where ¢ is
the total number of abutment constraints. Notice that this is
only a worst case analysis. Usually, we do not need to scan
all the modules once to find the closest module to shuffle
with and the average time taken is just O(g+n). To expand

B:
Expand B| B, Expand A
A B AZ Bz
Both A and B 2
are L-shaped. A
(€)
A|B|
A Ay
A A2 Bz
Expand A 2 | B Expand B B
1

(b)

Figure 13: An Example Demonstrating the Effect of
the Expansion Order

Suppose A is T-shaped and B is L-shaped

A A A
S Lo ' I W (o< UV Es-

Figure 14: An Example of the Expansion Step

all the L-shaped and T-shaped modules, we need to scan the
expression four times which takes O(n) time. Therefore, the
total time taken in each iteration of the annealing process
to handle the abutment constraints and rectilinear blocks is
O(np) in the worst case, and O(n + p) on the average.

4.5 Movesand Cost Function

We use the same set of moves (M1 M2 and M3) as in [5].
The cost function is defined as A + AW + ~D) where A is
the total area of the packing obtained from the shape curve
at the root of the slicing tree and W is a half perimeter
estimation of the interconnect cost. [J is a penalty term
for the violated abutment constraints. If an abutment con-
straint between two modules are violated, the corresponding
penalty term is computed as the manhattan distance that
one of the two module centers needs to move in order to
make them abut. An example is shown in Figure 15. In
this example, suppose A and B are constrained to abut hor-
izontally, i.e. Habut(A, B), but this constraint is violated
and its corresponding penalty term D will be x + y where
z is the distance between the right boundary of A and the
left boundary of B and y is the vertical distance between the
centers of A and B. The penalty term is computed similarly
in case of L-shaped or T-shaped modules by just considering
the largest sub-modules in the rectilinear blocks. A and ¥
are constants which control the relative importance of the
three terms. A is usually set such that the area term and
the interconnect term are approximately balanced. We usu-
ally set « large enough that D) will drop rapidly right at the
beginning.

5. EXPERIMENTAL RESULTS

We tested our floorplanner with some benchmark data: ami33,

ami49 and playout. In all the data, the rectangular mod-

Figure 15: Penalty for violation of an abutment con-
straint

Scale 1unit = 238 pts

g
19

4 20 3
2 -

0 a7

16 5 2
17 27 2
7 ‘ 2 ‘ 39‘ a ‘ 14
1
2 P

Figure 16: A result packing of ami49. Module 1, 2,
15, 20 and 25; 3, 41, 42 and 43 are required to abut
horizontally. Module 25, 8, 10, 12 and 3; 43 and 44
are required to abut vertically. All constraints are
satisfied.

ules are soft modules with aspect ratios lying between 0.25
and 4.0 and the L-shaped or T-shaped modules are hard
modules. For each experiment, the starting temperature is
decided such that an acceptance ratio is 100% at the begin-
ning. The temperature is lowered at a constant rate and the
number of iterations in one temperature step is proportional
to the number of modules. All the experiments were carried

out on a 143 MHz UltraSPARC Workstation.

We did two sets of experiments, one set with only rectan-
gular modules and the other set with L-shaped or T-shaped
modules. In the first set, we did five testings for each bench-
mark data, each testing with a different set of abutment con-
straints. The abutment constraints we imposed are usually
that chains of four to five modules are required to abut hor-
izontally or vertically. The averaged result for each bench-
mark data is shown in Table 1. We can see from the table
that our method can handle abutment constraints efficiently.
Figure 16 and 17 show two result packings.

In the second set of experiments, we modified the bench-
mark data by changing some modules to L-shaped or T-
shaped. We called these data lt-ami33, lt-ami49 and It-
playout. Again, we did five testings for each data, impos-
ing different abutment constraints on the modules for each
testing. Table 2 summarizes the results. Figure 18 and Fig-
ure 19 show two result packings. The rectangular modules
are white in color, the L-shaped modules are light greg and
the T-shaped modules are dark grey.

6. REFERENCES

Scdle 1unit=45pis

3

Figure 17: A result packing of playout. Module 1, 2,
50, 4, 5, 6 and 14 are required to abut horizontally,
and module 8, 9, 10, 4, 11, 12 and 13 are required
to abut vertically. Ten out of the twelve abutment
constraints are satisfied.

Data n | %Dead- | Time | #Viola-
Set space (s) tion
ami33a | 33 3.62 84.98 0
ami49a | 49 2.02 164.51 0.2
playout | 62 2.93 453.32 1.4

Table 1: Results of Testing Abutment Constraints
with Rectangular Modules. Each data set has 12
modules having abutment constraint.

[1] M. Kang and W. W.M. Dai. General Floorplanning with
L-shaped, T-shaped and Soft Blocks Based on Bounded
Slicing Grid Structure. IEEE Asia and South Pacific Design
Automation Conference, pages 265—270, 1997.

[2] T. Chang Lee. A Bounded 2D Contour Searching Algorithm
for Floorplan Design with Arbitrarily Shaped Rectilinear
and Soft Modules. Proceedings of the 30th ACM/IEEE
Design Automation Conference, pages 525-530, 1993.

[3] R.H.J.M. Otten. Efficient Floorplan Optimization. IEEE
International Conference on Computer Design, pages
499-502, 1983.

[4] L. Stockmeyer. Optimal Orientations of Cells in Slicing
Floorplan Designs. Information and Control, 59:91-101,
1983.

[5] D.F. Wong and C.L. Liu. A New Algorithm for Floorplan
Design. Proceedings of the 23rd ACM/IEEE Design
Automation Conference, pages 101-107, 1986.

[6] D.F. Wong and C.L. Liu. Floorplan Design for Rectangular
and L-shaped Modules. Proceedings IEEE International
Conference on Computer-Aided Design, pages 520523,
1987.

[7] F.Y. Young and D.F. Wong. How Good are Slicing
Floorplans. Integration, the VLSI journal, 23:61-73, 1997.
Also appeared in ISPD-97.

[8] F.Y. Young and D.F. Wong. Slicing Floorplans with
Boundary Constraints. IEEE Asia and South Pacific Design
Automation Conference, pages 17-20, 1999.

Scale: 1 unit = 265 pts

Figure 18: A result packing of lt-ami49. Module 1,
2, 15, 20, 25, 8 and 10 are required to abut hori-
zontally and module 10, 12, 3, 41, 42, 43 and 44 are
required to abut vertically. Eleven out of the twelve
abutment constraints are satisfied.

Data n #L- #7T- %Dead- | Time | #Viola-
Set Blocks | Blocks space (s) tion
It-ami33a | 33 2 1 5.20 78.49 1
It-ami49a | 49 3 2 5.38 294.34 1
It-playout | 62 3 3 3.91 807.89 1.4

Table 2: Results of Testing Abutment Constraints
with L-shaped and T-shaped Modules. Each data
set has 12 modules having abutment constraint.

Scale: unit=4.4pts

62 k3

8| ®| &|H
o
#

Figure 19: A result packing of lt-playout. Module
1, 2 and 15; 8 and 9; 12, 13, 14 and 15 are required
to abut horizontally. Module 9, 10, 11 and 12; 20,
17 and 48; 18 and 19 are required to abut vertically.
Eleven out of twelve of the abutment constraints are
satisfied.

