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Abstract—This letter further explores the Bayesian Ying-Yang
learning based non-Gaussian factor analysis (NFA) via investi-
gating its key yet analytically intractable factor estimating step.
Among the three suggested numerical approaches we empirically
show that the so-called iterative fixed posteriori approximation
approach is the most optimal, as well as theoretically prove that
the iterative fixed posteriori approximation is another type of
EM-algorithm, with the proof of its convergence also shown.

Index Terms—BYY harmony learning, EM-algorithm, factor
analysis, independent component analysis, non-Gaussian factor
analysis.

I. INTRODUCTION

THE recently proposed non-Gaussian factor analysis (NFA)
[1]–[3] generalizes the well-known factor analysis (FA)

(1)

by assuming that each factor follows non-Gaussian distribu-
tion. In effect, it not only avoids the rotation and additive in-
determinacies encountered by classical FA [2], but also relaxes
the impractical noise-free assumption for independent compo-
nent analysis (ICA) [2]. Other efforts in literature on the noisy
ICA model can be referred to, for instance, [4], [5], and a recent
systematic review on ICA and its extensions with noise and tem-
poral dependence structure is referred to [3].

Provided that the noise is independent of as assumed by
FA and NFA, generated by (1) can then be modeled by

(2)

Since conventional FA assumes each as Gaussian, the model
can be analytically estimated by the well-known expecta-
tion–maximization (EM) algorithm [6]. In contrast, the EM
algorithm cannot be applied in a similar way for the NFA model
to estimate each non-Gaussian factor as the integral in (2) is
analytically intractable [7]. To remove the integral, one has to
resort to either numerical integration or Monte-Carlo stochastic
integration. Yet, such techniques are very computationally
intensive [7].
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Alternatively, each non-Gaussian factor may be modeled
by a Gaussian mixture [7]–[9]

(3)

where denotes a Gaussian probability density
function with mean and variance . As discussed by
[7], via introducing a missing data to indicate the factor gen-
erated by the respective Gaussian component and transforming

in (3) to a mixture of Gaussian products, the EM algorithm
can then be performed analytically. Such a technique was also
discussed in [9] for estimating the independent factor analysis
(IFA) model. Nonetheless, such approach suffers from the curse
of dimensionality. That is, the computational complexity grows
exponentially with the number of factors [9].

From the perspective of BYY harmony learning [2], [3], by
nature the analytically intractable integral can be avoided by
finding that maximizes the a posteriori for each as

(4)

where is given by (3) and
with denoting the covariance ma-

trix of . Since numerical approaches should be adopted to
solve the MAP factor estimate problem in (4), this letter
compares three suggested numerical approaches in [2] for it.
Also, we theoretically prove that the iterative fixed posteriori
approximation approach is another type of EM-algorithm,
based on which we also prove its convergence.

Section II briefly describes the NFA algorithm and three
MAP factor estimating approaches. Section III proves that the
iterative fixed posteriori approximation approach is another
type of EM-algorithm, with the proof of its convergence
also shown. Section IV empirically analyzes the three MAP
factor estimate approaches and shows that the iterative fixed
posteriori approximation is the optimal approach. Section V
concludes the letter.

II. NFA ALGORITHM: ESTIMATING MAP FACTORS AND

THREE NUMERICAL APPROACHES

The NFA algorithm proposed in [2] is

Step 1) Fix and , find the factor
according to (4).

Step 2) Fix and , update

.

1070-9908/04$20.00 © 2004 IEEE



598 IEEE SIGNAL PROCESSING LETTERS, VOL. 11, NO. 7, JULY 2004

Step 3) Fix and , update
, and

, where .
For the BYY harmony learning based NFA algorithm, the

Yang machine by nature requires finding the that maximizes
the posterior, as in step 1. Then, based on the sample and
the estimated in step 1, steps 2 and 3 update the remaining
parameters via the typical least mean square (LMS) criterion.
Moreover, as discussed in [2], due to the least complexity
property of the BYY harmony learning, the NFA algorithm is
capable of selecting the number of factors. Furthermore, the
problem of local optimization could be alleviated by the two
newly introduced regularization techniques—data smoothing
and normalization learning. Readers interested are referred to
[2] and [10] for further details.

Although the MAP task in step 1 plays a key role for the whole
learning process, it is analytically intractable. Below we review
the three numerical approaches adopted for estimating the MAP
factor scores.

A. Iterative Fixed Posteriori Approximation Approach

The so-called fixed posteriori approximation proposed by [2]
is

(5)

where , and
the posteriori

(6)

is approximately regarded as being irrelevant to .
Based on it, the following iterative procedure can be used to

find a solution of (4).

Step 1) Fix , update according to (5).
Step 2) Fix , update according to (6).

B. Gradient Descent Approach

The derivative of with respect to is

(7)

where with
, and is the same as in Section II-A.

C. Conjugate Gradient Approach

The conjugate gradient approach is considered superior to
the quasi-Newton method in the sense that it avoids the difficulty
of having to compute the Hessian matrix, but still possesses the
super-linear rate of convergence. The algorithm is:

Initialize , set by (7).

Step 1) .
Step 2)

.
In this letter, we choose the learning rate based on [11]

which satisfies the well-known Wolfe condition.

III. PROOF OF THE ITERATIVE FIXED POSTERIORI

APPROXIMATION AS A TYPE OF EM-ALGORITHM

The EM algorithm [12] is commonly adopted for tackling the
incomplete-data problem. In short, the E-step concerns finding
the expectation of the complete-data based cost function with
respective to the “missing” data, which is typically the log-like-
lihood function while the M-step concerns updating the param-
eters via maximization of the expectation.

Here, the EM algorithm is adopted for solving the MAP factor
estimate problem

(8)

where
. It should be noted that unlike the conventional

EM algorithm which is applied to maximize the likelihood
function with respect to the parameters, here the EM algorithm
is adopted to maximize the function with respect to the factor.

To show how the EM-algorithm can be derived, we regard the
data incomplete and introduce a “missing” indicator

, defined as iff was generated by component
, such that .

Moreover, since each is related only to the mutually in-
dependent are also mutually independent, which
makes . Consequently, the joint distribu-
tion of the complete data set can be obtained
as [12] ,
since given , according to the definition of is independent
of . Meantime, because and both
are mutually independent, we have .
Because indicates is generated by the respective compo-
nent, thus, given the conditional density of is

(9)

Consequently, the logarithm of the joint distribution
can be obtained as

Then, the EM algorithm needs to find the expectation of the
complete data joint function shown above with respect
to the the “missing” data given as
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Where the second equality is also due to the mutual indepen-
dence for and , for which the detail is

Given the current , the probability , which we
denote by is

(11)

Thus, the function can be finally obtained as

(12)

Since the M-step requires finding to
maximize the above expectation as

, we differentiate
with respect to to get

, where
. Thus,

makes

(13)

where is with element
and is defined by (6). So (13) is ex-

actly (5). Previously we assumed the number of components of
mixture models all equals . However, (13) (including and )
can be extended to the case with different component numbers.

So in the E-step, we just need to calculate
according to (11) or (6) while in the M-step, update according
to (13). It is exactly the iterative fixed posteriori approxi-
mation discussed previously. Based on the proof in [12], we
proceed to show that for each iteration of the EM algorithm,

can be guaranteed for .
This shows the convergence of this type of EM algorithm. First
we introduce the conditional density of given as

and then define

(14)

TABLE I
COMPARATIVE RESULTS ON 3 MAP APPROACHES

Where the expectation of with respect to is
equal to itself because it doesn’t involve . After one it-
eration by the EM algorithm, the change of is:

. According to the definition of
M-step, we have . Based on
the well-known Jensen’s inequality and the concave prop-
erty of the logarithm function, we have for any given pair

and the equality holds iff
almost everywhere (the Lemma 1

given in [12]). Thus, it can be guaranteed that

(15)

for EM iteration. Thus, such an EM-algorithm can ensure the
algorithm converge to, at lease, a local optimal value.

IV. EMPIRICAL COMPARISONS ON THREE MAP FACTOR

ESTIMATE APPROACHES

Comparisons in both dimensions of effectiveness and effi-
ciency are based on the synthetic two-factor model, with a typ-
ical factor estimating process discussed in detail.

A. Initialization for the Numerical Approaches

All of the three approaches above require a proper initializa-
tion. We choose the following Gaussian approximation [2]:

(16)

where , and
, with

and . The key idea here is that
a Gaussian density is used to approximate the Gaussian mixture
in (3) such that an analytic solution can be obtained by (16).

B. Simulation Via Synthetic Two-Factor Model

We consider 50 observations generated according to (1) with

the parameters as follows, ,

with being generated from a uniform distribution in the in-
terval , and from a bimodal symmetric dis-
tribution with mean removed, is randomly generated with pdf

, where and hereafter denotes the -dimen-
sional identity matrix.

The experiment is repeated 20 times with random initializa-
tions. All signals are normalized with zero mean and unit vari-
ance. The mean square error (MSE) (average over 20 runs) be-
tween the normalized estimated state and true state are
listed in Column 2 of Table I. Three typical estimated noise co-
variance matrices are listed in Column 3. The cost-time (average
over 20 runs) of the three MAP approaches are listed in Column
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Fig. 1. Sources recovered by iterative fixed posteriori approximation, where
the source signals are denoted by “o” and recovered signals by “�”.

Fig. 2. Typical MAP problem: coordinates making up the horizontal plane are
y and y , and the erected one is ln[p(x j y)p(y)].

Fig. 3. Convergence process of the three MAP approaches.

4 of Table I. For brevity we only illustrate the results obtained
by the iterative fixed posteriori approximation (Fig. 1).

In addition, we also directly use the Gaussian approxima-
tion as the MAP factor estimate. The highest MSE (as shown
in Table I) resulted implies the failure of the direct use of the
Gaussian approximation as the factor estimating approach.

C. Analysis of the MAP Factor Estimating Process

Consider the typical synthetic two-factor model. The optimal
MAP factor score as denoted by the maximum point and the
value initialized by Gaussian approximation are shown by two
arrows in Fig. 2. The three MAP estimating processes are shown
in Fig. 3, and the corresponding time-cost are respectively 3, 61,
and 13 ms (Column 5 of Table I).

As shown in Fig. 3, all three approaches can approximately
arrive at the optimal point starting with the same initializa-
tion. This explains why the estimating accuracy of the three
approaches does not differ greatly from each other. However,
the process of the gradient descent approach is too long to get
to the optimal solution due to its linear convergence speed.
For instance, there is still a small error even after 62 iterations

in Fig. 3. The convergence rate of iterative fixed posteriori
approximation, a type of EM-algorithm, is generally linear [13]
while the conjugate gradient approach has at least a linear rate.
In Fig. 3, however, the iterative fixed posteriori approximation
converged as quickly as the conjugate gradient approach. This
may be because the Gaussian approximation usually makes
the initialization close to the true result, and thus echoes the
conclusions in [13] that state “for Gaussian mixtures locally
around the true solution and when the overlap in the mixture
is small the convergence rate for the EM-algorithm tends
to be asymptotically superlinear.” That is, the iterative fixed
posteriori approximation here shares this nature. Also, it should
be mentioned that the process of finding a proper learning rate
in conjugate gradient approach is time-consuming although the
convergence rates of the two approaches are close. As expected,
the conjugate gradient approach is worse than the iterative
fixed posteriori approximation on computing efficiency.

We can conclude that the iterative fixed posteriori approxima-
tion approach is the most optimal considering both estimating
accuracy and computing efficiency.

V. CONCLUSION

We comparatively study the three suggested MAP factor
estimates approaches for NFA and empirically find that the
so-called iterative fixed posteriori approximation approach is
the most optimal when both estimating accuracy and computing
efficiency are taken into account. Specifically, the iterative
fixed posteriori approximation approach is proved to be another
type of EM-algorithm, with the proof of convergence shown.
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