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BAYESIAN YING-YANG DIMENSION REDUCTION AND DETERMINATION

LEI XU

A new general theory is proposed for dimension reduction and determination (DRD), based on the so-
called Bayesian Ying-Yang (BYY) learning theory developed in recent years. This theory not only includes
conventional factor analysis, principal component analysis (PCA), and nonlinear PCA by least mean
squared error reconstruction (LMSER) as special cases, but also provides a unified general guidance for
developing various linear and nonlinear DRD techniques and for determining the dimension k of the
reduced subspace. As examples, we provide (a) a new algorithm for factor analysis in both batch and
adaptive modes, (b) criteria for determining the number of factors and the dimension of the PCA
subspace, (c) a procedure for implementing a specific nonlinear BYY DRD based on gaussian mixtures,
and (d) extensions for auto-association and LMSER-based nonlinear PCA. Some experimental results are
provided.

1 INTRODUCTION

Complexity reduction and dimensionality reduction are two commonly used terms describing important strategies that are
widely used in data processing and analysis. Usually, the richness of data in a discrete or symbolic representation is
measured by complexity, and the mapping from a discrete or symbolic form to another discrete or symbolic form involves

complexity reduction. The key point of Dimension reduction is mapping the data x € R? into a lower dimension space y
yeR* | k< d. The two strategies tackle similar problems from different perspectives. This paper focuses on the second

strategy of dimensionality reduction.
Specifically, dimension reduction via a linear mapping, y =Wx, or a nonlinear mapping, y = f(x,W), is called Linear

or Nonlinear Reduction, respectively, where f{x,/%) is a parametric nonlinear function. The purposes of dimension

reduction can be roughly divided into two major types. One is to map x into 2 or 3 dimension spaces such that the data
structure can be visualized and studied interactively. The other is to preprocess x for the purpose of helping subsequent
analyses or pattern recognition. For the first type, we have k = 2 or 3 fixed, and the key problem is how to design the
mapping such that the data structure in y is kept as close as possible with that in x. For the second type, the problem
consists of two important issues. One is how to determine the dimension of k, which is called dimension determination. The
other one is how to design the mapping under a given k. Extensive studies can be found for both linear and nonlinear
reduction of both types in the literature on statistical pattern recognition and neural networks over the past few decades.
Readers are referred to Samon [1969]; Devijver and Kittler [1982]; Kohonen [1995] for the first type, and to Bourlard and
Kamp [1989]; Oja [1983, 1989], and Xu [1993, 1994] for the second type. Tukey [1977] provides insight on how to
determine the best approach to conditioning modeling data.

This paper introduces a new general theory for both linear and nonlinear dimension reduction and determination
(DRD) based on the so-called Bayesian Ying-Yang (BYY) learning theory developed in recent years [see Xu 1995, 1997a].
This theory not only includes, as special cases, conventional factor analysis, principal components analysis (PCA), and
least mean squared error reconstruction (LMSER) based on nonlinear PCA, but also provides a unified general guidance
for developing various linear and nonlinear DRD techniques and for determining the dimension & of the reduced subspace,
along with several specific case studies.
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Similar to PCA and other existing methods mentioned above, the proposed new approach can also be applied to
various financial data processing and analyses for data dimension reduction. Roughly speaking, it is applicable to both

financial time series x(f) and second hand data, which consists of sets of feature or measurement vectors, x R4 , Where
each element of x is a feature variable or attribute that is extracted or obtained by some means from the time series. For
such second hand data, the approach proposed in this paper can be directly applied. For financial time series x(f), we can

k
rform dimension reduction by decomposing a length-d-segment of time series into x(f)= » =y ;e;(¢) with e(r), j=1,
pe j=17 i€ A J

..., k being a set of bases or eigen-segments. Thus, y=[y,, ..., ¥]” is used as a lower dimension representation of the
original segment x(#).

2 BYY DIMENSION REDUCTION SYSTEM AND THEORY
2.1 BASIC IDEA OF BAYESIAN YING-YANG LEARNING

The details of Bayesian Ying-Yang (BYY) learning system and theory and its applications can be found in Xu [1997a].
Here, we will only describe its basic concepts.

Representation Space Y~ PpMy(y)
Symbols, Integers, Binary Codes, Reals
r

Pu2(X,y)=Puy(y) Praciy(xly)

Encoding P « Decoding
iti Mx|y(Xiy i
Recogmtlon‘ PMylx()’|X ly Generating .
Representation Reconstruction
Paat (%,Y)=Pu(X)Ppayi
Input Pattern Space X b )= Paa ) Pr Y1)
P (x)

. FIGURE 1: The joint input-representation spaces X, Y and the Bayesian YING-YANG system

As shown in Figure 1, the tasks can be summarized as a problem of estimating the joint distribution p(x, y) of the
observable pattern x in the observable space X and its representation pattern y in the representation space Y. In the
Bayesian framework, we have two complementary representations p(x, y)=p(y|x)p(x) and p(x, y)=p(x|y)p(y). We use two
sets of models M, = {M,,, M;} and M, = {M,,, M,} to implement each of the two representations:

Pu, 6 0) = Pag,, 010Dy, (05 Pa, (%) = Pag, (X1 9) g, () 0]

We call M, a Yang (visible) model, which describes p(x) in the visible domain X, and M, a Ying (invisible) model which
describes p(y) in the invisible domain Y. Also, we call the passage M, for the flow x — y a Yang (male) passage since it
performs the task of transferring a pattern (a real body) into a code (a seed). We call a passage M,), for the flow y — x a
Ying (female) passage since it performs the task of generating a pattern (a real body) from a code (a seed). Together, we
have a YANG machine M, to implement p,, (x,y) and a YING machine M, to implement Pu, (x,¥) . A pair of YING-

YANG machines is called a YING-YANG pair or a Bayesian YING-YANG system. This formalization is derived from a
famous ancient Chinese philosophy that every entity in the universe involves the interaction between YING and YANG.

The task of specifying a Ying-Yang system consists of specifying all the aspects (e.g., the forms of the variables and
distributions, the architectures and scales, parameters, etc.) of the four components p M, ix), Pu, (), p M, x|y,

P, (¥), which is called learning in the broad sense and occurs according to a general principle called Ying-Yang

Harmony, by minimizing a harmony measure called the separation function. Three categories of separation functions have
been suggested in Xu [1997a]. One particular example is the minimization of the following Kullback divergence function:

Pum,, (V| X)pag, (x)

yix

Pum,, (x] J’)PMy »

In this special case, the BYY learning is called Bayesian-Kullback YING-YANG (BKYY) learning. If there are a number
of Ying-Yang systems with different architectures and the same or similar degree of harmony, we choose the one with the
simplest complexity, as will be addressed later in Sec.2.3. The BYY theory provides a theoretical guide for a number of
existing major learning models in parameter learning, regularization, structural scale or complexity selection, architecture
design and data smoothing.

KLg,pt, = [Prty, 01 5)pag, ()In @

September/October 1998 Journal of Computational Intelligence in Finance 7



2.2 BKYY DIMENSION REDUCTION SYSTEM AND ARCHITECTURE DESIGN

This paper only concentrates on one special case of the BKYY system that maps input x € R? into y=[y", ..., y¥]” with a
reduced dimension k < d such that a best reconstruction of x can be made from this y. For the purpose of 2D or 3D
visualizations, we can simply fix k = 2 or 3. For general applications, we need to determine an appropriate dimension £.

In this system, the specification of py, (x) is usually straight-forward. Given a training set D, = {x; }fi ,» We simply

let py (%) fixed to a kernel estimate [Devroye 1987]:

1 N
ph(x)=—ﬁ§1<h(x—x,-) 3)

with a prefixed kernel function K,(x) and a smoothing parameter h. A special case that we often consider is that A~ — 0 and
thus K, (x —x;) >d(x—x;).
We design P, (») according to two different types of dimension reduction purposes:

(a) The system maps x into one of n,,, clusters or densities in a space of lower dimension. That is, the samples of y are

assumed to spread in multiple modes, and thus parameterized by a finite mixture:
n

y
pMy(y)=p(y|9k)=2a,~p(y|9j), a;>0, iaﬁl “
Jj=1 J=1
In this way, the tasks of data dimension reduction and unsupervised classification are combined.
(b) The system reduces x to y, which consists of k independent components. That is, y is derived from a family of
densities with independent components:

k
Pu, ) = pPO16,) = ljp(y‘”Iéj) ®)

This case is actually a special case of BYY Dependency Reduction (BYY-DR) system and theory [Xu 1998] with k < d.
The specification of p M, (x| y) is made by generating x € R?, d > k from y via the Ying passage, which consists

of n,, linear or nonlinear channels, as follows:

x=g(y9Aj)+e§|{3’ j=1a-~'» nx|y’ eﬁ(} from P(e,(;(; I¢j) (6)
which is described by the finite mixture:
My By
Pay, (K19 =D 7, P85 AD14)),  7;>0, Doy, =I )
j=1 j=1
From the fact that
Byy

I Puy, X10)Py, (V)Y = Py, (%) = Z:, yipxlJ),  pxl)= Ip(x -8(», 4;)|9;)pum, (¥)dy ®)
j=

we see that the design of eq.(7) is equivalent to using a finite mixture of pix|p, j=1, ..., n,, for modeling the marginal
density p(x).
Similarly, the specification of p My (¥| x) is made by inverting x back to the original lower dimension y, via the Yang
passage
y=feU+eR,  j=1,..n,, &) from pef) v ©)
that is also described by a finite mixture:
Myix ny,
Pa, 10= D B p-FRUDIY),  B>0, D p=I (10)
j=1 Jj=1

This design can be justified by the fact that it is equivalent to using the following finite mixture p,, (y) for approximating
Pum, »:
Pyx
[Prt,, 01024 = pag, 0= D BP0 1D POID= [PO=FEUDIYPACIE ()
=
A BKYY system with the above architecture design is called BKYY Dimension Reduction system.
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2.3 BKYY DIMENSION REDUCTION AND DETERMINATION (BKYY-DRD) THEORY

Putting the four components pMm(ylx) s Pm, (), Pum,, (x| y) and Pu, (y) into eq.(2), we produce a BKYY-DRD
theory, which consists of four parts, as follows:

(1) First, with k, N ={n,y,,n,,,n,} fixed, we determine ©, ={8,,7,,6,.;,¥,,4;,U,} by
©, =argmin KL(©,,N) , KL given by eq.(2), (12)
Oy
which is called parameter learning and can be implemented by an iterative Alternative Minimization:

Stepl: FixM, = M3" , get M{* = argmin KLy, »,.
M,

Step2: FixM; = M{', get M;°* = argmin KLy ,, 13
M2

which guarantees to reduce KL, 5, until it converges to a local minimum at 0, .

(2) Second, with N = {nxl ysPyjxs M y} fixed, we determine the dimension k by

k*=minK, K=YJ()=minJk) , Jy(k) = KL(®},N) (14)

That is, we determine the smallest k that minimizes J,(k). In other words, we select the simplest structural scale from
multiple choices. It has been shown that, for a Ying-Yang pair with incremental architecture, J,(k) > J,(k°) for k < k° and

J{ (k)=J{ (k°) for k= k°, where k° is the correct value for k.

For aset D, = {x, }fi , of finite samples, J,(k) may still slowly decrease even after k> k°. Two types of solutions are

suggested for detecting &° in such cases. One selects &° to be the point at which J;(k)-J,(k+1) drops suddenly. The other
way is to modify J(k) into a new version J,(k) such that J,(k) decreases as k increases and reaches its minimum at k° and
then increases as k increases.

From eq.(2), we can decompose J,(k) into

KR =L@+ Hy®,  Hyu®=[ pp 01020 py, (v1x)dsdy (15)

It is interesting to observe that -H, (k) is actually the average entropy of the Yang passage. For finite samples, the
uncertainty of the Yang passage by p M, (v|x) will increase when k2>k°, and thus the negative entropy H, (k) will
decrease as k increases. Therefore, the removal of H, (k) from Jy(k) will let Jy(k)-H, (k)=J,(k) increase as k increases
when k> k° . Based on this, we propose the following alternative criterion:

=miny (0, L0=40- [ py 0102 @I,, (X (16)
for detecting k° as the minimum point of J,(k), where p M (y|x) is obtained by minimizing KL(®,,N). More generally,
a similar result can be obtained by a family of J,(k) as

BO=4®7, [ Py OIOP@IND,, G0y, 057, an

For the purpose of detecting the number of gaussians in a gaussian mixture, J,(k) given by eq.(16) are shown to work well
both theoretically and experimentally. The criterion J(k,®,) given by eq.(11) in Xu [1996] is actually a special case of

J,(k) given by eq.(17) for a gaussian mixture with y, =0.5, which have been shown to work well experimentally.
(3) Third, we perform structural scale selection by N* = min,J(N) with
KL(H,: ,N), CorrespondingtoJ,,

J(N)= . .
) KL(O,,N)-y, J:pr;p: 1x)p, (x)lan;Ix (v | x)dxdy,0 <y,, CorrespondingtoJ,.

18)
(4) Finally, after learning, we map x back to y either stochastically according to Pum,, (¥|x) by eq.(10) or

deterministically by taking the regression E(y|x)= Ipr |x)ay.

yix
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3 GAUSSIAN DESIGN, FACTOR ANALYSIS, PCA AND NONLINEAR PCA
3.1 GAUSSIAN MIXTURE BASED BKYY-DRD

We will consider specific cases of BKYY, based on gaussian mixtures:

ny
Py, )= P16) =Y @;Gly,mP, 4D),
J=1
My
Pa,, (x19)= 27,6 g A ED) . pay, (10)= ﬁjﬂ,o‘(y, fW;x),Z9) (19)
Jj=1
where G(z, m, S) is a gaussian with mean vector m and co-variance matnx S, and g(r), f(r) are pre-specified nonlinear
functions, e.g., a sigmoid function or even a complicated function implemented by a feed-forward network, with the
degenerated case being the linear function g(r) = r, f(r) = r. Moreover, we have

gy =[g(a y)....g@i 1", A" =[ay,....a,],
FWx)=[f @] )y fp ), UT =ty ], (20)

which are usually called post-nonlinear mappings, because a univariate nonlinear function is imposed on the output of the
linear mappings.
This system uses a mixture of post-nonlinear channels g(4,y) to generate x:

Myy

P, ()= Zy,p(xm, px1 )= (G0, (4,0, ED)pas, ). @1

Also, this system uses a mlxture of post-nonlinear channels f{Uyx) to invert x back into one of ny,, distributions p(y /), j=1,
in the dimension-reduced space:
ny,,

Pa, )= Zﬂ,p(yu) P01 D)= (GO, fU 2, ZPpy () @)

> Myjx

such that the tasks of data dxmensmn reduction and unsupervised classification are combined.
With eq.(19), we get the following regressions in terms of linear combinationS'

Yll‘

E(y|x)-2 B, fU ;x), E(xm-zy g(A4;y). (23)

Through the use of random samplmg techmques, we propose the followmg adaptive algorithm for parameter learning:
Step 1: Pick an integer j among {1, 2, ..., n,,} according to the probabilities i@ """Bnm , and take a random

sample & from G(¢;,0, Z(’) ). Thenlet y=f (U;Idx)+a ; for the current x.

Step 2:
Dld (j)ald (j)old
. G(y,my’ 2,
(a) Let Ky = 0, - )Id , update
Z OIdG(y, ()° /1(1)0 )
-a old | L pUi) () LN By Okl
a;=(1-maj;" +nh;”, my’ =m; ”a“"' -m” ),
J
) . h(j) - old
old [/
AP =A=mAP™ e — (v- P Y -mP T
J
nold
U TG g4y, DT _dg(r)
(b) Let A)= » ld — o Ng = 7 l,o ot , » update
Dy G(x, g(4 y),z,,y ) r
j _(1 ) old h(]) A =A01d+ xly Z(]) d)—l[ (Aold )lyT
77 7 le ’ J J 77773 7old g y ’
J
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oId
2 =a-nzY 7’,‘,'12[ g4 ple-gagnl
J

nold
B1GO, S WU ). ZN) G
hf, ) J yx i and_ ny = —1(1(72 |r=U;,,,,x , update

(C) Let x =
D BMG. U IRT)

0l 1 old _.
B; =-mB“ +nhg), Uj=U;?"’+nnfﬂ’.},’; 30 ()

() (Jj)°od §|jx) old old
D4 =a-m T e S b-rwe ol-rwug ol e
Jj
The above algorithm applies to the linear case of g(r) = r, fir) = r by simply inserting them in each place that they appear
together with imposing 7, = 1, 7, = 1.

After applying the above parameter learning algorithm, we can also use eq.(14) and eq.(16) to determine the
dimension k, as well as use eq.(18) for structure scale selection. In the next section, we will show that even the simplest
case of eq.(19) with n, = 1, n,, = 1 and n,;, = 1 not only includes three existing dimension reduction methods as special
cases, but also provides several interesting results.

3.2 LINEAR REDUCTION, FACTOR ANALYSIS AND FACTOR NUMBER SELECTION

We begin by modeling a general linear dimension reduction problem. We consider an example where y € R* comes from
a gaussian distribution p,, (»)=G(,0,4,) with E(y)=0 and A, =diag[4,..,4], ;>0 and data xeR", n > ks
generated from

x=Ay+e,, e,is gaussian with Ee, = 0, Ele,el ]=3,,, Ele,y"1=0. (25)

According to the derivation of Item 1 in Sec.4 later, without losing any generality, we can equivalently consider a
simplified problem:

x=AD;y+e, , with G(e,,0,2,,) and G(,0,1;), Ele,y"1=0, A"A=I, D, = diag[d,,..., d] > 0 (26)
which actually defines a special architecture design as follows:
P,V =GW0. 1),  pu, (1)) =G(x, 4Dy, Zy,), ATA=I;
Pu,, (V10 =G(Ux X)), Par, ()= py(x) given by eq.(3) 27
which is a simplest special case of eq.(19) with g(r) = r, {r) = ratn, = 1, n,, = l and n,), = 1.
Putting the design into eq.(2), minw,zm} KL(M,,M,) will result in

G(x, ADyy,%.1,)G(,0,1;)

p(x’ ®k) = .[G(xa ADky’ ley)G(y’()’ Ik)dy = G(X)O’ Zx) ’ pMylx (y ! x) =

p(xs ®k)
or U=sDA"Z7', I, =1, -DyA" ;' 4D, X,=3,, +4D;A". (28)
Thus, the minimization of KL(M,, M,) becomes the following minimization:
minKL@®,), ©,={..4}, KL®O =I ¥ in—2e®_ 4 29
nKL@), 0=y, K@= [pom-LED 9)
which, as 2 — 0, is equivalent to
g M ALO0.  LO)= —lenp(x,,@k) with p(x,®;) given by eq.(28). (30)

In other words, the special case is actually equivalent to conventional factor analysis, which has been widely studied in the
literature of statistics [Sharma 1995].

This provides us with two benefits. The first is that we can now use the iterative Alternative Minimization procedure of
€q.(13) to obtain the following new batch algorithm for implementing conventional factor analysis:

Step1: Fix A=A, D, =D, 3 =3% get pu,, (¥1x)=G(»,Ux, 2,x) » With

U=D A" 23, Z,, =1, -D, A" T7' 4D, ;
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Step2: I, = LpM (1 %)0x, — AD,y)(x; - ADky)’ay=—~Z(x ADUx)(x, - ADUx)

yix

Let S= —ZZ‘ be, x; Z;l and solve the eigen-equation SA = AD, such that the column of A are the k

elgenvectors of S that correspond to the first k eigenvalues.
Then, get £, =X, +4D; A", andlet A% =4,D}" =D, T =%, . (31)

In addition, the special case of eq.(24) with g&gn) =r,firy=ratn,=1,n, =1and n,, = 1 also provides us with an
adaptive algorithm for performing factor analysis:

Stepl: X, =1, -DyA" ;' AD,, U=D, A" X},

Take a sample x, then a random sample ¢ from G(¢,0,2,,,), lety = Ux + &
Step2: Dy =D +nA” T3 (x— ADy)y", A= 4"H +1(I - 447 )23, (x— AD, y)y" Dy,

Sy =Sy 41 - AD )&= AD )", T, =, +AD}AT, U=D, 4T T3,

4 =4, DM =D, TP =T, (32

where (I-A4A") Z;lly (x—ADy y) yT D, is the gradient descent direction of (x—AD;y) Z;lly (x—AD, y) constrained on
ATA=1,.

Both of the above algorithms should converge to a local maximum of L(®,) given by eq.(30).

The second benfit is that we can now use J,(k) by eq.(14) or J,(k) from eq.(16) or eq.(17) to detect the unknown
number of k factors. Actually, after ignoring some irrelevant constants, they can be simplified to:

- 1<
Jl(k) = O.S{In Zx Sx } ’ Sx = —;J-inxiT ’
i=1

Ji(K)+0.5(n|X% [+ k),  byeq.(16)
Jy (k) + 0.5y, +k),0<y,, byeq.(17)

where ‘*’ indicates the values obtained after convergence by eq.(31) or eq.(32).

*
MEYi,

‘
ylx

Ja (k)= (33)

ylx

3.3 PCA AND SUBSPACE DIMENSION DETERMINATION

We now consider a special case of eq.(27) with X, = f,yld , where I, is a d x d identity matrix. In this case, eq.(28)
becomes
U=D,A"3}', %, = Adiag[(aflylk +D}), 05,1, k]ﬂ,
Ty =1y - Dy A" T 4Dy =1, - Di (02,1, + DY), (34)
and thus eq.(29) and eq.(30) become
-1 I 2 2y 2 T :
mm J(©,),J©,)=1nZ, |+Tr[z S ]Zx = Adtag[(a'xlylk + D ),a,,,yId_,,]A ,S, given by eq.(31),

In|%, | =In

oipli+ Di|+(@-kno}, = ZIn(o-x,y+d2)+(d Hinol,,
g7 s, |=r{adiagie?, 1, + D)0 ,Iyzd_k] A'S, (35)

As shown in Item 2 of Sec.4, its solution is that A consists of the ﬁrst k principal component vectors of S, as its column
vectors. This A can be solved by using either a batch or an adaptive algorithm, such as proposed in Xu [1993].
From eq.(29), we also have

1
U =diag[1- ;Iy | ;‘y 2247, e =1~ Dkdmg(ax‘ylk +Dk) -o;,,lyahag[/1 w1 (36)
1 1
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Therefore, we can see that the BYY DRD for linear dimension reduction is equivalent to a modified PCA. Interestingly,

we can prove that E||y - j)||2 = E||y—Ux||2 is minimized at U by eq.(36) with the minimum Tr[Z ylx]= af,yz;zl;. That
J

is, the error Ely - 5)"2 provided by the original PCA mapping (i.e., U=A") is larger than that produced by eq.(36).

Similar to eq.(33), we can also detect the subspace dimension k by

Jy(k) = 0. 5[2111;3 +d-kho ly} , oy = d p Zz , with % -c2, >0,
j=1 J=k+1
0.5(d lnaxl y 5, byeq.(16),
(- y,)ZH In A% +(d-k+y,k)incl, + 7,k],0 <7,, byeg.(17).

The criteria can be justified by the following two theorems:

Jy (k)= 0 5[ @37

Theorem 1 (1) J,;(k) is monotonically non-increasing as k increases. If 73{ > > -?»’fj, J,(k) is monotonically

decreasing as k increases.
(2) Assume that the correct dimension of the subspace is k°, we have

2 2 . 0
dj +O'o’x|y, jSk N

lx> >/1x >/1x
Jj>k°.

2L = =,1f,,,with/1;={ (38)

Goxy>
Thus, J,(k) is monotonically non-increasing as k increases from k = 1 to k° and reaches the minimum before or at k°, and
then remains at this minimum as k continues to increase. Particularly, in eq.(38) if A >.. >/1;,, , Ji(k) monotonically

decreases as k increases from k = 1 to k° and reaches the minimum at k°, and then remains at this minimum as k continues
to increase.

A . . )
Theorem 2 Let r(k+1)= _k_tl___ >1 which is actually the ratio of the k+1" eigenvalue over the average of the rest
ok k+1xy

d-k-1 smallest eigenvalues.

(1) J,(k) with y. =1 is monotonically decreasing as k increases for k <k° and reaches the minimum at k° if
rk+1)>(d-k)e"! —d+k+1 for k > K°, and then monotonically increases as k continues to increase if
rk+1)<(d-k)e"? —d+k+1.

(2) For k > k° we have r(k+1) = 1 and J,(k) with y, =1 always monotonically increases as k continues to

increase (since (d —k)e'? >d +k).

3.4 NONLINEAR PCA AND LMSER

We consider another special case of eq.(19) at n, = 1, n,, = 1 and n,|, = 1 with linear g(dy) = Ay but f{Ux) being still
post-nonlinear. That is, we have
pMy »=G(, my7’1y) ’ prly (x| »)=G(x, 4y, iny) ’ pMylx 1) =G, f(Ux), Zy|x) . 39

According to the derivation of Item 3 later in Sec.4, from eq.(3) with h = 0 we find that the minimization of KL(M,,
M,) with respect to ©, = {my,ly,A,Z,,ly,U Zy|,} will become min@ J(®,, k) with
f(Ux;)- —Zf(Ux )

Z i=1

Therefore, we see that this case is equlvalent to mlmmxzmg the volume of the covariance of the reconstruction error x;
- Af(Ux;) and the variance of f{Ux;). When >

J(©,,k)=[T

Ay 24y given by eq.(48). (40)

Ay =0 Id, we have

R 2
of=— ) |x -4 (Ux)| @1

i=1

N
J(@k,k)=dlna2+%z
i=1

1 N
f(Uxi)—N—gf(Ux,-) :
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The minimization of the first term is equivalent to the minimization of o2, which represents the auto-association network
of Bourlard & Kamp [1988]. Moreover, if we constrain 4 = U”, we get

1 ¢ T 2
- =7IN"§“’C" U fs)| - “2)

Minimizing eq.(42) is equivalent to the least mean squared error reconstruction (LMSER) learning principle proposed in
Xu [1993], which derived both the batch and adaptive gradient algorithms, and described a symmetry breaking property of
nonlinearity. LMSER learning and its adaptive gradient algorithm was directly adopted to implement Independent
Component Analysis by Karhunen, & Joutsensalo [1994] under the name of Nonlinear PCA.

Here, using eq.(40) and eq.(41), we describe several additional benefits:

(1) The minimization of the variance given by the second term in eq.(41) provides a regularization tool for reducing
the range or uncertainty of the hidden representation f(Ux;). That is, using eq.(41) and eq.(42), we can obtain
regularized auto-association and LMSER.

(2) Eq.(40) provides a more generalized version for auto-association and LMSER such that a general type of

reconstruction error can be considered.

(3) We can use J,(k) from eq.(14) or J,(k) from eq.(16) or eq.(17) to detect the unknown dimension k. In this case,

after ignoring some irrelevant constants, from eq.(40) and eq.(41) we have:

* . 1 N T
Jl (k) — J(®k ’k)byeq~(40)Wlth leybyeq.(48)0rley = _N.~2i=l [xi - UTf(Ux,)I ;- UTf(le)] ,
J(©,k)byeq.(41)or o2 byeq .(42),

120 =510)=7, [pyyr V10PN, (v]5)dsdy=J,(8) +0.57, (n[E,

(4) We have the following adaptive ‘algorithm for implementing the general problem of minimizing In

€q.(40):
Step 1: Take a sample x, then a random sample € from G(g,0,1,), let y=U ody 1 g;

Step2: A=A +7n%}, [v -4 f(U""‘x)lf(U""‘x)T ,
U =UM 4 (4% 57 [x— 4o f(Uoldx)]xT ’
S = leyold I x)Ix — 49 py o x)]T ’
or particularly for the case A = U”, we have

+ k). 43)

in

z:a\rly

UT =UT01d +7]Z-l x_uTOIdf(Uoldx) f(Uoldx)T ,
Xy

=

U =U+nUZ3, [x ~UT fU i k7

r T
x— UTOIdf(UOIdx)] ,

ld
R LR A ok

U =U" 3o =%, 44)
Particularly, when X, = o1, , we can omit its updating and get

Step2: A= A% +”L_ Aoldf(Uoldx)]f(Uoldx)T L U=U 4 p(aod)T [x _ Aoldf(Uoldx)]xT ’
or particularly for the case A = U7, we have

UT =™ =0T 1M [T, U = U+ - U FUDkT.

4 MATHEMATICAL DERIVATION

Item 1[The derivation of eq.(26)] Because of the indeterminacy that x = Ay + ¢, = A'By + ¢, = A%'+ e,, for any

covariance matrix A, we have /=1,'= Bﬂ.yBT . Thus, without losing generality, we can assume that y e R* is from a

gaussian distribution G(y, 0, ). Moreover, for a full rank matrix A4, we have 4=UI,D,VT, vTU=UU" =1y,
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vy =vvT = Iy, D, = diagld,, ..., d;] and Ay =UIAD,,VTy =Ul ,D,y' with the covariance of ' being still
VTV =1I,, where I, is a d x k matrix with its elements being 1 for i = j and being O for i  j.
Item 2 [ The derivation for the solution of eq.(35)] The minimization of J(®,)by eq.(35) with respect to A with A4 =

I, can be de-coupled into the problem of minimizing Tr{X;'S,] with respect to A. According to Theorem 4 Brockett
[1989], all its local minima are reached only when A consists of the eigenvectors of S, as the column vectors. That is,

ATS A=2%, A* =diag[A},... A}]
d X
Z j=k+1 4j

k
THE;' S, 1=Tridiagl(c 3, Iy + Di ), 03, Lok 17 A7 1= (03, +7])7 45 +

J=1 O'J::Iy
X k Z‘{-kﬂl;
J(©)=) In(e], +7)+(@d-knol, + Y (o}, +d)) 4 + =0 (45)
= =1 Oxy
M aj®,) x_ 2 2
oreover, from ——=~=0 we have 4; = o}, +7; and
drj
d
k A
J©) =Y A% +(d-binc?, +k+z£’;ii,
= Oxy
dJ(©,) DI
k j=k+1"J x
From = =0, we have o2, = =L and J(©,) = ;lnl +(d-k)nol, +d.

Therefore, our problem becomes one of finding a permutation n of the indices {1, 2, ..., k} that minimizes the
following criterion:

Jy (k) =0. 5[2; InA% +(d-K)n axly], o =T jzk;] , with A5 -o3, >0 (46)
The global minimum is achieved when Aj,..., A} are the first k largest eigenvalues of S,.

Item 3[The derivation of eq.(40)] After neglecting the irrelevant term Ip,, (x)In p, (x)dx, from eq.(3) with h = 0, the
minimization of KL(M,,M,) with respect to @, = {my,ly,A,Z Ay Us 2 ylx} will become ming, J(©,k) with

N G( Py (U i),Z x)
J(@k,k)=—]l\72.[G(y,f(Ux,-),Zyu)‘n J();(f, mx A )y|
i=1 Y

Further ignoring some constant, we have

N
dy_%z_l: JG()’, f(Ux,-),Zy|x)lnG(x,.,Ay, 2x|y)dy

% e X
2J(0,, k)=~ ml | Iy—LL—k +7‘\,~2Tr[z;‘ jG(y,f(Uxi),zm)(y—my)(y—my)Tdy]
y i=1

xly

+— Z THER, (G0 fUs), E o) = A)x; = 49)” )

% 4
2l &ZT'[/E‘ [60, fUs) 2 )00" = m,y" =y + ] ]
i=1

x|y

|ﬂ

|

+—er[zx,y [60, 1), Z g )xix] = dyx] =5, (A0 + " AT )]

rl%‘kwwzmh ZTr[f(Ux) IERICOR '"]
y A1y

i=1
+ﬁ§[xi - AF(Ux)Y Z3 [x; — Af (Ux;)] 7
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From dJ(©;,k)=-Tr(Z;, d X, )+ Tr[4;'d T ], we have T, =4, thus Tr[4}' &, 1=k . Also, we have

N ‘ N
Tay =7 2l = AUz = AU my =" f(Us,). @®)
i=1

i=1
Moreover, for the same argument as made in the above Item 1, without losing generality we can let A, = I, . Therefore,
by ignoring the constant scale 2 in eq.(47) and also a constant Tr{I;)] = d we get eq.(40).

5 EXPERIMENTS

Here, we provide only some of the experimental results with regard to verifying the criteria J,(k) and J,(k) given in eq.(37)
in comparison with a widely used conventional heuristic criterion, as follow:

k d
nky=Y 451D 5 >T, , (49)
J=1 Jj=1

with 0 < T, < 1 being a prespecified threshold Oja [1983]. Thus, the problem of selecting k is transformed to the
problem of selecting T,.

Samples points of G(y, 0, I,) are generated in R* and then mapped to x in R, RE, R'° by eq.(26), with A’4 = I and
D,f = diag[100,70,40] and noise added at weak, middle and strong levgls with afly =1, 5, 10, respectively.

From Figures 2, 3 and 4, we see that both J,(k) and J,(k) monotonically decrease as k increases from k¥ = 1 and reach
corresponding minimum values at the correct dimension 3. Then J,(k) remains at its minimum value as k continues to
increase, and J,(k) monotonically increases as k continues to increase. That is, Theorems 1 & 2 are verified. However, we
see that the heuristic criterion n(k) is always monotonically increasing. Although one may still detect the dimension by
finding point on n(k) where its rate-of-increase slows down, this is not as direct and robust as J,(k) and Jy(k). Also, when
noise is large, the detection of this point on n(k) becomes more difficult as shown in Figures 2, 3 and 4.

= —— = i S = F R
..... ‘eig prog. _.... g prop. ) - ..... eig prop.
o0 e w'?r:;?.,\
\.\ h N [ S A S
o N N
s 2 25 3 a5 4 45 s 55 e 1T s 2 25 3 as 4 43 s 55 s T 13 2 25 3 35 4 45 5 55 8
. . 2 . . 2 . .
(a) noise variance Oxly = 1 (b) noise variance Oxly = 5 (c) noise variance °'>2<|y =10

FIGURE 2. The resulted plots of J;, J, and n(k) on the data set that is mapped from R° to R®, with n(k) denoted by
“eig.prop.” (i.e., eigenvalues' proportion).

,,,,,

______

_____ P

] 2 3 4 5 e 7 ] ) 2 3 4 E) s 7 8 > 2 3 4 s ] 7 8

(a) noise variance 0'3|y =1 (b) noise variance crf, y =35 (c) noise variance oﬁ,y =1

FIGURE 3. The plots of J;, J, and n(k) on the data set that is mapped from R to R®.
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............ TE
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N A e
] 2 ] B [] 7 s ] 1 " 2 3 4 5 ] 7 s ] o 2 3 4 ] s 7 0 s
(a) noise variance afb, =1 (b) noise variance a,ﬁy = (c) noise variance afb, =10

FIGURE 4. The plots of J;, J, and (k) on the data set that is mapped from R* to R'°.
6 CONCLUSIONS

A particular case of the Bayesian Ying-Yang (BYY) learning theory provides a general theory for developing various linear
and nonlinear techniques for dimension reduction and determination (DRD). This theory not only includes factor analysis,
PCA, auto-association networks, and LMSER-based nonlinear PCA as special cases, but also provides a number of new
results, consisting of (a) new batch and adaptive algorithms for factor analysis, (b) criteria for determining the number of
factors and the dimension of the PCA subspace, (c) a procedure for a specific Gaussian mixture based nonlinear BYY
DRD, and (d) extensions for auto-association and LMSER-based nonlinear PCA.
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TABLE OF NOTATIONS

Bayesian Ying-Yang dimension reduction and determination
principal component analysis

least mean square error reconstruction

the trace of the square matrix C

m x m diagonal matrix with its diagonal elements d,, ..., d,,
m x m identity matrix

a data point in the original space of dimension d

a data point in the space of a reduced dimension k¥ < d

a liner dimension reduction mapping

a nonlinear dimension reduction mapping in general case

post -nonlinear mapping with f{r) being a univariate function
Yang machine and its representation in a joint distribution
Ying machine and its representation in a joint distribution
the Yang passage x—>y and its representation in a distribution
the Ying passage y—x and its representation in a distribution
the representation of the original space in a distribution

a kernel function with smoothing parameter &
a kernel estimation of p,, (x), see eq.(3)

the representation of the dimension reduced space in a distribution p(y|6,)
a parametric representation of p M, (»),e.g., see eq.(4)

see eq.(4)

a Ying passage, e.g., see €q.(9)

see eq.(7)

the parametric matrix in a backward mapping

a post -nonlinear backward mapping, g(r) is a univariate function

the marginal represented by Ying machine, see eq.(8), eq.(21)

a Yang passage, €.g., see €q.(6)

see €q.(10)

the marginal represented by Yang machine, see eq.(11), eq.(22)

the Kullback Divergence between Ying and Yang, see eq.(2)

KLy, p, in its parametric representation, see eq.(12)

criteria for determining the dimension k, see eq.(14) and eq.(17)

see eq.(17)

the specifications of @, , Pum,, (y|x) after parameter learning eq.(12)

the specifications of the dimension k by eq.(14) and eq.(17)

a gaussian with mean m and co-variance S

covariance matrices, see eq.(19)

a pre-given learning stepsize

a diagonal matrix, see eq.(26)

see eq.(28)

the sample covariance matrix, see eq.(33)

k eigenvalues of S,
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