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Abstract. This paper presents a comparative study of two discrimina-
tive methods, i.e., Rival Penalized Competitive Learning (RPCL) and
Minimum Classification Error (MCE), for the tasks of Large Vocabu-
lary Continuous Speech Recognition (LVCSR). MCE aims at minimiz-
ing a smoothed sentence error on training data, while RPCL focus on
avoiding misclassification through enforcing the learning of correct class
and de-learning its best rival class. For a fair comparison, both the two
discriminative mechanisms are implemented at state level. The LVCSR
results show that both MCE and RPCL perform better than Maximum
Likelihood Estimation (MLE), while RPCL has better discriminative and
generative abilities than MCE.

Keywords: Rival penalized competitive learning, minimum classifica-
tion error, discriminative training, large vocabulary continuous speech
recognition.

1 Introduction

In recent years, Discriminative Training (DT) methods significantly improve the
performance of speech recognition. The success of DT methods for large-scale
tasks relies on three key ingredients. The first one is the formulation of a DT
criterion. The most widely used DT criteria include Maximum Mutual Infor-
mation (MMI) [1], and a class of error minimizing discriminative training crite-
ria: Minimum Classification Error (MCE) [2] and Minimum Word/Phone Error
(MWE/MPE)[3]. The second ingredient is the use of lattice-based competing
space, which provides more competing paths and avoids reduplicative computa-
tion on the same word in different strings, when comparing with traditional string
based competing space. The third ingredient is to adopt the widely used Ex-
tended Baum-Welch(EBW) algorithm for parameter estimation. An overview of
these methods are referred to [4]. Recently, Rival Penalized Competitive Learn-
ing (RPCL) was introduced in [5] to speech recognition with promising results in
a comparison with MMIE and MPE. However, there is still a lack of comparison
between RPCL and MCE. This paper is motivated for such a comparative study.
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Fig. 1. The hierarchical structure of word in GMM-HMM based speech recognition:
word level, phone level(HMM) and state level(GMM)

MCE criteria was first proposed in [2], which aims at minimizing the ex-
pectation of a smoothed string error on training data. The MCE discriminant
function can be generalized to model word strings, phones, and other levels in
speech recognition. In an early study [6], the string-level MCE was shown to
have similar performance with MMIE based method on small vocabulary tasks.
In [7], phone-level based MCE was used for the acoustic model training of a
continuous phoneme recognition task, which turned out to be more effective
than string-level based MCE. Moreover, studies in recent years [8,9] investigated
lattice-based MCE methods, which have comparative performance with MPE
based method on the large vocabulary tasks.

First proposed in 1992 [10,11], RPCL is a further development of competitive
learning on a task of multiple classes or models that compete to learn samples.
For each sample, the winner learns while its rival (i.e., the second winner) is
repelled a little bit from the sample, which reduces a duplicated sample allocation
such that the boundaries between models become more discriminative. In [5],
RPCL was implemented on hidden Markov states for a discriminative Hidden
Markov Model (HMM) based speech model as shown in Fig.1. Only the best rival
state of the correct state is repelled, which increases its discriminative ability
and obtains preferable generalization ability. When applied to LVCSR, it showed
improved generalization performance than the MMIE and MPE, especially when
the sources of test sets are different from the training set.

This paper follows [5] to present a comparison between RPCL and MCE as
discriminative training methods using state level competing space for LVCSR
task. Referring to [5], RPCL is implemented at the state level. For a fair com-
parison, according to [9], MCE is also derived to be implemented at state level.
Experiments are conducted on large vocabulary continuous speech recognition
task: 863-I-Test (matched with training data) and Hub-4-Test (unmatched with
training data). The results show that the RPCL based method has better dis-
criminative and generative abilities than MCE based method on the test data
either matched or unmatched with train data.

The rest of this paper is organized as follows: In Section 2, state-level RPCL
is reviewed. In Section 3, MCE using state level competing space is briefly in-
troduced. In Section 4, experimental results of RPCL and MCE are presented.
Finally, conclusions are made in Section 5.
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2 Rival Penalized Competitive Learning

First proposed in 1992 [10,11] and further developed subsequently, RPCL is
a competitive-learning-featured, general problem-solving framework, for multi-
learners or multi-agents with each to be allocated to learn one of multiple struc-
tures underlying observations. Readers are referred to [12] for a systematic review
and recent developments. In the following, we only provide a brief introduction.

We measure the error or cost for the j-th learner to describe the current input
xt by εt(θj) ≥ 0. The winner and rival are decided by Eq.(1), where ct is called
winner, and the second winner rt is its rival. RPCL learning can be simply
implemented by Eq.(2). Not only the parameter θct of the winner is learned
such that εt(θct) decreases to some extent, but also the parameter θrt of the
rival is de-learned such that εt(θrt) increases by a little bit. The rival penalized
mechanism makes the boundaries between different learners or models become
more discriminative. Readers are referred to Sect.3.1 and Sect.3.2 in [13] and
particularly its Eq.(9)& Eq.(34) for further details.

pj,t =

⎧
⎨

⎩

1, if j = ct
−γ, if j = rt
0, otherwise

{
ct = argminjεt(θj)
rt = argminj �=ctεt(θj)

(1)

θnewj − θoldj ∝ pj,t∇θjεt(θj). (2)

Making RPCL based discriminative learning on p(xt|θj) across different hidden
Markov states, for each state j, we have

εt(θj) = − ln p(xt|θj) (3)

where p(xt|θj) =
K∑

k=1

αjkN (xt|μjk, Σjk) is a mixture of Gaussian distributions

N (xt|μjk, Σjk) with mean μjk and covariance matrix Σjk. For every input, in-
stead of getting ct = argminjεt(θj), the state that corresponds to the identity
of this input by the Viterbi force alignment is regarded as the winner state ct.
Still, we get the rival by rt = argminj �=ctεt(θj). After the initialization of all
the parameters {θj} by the MLE based BW algorithm, the parameter θj can be
iteratively optimized by Eq.(2).

One problem for the RPCL learning is how to determine an appropriate pe-
nalizing strength γ that is usually set in a heuristic way. Favorably, the Bayesian
Ying-Yang (BYY) harmony learning includes a mechanism of penalizing rivals.
RPCL can be regarded as a rough approximation of the BYY harmony learn-
ing for learning a mixture of multiple models, while the BYY harmony learning
provides a top-down guidance for choosing penalizing strength [14]. For a task
of learning a mixture of multiple models to which our tasks belongs, the BYY
harmony learning is implemented via maximizing H(p||q, θ) given in Eq.(8) of
[12]. From its implementation by the flow ∇θH(p||q, θ), we observe its link to
RPCL learning. Particularly, we consider the one given by Eq.(13) in [12], which
is rewritten as
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pj,t =

⎧
⎨

⎩

p(ct|xt) + (1 + γt)p(rt|xt), j = ct
−p(rt|xt)γt, j = rt
0, otherwise

(4)

Putting it into Eq.(2), we make a gradient based iterative implementation of
this RPCL simplified BYY harmony learning. Moreover, it follows from Eq.(3)
that we get pj,t∇θjkεt(θj) = −pjk,t∇θjk ln p(xt|θjk) with

pjk,t = pj,tp(k|xt, θj) (5)

where p(k|xt, θj) = αjkp(xt|θjk)/[
K∑

i=1

αjip(xt|θji)].
Alternatively, we may also make a batch way updating with the whole training

set used. Particularly, considering a Gaussian p(xt|θjk) = N (xt, μjk, Σjk), it

follows from solving
∑T

t=1 pjk,t∇θjkεt(θjk) = 0 that we get

αnew
jk =

∑T
t=1 pjk,t∑

k

∑T
t=1 pjk,t

, μnew
jk =

∑T
t=1 pjk,txt∑T
t=1 pjk,t

,

Σnew
jk =

∑T
t=1 pjk,t(xt−μnew

jk )(xt−μnew
jk )T

∑T
t=1 pjk,t

.
(6)

Together with Eq.(5), we iterate the following Ying-Yang alternation that im-
plements a RPCL type BYY harmony learning:

Yang-step: get RPCL-allocation by Eq.(5)

Ying-step: re-estimate Gaussian components by Eq.(6),

which has a same format as the classical EM algorithm and thus shares a similar
computing complexity. The difference comes from the weights pjk,t via which
the rival penalized mechanism is embedded.

While implementing the RPCL type BYY harmony learning by Eq.(4), getting
pjk,t by Eq.(5) is already an approximation of the BYY harmony learning that
leads to pjk,t = pj,tp(k|xt, θj)+ δjk,tp(j|xt) with δjk,t considering the winner en-
hancing and rival penalizing mechanism among the Gaussian components under
the same state j. If the winner state ct is considered reliable, we let p(ct|xt) ≈ 1.
The γt is considered as a small constant, γt = γ and γ < 0. Then, Eq.(4) can be
simplified to

pj,t =

⎧
⎨

⎩

1 + p(rt|xt), j = ct
−p(rt|xt)γ, j = rt
0, otherwise

(7)

where γ, playing a similar role as in Eq.(1), denotes the de-learning rate. The
bigger the γ is , the stronger the de-learning is. The learning of the winner state
ct is enhanced, while its rival state rt is de-learned with a de-learning rate γ. The
strengths of enhancing and de-learning vary as the degree of the competition,
namely the posterior probability of the rival state, which make the states more
discriminative.
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3 Minimum Classification Error

To compare with the state-level RPCL method [5], the MCE is also implemented
at the state level. The competing space of state-level MCE is the same as that
of state-level RPCL. The state-level MCE based method is derived by following
[8,9]. Its loss function and discriminant function are introduced as follows.

Suppose the reference state sequence of the rth training utterance consists of
Nr states, i.e., Sr = {s1r, s2r, · · · , sNr

r }. For each reference state snr , its correct
string set MK

snr
and incorrect string set MJ

snr
are defined, respectively, as:

∀S ∈ MK
snr
, ∃s ∈ S,s ≡ snr ,

∀S ∈ MJ
snr
, ∀s′ ∈ S′,s′ 
= snr

(8)

In Eq.(8), s ≡ snr means that the state s has the same state label and same time
alignment as the reference phone snr . Through, defined strictly, the boundary
constraints are slightly loosed in practice to allow certain degree of differences
in time alignment.

The reference state sequence is the state sequence obtained by the Viterbi
force alignment, therefore the reference state sequence keeps to be same for
all frames. For every frame t, the different between the incorrect and correct
state sequences is the state at time t, which is from the candidate competing
state set that was selected from all state by using KL distance measure in away
same as [5]. For every reference state st,r, its correct state sequence set MK

st,r
contains only one sequence, namely the state sequence obtained by the Viterbi
force alignment. The incorrect state sequence set MJ

st,r are the state sequences
that contain the competing state at frame t and same states as the correct state
sequence at other frames.

The discriminant function for each string set can be formulated as:

gK(θ) = log

⎡

⎢
⎣

1

|MK
snr
|

∑

S∈MK
snr

pαθ (Xr|S)pα(S)

⎤

⎥
⎦

1/α

(9)

and

gJ(θ) = log

⎡

⎢
⎣

1

|MJ
snr
|

∑

S∈MJ
snr

pαθ (Xr|S)pα(S)

⎤

⎥
⎦

1/α

. (10)

The misclassification measure related to the reference state snr can be written
as:

dsnr = −gK(θ) + gJ(θ). (11)

Consequently, the state-level MCE criteria can be written as:

FMCE =

R∑

r=1

Nr∑

n=1

f(dsnr ) (12)

where f(z) = −1/(1 + e2ρz).
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4 Experiments and Results

4.1 Experimental Setup

The speech corpus employed in this paper is the continuous Mandarin speech
corpora 863-I, which contains about 120 hours, including 166 speakers, 83 male
speakers and 83 female speakers. The training set consists speech of 73 male
speakers and 73 female speakers. The test set (863-I-Test) was selected from
the remainder 20 speakers, 20 utterances each. From the same corpus with the
training set, this test set is well matched with the training set. For investigating
the generalization ability of different models, we also test the models on a not-
well-matched test set, the 1997 HUB-4 Mandarin broadcast news evaluation
(Hub-4-Test), which consists of 654 utterances, including 230 for male speakers
and 424 for female speakers.

The acoustic models chosen for speech recognition were cross-word triphones
models built by decision-tree state clustering. After clustering, the resulted HMM
had 4,517 tied states with 32 Gaussian mixtures per state. The acoustic models
were first trained using the ML criterion and the BW update formulas. Referring
to [8,9], the state level MCE based methods is implemented with α = 1/15 and
ρ = 0.04. For investigating the effect of the different de-learning rate, the state
level RPCL based methods are implemented with different de-learning rates
γ =0.2, 0.3 and 0.4.

The language model for recognition evaluation is a word-based trigram built
from a vocabulary of 57K entries. The input speech data is made up of Mel-
frequency cepstral coefficients (MFCCs), with 13 cepstral coefficients including
the logarithmic energy and their first and second-order differentials. All experi-
ment results were obtained through a single pass recognition on test speech.

4.2 Experimental Results

The performance evaluation metric used in Mandarin speech recognition experi-
ments is the Chinese character error rate (CER). The MLE based acoustic model
yields a CER of 13.67% on test data 863-I-Test and 26.61% on test Hub-4-Test
data, that is, the performance tested on the matched test data is much better
than that tested on not-well-matched test data.

Character error rate of each iteration for two methods are shown in Fig.2. As
shown in the figure, both the two methods get improved recognition performance
on the two test sets.

The recognition performance of each method is given in Table 1. For RPCL
based methods, an appropriate value for γ can further improve the performance.
The RPCL with γ = 0.4 and 0.2 obtain best performance on 863-I-Test and
Hub-4-Test respectively. The RPCL based methods with all de-learning rate
performs better than the MCE based method, which shows the RPCL has better
discriminative ability than the MCE. Tested on the unmatched set, the MCE
based method is only slightly better than the MLE based method while the
RPCL based method also obtain large improvement as that on the matched test
set, which demonstrates the RPCL has better generative ability than the MCE.
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Fig. 2. Character error rate(%) varies with time on 863-I-Test(a) and Hub-4-Test(b)

Table 1. Performance comparison on 863-I-Test and Hub-4-Test for different methods

863-I-Test Hub-4-Test
CER(%) RR(%) CER(%) RR(%)

MLE 13.67 - 26.61 -
State-MCE 13.24 3.15 26.53 0.30

State-RPCL γ = 0.2 13.02 4.75 25.17 5.41
State-RPCL γ = 0.3 12.87 5.85 25.24 5.15
State-RPCL γ = 0.4 12.75 6.73 25.32 4.85

5 Conclusions

This paper provides a preliminary comparison between MCE and RPCL in dis-
criminative training of HMM based acoustic model in a large vocabulary continu-
ous speech recognition (LVCSR) system. Both the two methods are implemented
at the level of hidden states, and are tested on the data sets that are matched
or unmatched with the training data set. The experimental results show that
RPCL consistently performs better than MCE, on either matched or unmatched
test data sets. All the results lead to such a conclusion that RPCL is a promising
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method with good theoretical basis and practical utility for the task of LVSCR.
In the future, we will further implement and compare RPCL with MCE at the
phone level or other levels.
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