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Abstract Radar high-resolution range profiles
(HRRPs) are typical high-dimensional and inter-
dimension dependently distributed data, the statistical
modeling of which is a challenging task for HRRP-based
target recognition. Supposing that HRRP samples are
independent and jointly Gaussian distributed, a recent
work [Du L, Liu H W, Bao Z. IEEE Transactions on Sig-
nal Processing, 2008, 56(5): 1931–1944] applied factor
analysis (FA) to model HRRP data with a two-phase
approach for model selection, which achieved satisfac-
tory recognition performance. The theoretical analysis
and experimental results reveal that there exists high
temporal correlation among adjacent HRRPs. This pa-
per is thus motivated to model the spatial and temporal
structure of HRRP data simultaneously by employing
temporal factor analysis (TFA) model. For a limited
size of high-dimensional HRRP data, the two-phase ap-
proach for parameter learning and model selection suf-
fers from intensive computation burden and deteriorated
evaluation. To tackle these problems, this work adopts
the Bayesian Ying-Yang (BYY) harmony learning that
has automatic model selection ability during parameter
learning. Experimental results show stepwise improved
recognition and rejection performances from the two-
phase learning based FA, to the two-phase learning based
TFA and to the BYY harmony learning based TFA with
automatic model selection. In addition, adding many
extra free parameters to the classic FA model and thus
becoming even worse in identifiability, the model of a
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general linear dynamical system is even inferior to the
classic FA model.

Keywords radar automatic target recognition
(RATR), high-resolution range profile (HRRP), tempo-
ral factor analysis (TFA), Bayesian Ying-Yang (BYY)
harmony learning, automatic model selection

1 Introduction

A high-resolution range profile (HRRP) is the ampli-
tude of coherent summations of the complex time return
from target scatterers in each range cell. It contains tar-
get structure information, such as target size, scatterer
distribution, etc. Therefore, radar HRRP target recogni-
tion has received intensive attention from the radar au-
tomatic target recognition (RATR) community [1–10].

Statistical recognition methods have been extensively
studied and successfully applied to HRRP-based RATR
area [2,3,5–8]. By statistical recognition we mean the
class membership of a measured HRRP is determined by
its posterior probabilities of each class. Previous efforts
[2,3,6–8] showed that statistical recognition is superior
not only in its excellent performance but also in provid-
ing a measure for class prediction, and an opportunity
to combine the probabilities with additional information,
such as intelligence reports, and other sensor data. Thus,
we will concentrate on HRRP-based statistical recogni-
tion in this paper.

For HRRP-based statistical recognition, one key prob-
lem is to choose an appropriate model that can describe
HRRP’s statistical property accurately. In the earlier
literatures, some simple models such as independent
Gaussian [5], independent Gamma [3] and Gaussian-
Gamma compounded [6] model were proposed under the
assumption that the range cells in an HRRP are mu-
tually independent. Later, Du et al. [7,8] analyzed the



Penghui WANG et al. Radar HRRP statistical recognition 301

statistical characteristics of HRRP from physical mech-
anism and found the independence assumption among
different range cells in an HRRP is inappropriate. They
suggested HRRPs follow a joint Gaussian distribution.
For high-dimensional HRRP data whose sample size is
relatively small, it would be inaccurate to estimate the
Gaussian covariance matrix directly. Hence, the authors
resorted to some joint Gaussian models with less free pa-
rameters, where, factor analysis (FA) obtained the best
recognition performance [8].

All of the above models assume that HRRP samples
are independent and identically distributed (i.i.d.). In
this paper we will illustrate that the HRRP data are
highly temporally correlated which motivates us to in-
corporate this temporal correlation into HRRP statis-
tical modeling. To accomplish this task, we adopt a
spatio-temporal model named as temporal factor analy-
sis (TFA) [11–19], which has been widely used to model
high-dimensional time series [13–17,20,21]. Briefly, TFA
model is an extension of FA by considering the temporal
relationship of HRRPs in a hidden state space.

Once a class of parametric models has been selected,
we approach to the learning task consisting of parame-
ter learning and model selection [22]. For a given model
scale k, the parameters are usually learned by maximum
likelihood (ML) method. Nevertheless, the model scale
k is often unknown and can hardly be prespecified. A
conventional model selection approach is implemented
via a two-phase learning. In the first phase, parameter
learning, which is usually performed under the ML prin-
ciple, is repeated on a set of candidate model scales. In
the second phase, one model scale k∗ is selected among
the candidates by a model selection criterion. Examples
of such criteria include Akaike’s information criterion
(AIC) [23–25] and Schwarz’s Bayesian inference crite-
rion (BIC) [26].

However, for high-dimensional data like HRRPs, this
two-phase learning inevitably suffers from two problems,
i.e., huge computation and unreliable evaluation to the
criterion, see Ref. [19, Sect. 2.1] for a detailed discus-
sion. To tackle these problems, we adopt the automatic
Bayesian Ying-Yang (BYY) harmony learning [13–18],
which implements model selection automatically during
parameter learning. Based on the TFA model, one spe-
cific adaptive BYY algorithm is developed in this paper.

In the recognition experiments based on measured
HRRP data, we compare the performance of follow-
ing models, i.e., the two-phase learning based linear
dynamical systems (LDS-BIC) [27–29], the two-phase
learning based FA (FA-BIC), the two-phase learning
based TFA (TFA-BIC), and the BYY harmony learning
based TFA with automatic model selection (auto-TFA-
BYY), respectively. The recognition results show incre-
mentally improved performances from LDS-BIC, to FA-
BIC, to TFA-BIC, and to TFA-BYY. Moreover, TFA-

BYY greatly reduces the computation compared with
TFA-BIC. In the rejection experiments, the TFA model
shows superior rejection ability over the FA model.
These experimental observations verify the accuracy and
efficiency of the model and algorithm proposed in this
paper. In addition, adding many extra free parameters
to the classic FA model and thus becoming even worse
in identifiability, the LDS model is even inferior to the
classic FA model.

The remaining of this paper is organized as follows.
In Sect. 2, we give some background knowledge about
HRRP-based target recognition�including an analysis of
temporal correlation among HRRPs. Section 3 reviews
previous works, and introduces the TFA model and its
model selection. In Sect. 4, we further introduce BYY
harmony learning for the TFA model with automatic
model selection to overcome the drawbacks of two-phase
procedure. Based on measured HRRP data, Sect. 5 ex-
perimentally shows improved performances of our model
and learning algorithm. Finally, conclusions are drawn
in Sect. 6.

2 Background for HRRP-based RATR

2.1 Background knowledge of HRRP

For high-resolution radar, the wavelength of radar sig-
nal is much smaller than the target size, and the electro-
magnetism characteristic of the target can be described
by the scattering center model [30]. According to this
model, a target consists of many scatterers distributed
in several range cells along the radar line of sight (LOS).
Intuitively, an HRRP can be viewed as a projection of
radar returns from all these scatterers onto the radar
LOS, as illustrated in Fig. 1. Formally, an HRRP x is
the coherent summation amplitudes of the returns from
target scatterers in each range cell, defined as follows:

Fig. 1 Diagram of radar HRRP. The radar returns from all scat-
terers on the target are projected onto the LOS, resulting in an
HRRP
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x = [|x1| , |x2| , . . . , |xd|]T ,

with each xi =
Li∑

n=1

σniejφni, i = 1, 2, . . . , d, (1)

where |·| and [·]T denote modulus operation and matrix
transpose, d is the number of range cells, i.e., the dimen-
sionality of HRRP data. Usually, the measured HRRPs
are high-dimensional, e.g., d = 256 in Refs. [6–8] and
d = 128 in this paper. In the ith (i = 1, 2, . . ., d) range
cell, there are Li scatterers. Furthermore, for the nth
(n = 1, 2, . . ., Li) scatter, σni and φni are the reflectivity
strength and phase, respectively.

Before implementing the HRRP recognition task, we
need to deal with three sensitivity problems of HRRP,
namely, translation, amplitude-scale and target-aspect
sensitivities [6]. The former two could be settled by
translation alignment [1,6] and amplitude-scale normal-
ization [6] preprocessing. As to the target-aspect sensi-
tivity, a common strategy is to partition the consecu-
tive HRRPs into small aspect-frames and build different
models for each frame [6–8]. In the following, we assume
the HRRPs in each frame have been translation aligned
and amplitude-scale normalized.

2.2 Temporal correlation analysis of adjacent HRRPs

According to the scattering center model, when the
target aspect changes in a short time, the reflectivi-
ties σni (n = 1, 2, . . . , Li; i = 1, 2, . . . , d) of all scat-
terers are approximately invariant, whereas the phases
φni (n = 1, 2, . . . , Li; i = 1, 2, . . . , d) may change greatly.
The authors in Ref. [6] classified the range cells into three
types, where the first type consists of one predominant
scatter and a multiple of small scatterers. The ampli-
tudes of these range cells, which depend on the reflec-
tivities of predominant scatterers, keep nearly invariant.
Thus this type of range cells in contiguous HRRPs ex-
hibits a high degree of correlation. The other two types
contain none or more than one strong scatterer. The
great change in scatterer phases leads to a dramatic

fluctuation of their amplitudes which indicates poor cor-
relation between them. Usually, the correlation of two
adjacent HRRPs is mainly determined by the first type
of range cell. To verify this statement, we calculate the
average cross-correlation coefficients of measured HRRP
data (the data are introduced in Sect. 5). Let xt and
xt+1 be two adjacent HRRPs of a target, and the cross-
correlation coefficient ρt between them is given as fol-
lows:

ρt =

∣∣xT
t xt+1

∣∣
‖xt‖2 ‖xt+1‖2

, (2)

where t is the discrete time index, and ‖·‖2 denotes L2

norm. As shown in Fig. 2, the cross-correlation coeffi-
cients of each two adjacent HRRPs is close to one in most
cases, which indicates the high dependence in successive
HRRPs. Since the HRRPs are received sequentially, they
can be viewed as a high-dimensional time series and we
thus call the correlation above as temporal correlation.

Physically, the temporal correlation among HRRPs
reflects the change of target spatial structure with time
and HRRP sequences from different targets may have
different temporal evolution characteristic, so it is im-
portant to use this knowledge as a discriminative fea-
ture for RATR [4]. In this paper we will make a detailed
study on radar HRRP statistical recognition under the
prerequisite that the consecutive HRRPs in a frame are
temporally correlated.

2.3 Statistical recognition based on HRRP

Radar HRRP statistical recognition aims to classify the
HRRPs of unknown targets into different classes using a
Bayesian classifier. Considering a sequence of HRRPs
{x1, x2, . . . , xT } which is assumed to come from one
of the C classes, a Bayesian classifier assigns xt (t =
1, 2, . . . , T ) to the ĉ (xt) th class according to the fol-
lowing maximum a posterior (MAP) criterion [8]:

ĉ (xt) = arg max
c

p (c |xt )

= arg max
c

[p (xt| c) p(c)] , c = 1, 2, . . . , C, (3)

Fig. 2 Cross-correlation coefficients of adjacent HRRPs from three targets. 5001 consecutive HRRPs are randomly ex-
tracted from the measured HRRP data of each target. (a) An-26; (b) Cessna; (c) Yark-42
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where p (c |xt ) is the posterior probability of xt being of
class c, and p (xt| c) and p(c) are likelihood and prior
probability for class c, respectively. Generally, equal
prior probabilities are adopted, and Eq. (3) turns into

ĉ (xt) = arg max
c

p (xt| c) , c = 1, 2, . . . , C. (4)

Thus, the recognition task becomes estimating p (x|c).
In general, both nonparametric and parametric meth-

ods could be used to estimate p (x|c) [3]. However, non-
parametric methods need impractical amounts of sam-
ples to guarantee the estimation accuracy [3,31] and are
thus impractical for data lying in a high-dimensional
space, e.g., HRRPs. This paper focuses on the paramet-
ric modeling instead, and p (x|c) is shortly denoted as
p(x) in the sequel without further specification.

3 Statistical models and learning methods

3.1 Previous studies on statistical models

Most early works [2,3,5,6] in the area of radar HRRP
modeling assumed that the radar returns in each
range cell are statistically independent, i.e., p(x) =∏d

i=1 p (xi). For instance, in Refs. [2,3], an independent
Gamma model was adopted for HRRP modeling; in Ref.
[5], the author employed an independent Gaussian model
to describe HRRP data.

Later, Du et al. in Refs. [7,8] theoretically analyzed the
spatial correlation characteristic of range cells in HRRP
and suggested the usage of joint Gaussian distribution
to describe HRRPs. Because the modeling of HRRPs in
a frame is a typical small sample problem, the Gaus-
sian covariance matrix estimated directly from HRRPs
may be inaccurate even singular. This difficulty was cir-
cumvented in Refs. [7,8] by resorting to some parametric
models with less free parameters and FA model provided
the best recognition performance. For a d-dimensional
observable vector xt, FA postulates that xt is generated
via a linear mapping from a low-dimensional hidden vari-
able plus observation noise, i.e.,

xt = Ayt + μ + et,

yt ∼ G (yt|0, Im) ,

et ∼ G(et|0, Ψ), t = 1, 2, . . . , T, (5)

where μ is the d-dimensional mean vector of xt, yt rep-
resents the m-dimensional hidden variable with m <

d, G (yt|0, Im) denotes the Gaussian density of yt

with mean 0 and identity covariance matrix Im, et ∼
G(et|0, Ψ) is observation noise with Ψ being diag-
onal, A is a d × m projection matrix that maps the
hidden variables to the observation vectors. According
to the property of Gaussian variable, we have p (xt) =
G
(
xt|μ, AAT + Ψ

)
.

The task of estimating the set Θ of all the unknown
parameters in Eq. (5) is called parameter learning, which
is usually implemented by the expectation-maximization
(EM) algorithm under the ML principle [32]. The other
task is selecting an appropriate hidden dimension m,
which is usually called model selection since enumerating
different values of m actually considers a set of candidate
FA models of different scales. Model selection is conven-
tionally tackled by a two-phase procedure, a traditional
approach is a two-stage implementation, i.e., parameter
learning is repeated on a set of candidate hidden di-
mensionalities among which one is selected by a model
selection criterion, e.g., AIC [23–25] and BIC are used
by Ref. [33] in a two-phase implementation.

Besides considering the inter-dimensional dependence
by an FA model as above, recently paper [34] further
considers both non-Gaussian and inter-dimensional de-
pendence simultaneously by a mixture of factor analyz-
ers [35,36] or local factor analysis (LFA), that is, a mix-
ture of a number k of FA models with each FA model
having its own parameter set Θj and hidden dimension
mj.. Although learning can be still implemented by the
EM algorithm with model selection made in a two-stage
implementation, now there is a set k = {k, {mj}kj=1} of
k+1 integers to enumerate, which makes a two-stage im-
plementation suffer more serious problems of extensive
computation and unreliable estimation of the criterion
(see Ref. [19, Sect. 2.1] for a detailed discussion). Instead,
BYY harmony learning is used with a favorable nature
of automatic model selection, which determines the com-
ponent number and the hidden dimensionalities of LFA
automatically during parameter learning (see the inter-
pretations in Ref. [19], especially its Eqs. (3) and (4)).
Experimental results show incremental improvements on
recognition accuracy by three implementations, progres-
sively from a two-phase learning based FA, to a two-
phase learning based LFA, and then to BYY harmony
learning based LFA with automatic model selection.

3.2 Linear dynamical system (LDS) versus TFA

The above efforts all treat the HRRPs in each frame as
i.i.d. data. However, as we have analyzed in Sect. 2.2,
there is a temporal dependence among HRRPs. Natu-
rally, it arises the question whether Eq. (5) may be ex-
tended to take this temporal relation into HRRP mod-
eling, which leads us to the following formulation:

xt = Ayt + μ + et,

yt = B̃yt−1 + ωt, t = 1, 2, . . . , T,

et ∼ G(et|0, Ψ), ωt ∼ G (ωt|0, Ω) , (6)

where time is indexed by discrete t, parameters A, μ, Ψ
have the same meaning as in Eq. (5), et and ωt are as-
sumed to be uncorrelated random noises, et is assumed
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to be uncorrelated with yt and ωt is uncorrelated with
yt−1. Moreover, B̃ is an m ×m transition matrix. The
temporal relation is embodied in the first-order vec-
tor autoregressive process in the hidden state sequence
{y0, y1, . . . , yT }. It should be noted that the model pa-
rameters A, μ, B̃, Ψ and Ω are time invariant.

The above formulation has been extensively studied
in the literatures of neural networks, machine learning,
and signal processing for recent decades. These efforts
may be roughly classified by two different types of mo-
tivations. One type is featured by regarding Eq. (6) as
a general state space model or linear dynamical system
and then introducing the EM algorithm for its param-
eter estimation. It was originally derived by Shumway
and Stoffer in Ref. [37]. Around the middle of 1990’s,
a number of efforts have been made on re-introducing
the EM algorithm or making some extensions such as
variational approach and Ying-Yang matching [11,27–
29,37–43]. Though some of these efforts were made un-
der the name of system identification [28,29], Eq. (6) is
generally not identifiable while how special structures
or constraints make the model become identifiable and
stable is out of consideration in these studies, which is
obviously different from those studies of control system
theory.

Instead of jumping from FA to a general linear dy-
namical system, the other type of studies [12–19] origi-
nated from Ref. [11] and considered how the FA model
in Eq. (5) is extended to take temporal dependence
yt = B̃yt−1 + ωt into consideration, while still keep-
ing the original motivation that the cross-dimensional
independence of yt in order to improve the model iden-
tifiability. These studies were under the name of TFA
or independent state space with the following additional
requirements:

B̃,Λ,Ψ are all diagonal matrices. (7)

Also, the name of temporal dependence reduction (TDR)
is used to cover temporal independent factor analysis
(TIFA) and temporal independent component analysis
(TICA) for a general temporal model beyond the lin-
ear relation yt = B̃yt−1 + ωt. It should be noticed that
letting B̃ = 0 makes Eqs. (6) and (7) degenerate to
be equivalent to the FA model by Eq. (5), while letting
B̃=0 in Eq. (6) without Eq. (7) does not necessarily so.

In addition to taking temporal dependence into con-
sideration, Refs. [12–19] also aim at a model with a guar-
anteed stability and a further improvement on identifia-
bility. Favorably, it has been shown in Sects. III and IV
in Ref. [13] that Eq. (6) together with Eq. (7) indeed im-
proves the identifiability of the FA model by Eq. (5) be-
cause the notorious rotation indeterminacy of Gaussian
FA has been further removed due to yt = B̃yt−1 + ωt

with B̃ �= 0 known. In Ref. [15], not only the TFA model
stability is ensured with each diagonal element b̃i of B̃

satisfying
∣∣b̃i

∣∣ < 1, but also an identifiable family of TFA
structures has been investigated.

The studies in Refs. [27–29,37,41,42] use the EM al-
gorithm to implement the maximum likelihood learn-
ing, while the task of selecting an appropriate hidden
dimension m of yt is tackled by a two-stage implemen-
tation with help of a model selection criterion such as
AIC or BIC. In contrast, the studies in Refs. [12–19]
perform BYY harmony learning, by which model selec-
tion is made either automatically during learning or still
in a two-stage implementation but with an improved se-
lection criterion. The subsequent subsections further in-
troduce details about each of the two types.

3.3 EM algorithm based two-phase learning: LDS vs.
TFA

Given a family of parametric models, the task of model-
ing p (xt) turns into estimating model parameters when
a model scale m is given, where m is the component
number of Gamma mixture model [2,3], and the hidden
dimensionality for either FA [8] or TFA model, etc. The
parameter set Θm is estimated based on a given set of
samples X = {x1, x2, . . . , xT } under the ML criterion,
i.e., Θ̂m = arg maxΘm L (X |Θm ), which is often im-
plemented by the EM algorithm. The task of selecting an
appropriate dimensionality m is tackled by the following
two-phase procedure:

Phase 1 Compute Θ̂m = arg maxΘm L (X |Θm )
via EM algorithm given in Ref. [27] for each m ∈ M.
Here M is a candidate set for m, a typical choice of
which is [1, d− 1].

Phase 2 Find the optimal

m∗ = arg minm J(m),

J(m) =

{
−2L

(
X
∣∣Θ̂m

)
+ 2D(m), for AIC,

−2L
(
X
∣∣Θ̂m

)
+ (lnT )D(m), for BIC,

where L
(
X
∣∣Θ̂m

)
= ln q

(
X
∣∣Θ̂m

)
is the log-likelihood of

X based on ML estimator Θ̂k under a given m, and
D(m) is the number of free parameters in the model.

In this paper, we investigate the performances of both
the LDS by Eq. (6) and TFA jointly by Eqs. (6) and (7),
in the following three typical scenarios:
• LDS-general Phase 1 uses the EM algorithm

given in Ref. [27], with A, B̃ being two general ma-
trices and Ψ,Ω being two general covariance matrices,
while Phase 2 considers D(m) = dm + mm (for A, B̃)
+0.5m(m + 1) + 0.5d(d + 1) (for Ψ,Ω) + d (for μ).

For any invertible matrix Φ, we have

xt = AΦ−1 (Φyt) + μ + et,

(Φyt) =
(
ΦB̃Φ−1

)
(Φyt−1) + Φωt.

(8)

Let A′ = AΦ−1, y′
t = Φyt, y′

t−1 = Φyt−1, B̃′ =
ΦB̃Φ−1, ω′

t = Φωt, we again get the format x′
t =
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A′y′
t + μ + et, y′

t = B̃′y′
t−1 + ω′

t. That is, we have
an indeterminacy of any invertible matrix Φ.
• LDS-constrained In order to reduce the above

indeterminacy and especially to reduce the notorious ad-
ditive indeterminacy caused by Ψ, Phase 1 is added with
the following constraint:

Ψ is diagonal, Ω = I, (9)

for which a slight modification Ψnew = diag [Ψ′new] is
added after getting a new updating Ψ′new by the EM al-
gorithm given in Ref. [27]. Moreover, in Phase 2 we con-
sider D(m) = dm+mm (for A, B̃)+d+1 (for Ψ, Ω)+
d (for μ).
• TFA We further ensure the cross-dimensional in-

dependence of yt by modifying Eq. (9) into

B̃ is diagonal, Ψ is diagonal, and Ω = I. (10)

In the implementation by the EM algorithm given in
Ref. [27], in addition to the above Ψnew = diag [Ψ′new],
another modification Bnew = diag

[
B̃new

]
and B̃new ←

Bnew is also added after getting the new updating B̃new.
In Phase 2, we let D(m) = dm (for A) + m (for B̃) +
d + 1 (for Ψ, Ω) + d (for μ).

4 Automatic BYY harmony learning for TFA

4.1 Temporal BYY harmony learning

Firstly proposed in 1995 [44] and systematically devel-
oped in the past decade and half [19,45], not only BYY
harmony learning theory provides a general statistical
learning framework for parameter learning and model
selection under a best harmony principle; but also BYY
harmony learning on typical structures leads to new
model selection criteria, new techniques for implement-
ing regularization and a class of algorithms implement
automatic model selection during parameter learning.

Considering that the observation X is generated from
its inner representation R = {Y ,Θ}, where a parame-
ter set Θ represents the underlying structure of X, and
Y is the inner representation of X accordingly. Two
types of decomposition p (X, R) = p (R|X) p(X) and
q (X, R) = q (X|R) q(R) are called Yang machine and
Ying machine, respectively. Such a Ying-Yang pair is
called a BYY system, as depicted in the left of Fig.
3. The harmony measure is featured by following func-
tional:

H (p||q) =
∫

p (R|X) p(X) ln [q (X|R) q(R)] dXdR

=
∫

p(Θ|X)H (p||q,Θ) dΘ,

H (p||q,Θ) =
∫

p (Y |X) p(X) ln [q (X|Y ) q(Y )]

· dXdY + ln q(Θ). (11)

Different from maximizing the likelihood function, an
important nature of maximizing H (p||q) is that it leads
to not only a best matching between the Ying-Yang pair,
but also a compact model with a least complexity. Such
an ability can be observed from several perspectives, see
Sect. 4.1 in Ref. [19]. Here we only introduce one of them
due to space limit. On one hand, maximizing H (p||q) in
Eq. (11) forces Ying machine q(X, R) to match Yang
machine p(X, R). Due to a finite sample size and prac-
tical constraints imposed on the Ying-Yang structures,
a perfect equality q(X, R) = p(X, R) may not be really
reached but still be approached as possible as it can. At
this equality, H (p||q) becomes the negative entropy that
describes the complexity of the system. Further max-
imizing it will decrease the system complexity, which
leads to a model selection. Here, it is only a brief in-
troduction. Readers are referred to Ref. [19] for a recent
systematic description on the BYY harmony learning.

Fig. 3 BYY system in the general form and specific structures for TFA model
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In the sequel, we consider a noninformative prior on
Θ, i.e., ln q(Θ) is ignored, and also consider p (Θ|X)
in a free structure. Maximizing H (p||q) with respect to
such a p (Θ|X) leads to p (Θ|X) = δ

(
Θ− Θ̂

)
with

Θ̂ = arg maxΘ H (p||q,Θ) ,

H (p||q,Θ)

=
∫

p (Y |X) p(X) ln [q (X|Y ) q(Y )]dXdY .

(12)
Given X = {xt}Tt=1, we get an empirical den-

sity p(X) =
1
T

∑T
t=1 δ (x− xt). This sequence X =

{xt}Tt=1 is considered as generated from the hidden
states Y = {yt}Tt=1, the Ying machine is designed
to describe the first order Markovian dependence by
q(Y ) =

∏T
t=1 q (yt |yt−1, θy ) together with the Ying-

pathway q (X|Y ) =
∏T

t=1 q
(
xt|yt, θx|y

)
. Putting them

into Eq. (12), we are lead to a simplified version of Eq.
(59) in Ref. [29] at the special case h = 0, that is, we
have

H (p||q, θ, m) =
T∑

t=1

Ht (p||q, θ, m) ,

Ht (p||q, θ, m) =
∫

p (yt, yt−1|xt, θ)

· ln[q
(
xt|yt, θx|y

)
q (yt |yt−1, θy )]dytdyt−1.

(13)

Moreover, p (yt, yt−1|xt, θ) is adopted from Eq. (60) in
Ref. [19], that is, we have the following Bayesian inverse:

p (yt, yt−1|xt, θ) =
q (yt, yt−1, xt)∫

q (yt, yt−1, xt) dytdyt−1

=
q
(
xt|yt, θx|y

)
q (yt |yt−1, θy )∫

q
(
xt|yt, θx|y

)
q (yt |yt−1, θy ) dytdyt−1

.

(14)

4.2 BYY harmony learning based TFA with automatic
model selection

Traditionally, the studies on the classic FA are all made
on the parameterization by Eq. (5). In Ref. [46, Item 9.4],
an alternative FA parameterization has been proposed
and implemented by the BYY harmony learning, which
is featured by that the matrix A is restricted to be rect-
angular orthogonal matrix and G (yt|0, Im) is relaxed
to be G (yt|0, Λ) with a nonnegative diagonal matrix
Λ. For convenience, we refer the classic one simply by
FA-A and the alternative one by FA-B. The two FA pa-
rameterizations make no difference on q (X|Θ) and thus
are equivalent in term of the ML learning. In contrast,
two FA parameterizations become different in term of
the BYY harmony learning, as listed in Table 2 of Ref.
[16].

Recently, it has been experimentally found in Ref. [47]
that the FA-B outperforms the FA-A not only by the
variational Bayes learning but also much considerably
by the BYY harmony learning based criterion. It can
be further understood analytically from the statements
around Eqs. (28) and (29) in Ref. [45]. Even importantly,
relaxing Λ = diag [λ1, λ2, . . . , λm] from being forced at
Im in G (yt|0, Im) to the one in G (yt|0, Λ) provides
a chance for automatic model selection. The BYY har-
mony learning drives some λj → 0 when the jth dimen-
sion of yt is extra. That is, automatic model selection
can be made via discarding the jth dimension via check-
ing λj → 0. Further details are referred to Sect. 2.2 in
Ref. [45] for an outline and to Ref. [47] for an extensive
empirical comparison.

Actually, TFA jointly by Eqs. (6) and (10) corresponds
to the temporal extension of FA-A, thus denoted by
TFA-A. First addressed in Ref. [15], we consider a sin-
gular value decomposition (SVD) A = UTDV , where
D is diagonal, UTU = Im and V TV = V V T = Im.
Let Φ = V or Φ = DV in Eq. (8), we are lead to a
stable-identifiable family with each one being equivalent
to TFA-A. Moreover, the gradient flow for updating a
general matrix A is replaced by the orthogonal flows of
U and V on the Stiefel manifold, with a good numer-
ical property in computation. Within this family, one
instance (i.e., the case (d) given at the bottom on page
474 of Ref. [15]) is particularly recommended in the sub-
sequent studies, (see Eq. (175) in Ref. [16], Eq. (69) and
its extension Eq. (66) in Ref. [17]). This instance actu-
ally corresponds to the temporal extension of FA-B, thus
denoted by TFA-B, with its details rewritten as follows:

xt = Uyt + μ + et, yt = Byt−1 + εt, t = 1, 2, . . . , T,

et ∼ G (et|0, Ψ) , εt ∼ G
(
εt|0, D2

)
, y0 = 0m,

B = DV TB̃V D
−1

, UTU = Im,

V TV = V V T = Im, D = diag [d1, d2, . . . , dm] ,

B̃ = diag [b1, b2, . . . , bm] , bj =
esj − e−sj

esj + e−sj
,

(15)
for which we accordingly have

q (yt |yt−1, θy ) = G
(
yt|Byt−1, D

2
)
,

q
(
xt|yt, θx|y

)
= G (xt|Uyt + μ,Ψ) ,

p (yt, yt−1|xt, θ) =
G (xt|Uyt + μ,Ψ)G

(
yt|Byt−1, D

2
)

∫
G (xt|Uyt + μ,Ψ)G

(
yt|Byt−1, D

2
)
dytdyt−1

.

(16)
The above Ying-Yang components for the TFA model
are illustrated in the right of Fig. 3. Substituting them
into Eq. (13) and maximizing H (p||q, θ, m) with respect
to θ, the nature of least redundancy by the BYY har-
mony learning (see Sect. 2.2 in Ref. [19]) will provide
an intrinsic force to push di → 0 if the corresponding
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hidden dimension yt is extra and thus discarded. Ini-
tialized large enough, m will automatically reduce to an
appropriate dimension as learning proceeds.

4.3 A gradient based adaptive learning algorithm

Putting Eq. (16) into Eq. (13), learning algorithm is de-
veloped via maximizing H (p||q, θ, m) with respect to θ,
for which past efforts may be roughly outlined as follows:

1) q (yt |yt−1, θy ) ≈ q (yt |ȳt−1, θy ) is used and tem-
poral information is carried through ȳt−1 recursively by
the past value of

ȳt = arg max
yt

[
G (xt|Uyt + μ,Ψ)G

(
yt|Bȳt−1, D

2
)]

,

(17)
such that the problem by Eq. (13) reduces into learn-
ing FA-B of G

(
yt|νt, D2

)
with its mean in a regres-

sion structure νt = Bȳt−1. Via ȳt, the task is de-
coupled into adaptively learning a typical FA-B by
G (xt|Uyt + μ,Ψ)G

(
yt|0, D2

)
and learning a linear

regression by G
(
yt|Bȳt−1, D

2
)
, e.g., with help of the

algorithm given by Eqs. (78)–(80) in Ref. [14]. Fur-
ther improved algorithms are given in Ref. [18] (e.g.,
Algorithm III with the option of regression parame-
terization in Fig. 8) and in Ref. [19] (e.g., the Ying-
Yang alternation procedure given in Fig. 8), by updating
p (yt, yt−1| θ) via some learning regularization for alle-
viating being stuck at local optimal solutions.

2) q (yt |yt−1, θy ) ≈ q (yt |θy ) is used and temporal
information is carried recursively by

q (yt |θy ) =
∫

q (yt |yt−1, θy ) q (yt−1 |θy ) dyt−1, (18)

by which the problem by Eq. (13) reduces into learn-
ing an FA model featured by G (yt|0,Λt) with Λt =
BΛt−1B

T + D2 that is usually no longer diagonal, e.g.,
with help of the algorithm given by Eqs. (171)–(173)
in Ref. [16]. Moreover, a further improved algorithm
is given in Ref. [18] (e.g., Algorithm III with the op-
tion of marginalization in Fig. 8), with help of updating
p (yt, yt−1| θ) via some learning regularization.

3) q (yt |yt−1, θy ) is considered in the integral over yt

and yt−1 without approximation. As introduced from
Eq. (59) to Eq. (60) in Ref. [19] and also sketched in its
Fig. 13, one way is featured by jointly getting
{
y∗

t , y∗
t−1

}
= arg max{yt, yt−1} [G (xt|Uyt + μ,Ψ)

· G (yt|Byt−1, D
2
)]

,

{ȳt, ȳt−1} = argmax{yt,yt−1} [G (xt|Uyt + μ,Ψ)

· G (yt|Byt−1, D
2
)
G (yt−1|0,Λt−1)

]
,

(19)
such that the integral over yt and yt−1 is removed for
implementing learning. Another algorithm is given by
Eqs. (92) and (93) in Ref. [45], featured by a double
loop learning procedure that iteratively solves two FA-B
problems.

In this paper, we propose another adaptive learning
algorithm via analytically computing the integral over
yt, yt−1. Putting Eq. (16) into Eq. (13) and making the
mathematical derivation (see Appendix A), we obtain
the following expression of harmony functional:

H (p||q, θ, m) =
T∑

t=1

Ht (p||q, θ, m) ,

Ht (p||q, θ, m)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1
2

{
Tr
[(

Id −C−1UUT
)
Ψ−1O

]

+ ln
∣∣D2

∣∣+ ln |Ψ|
}

+ const, t = 1,

−1
2

{
Tr
[
K−1CK−1O

]
+ ln

∣∣D2
∣∣

+Tr
[
(UB)TK−1UBΛt−1

]
+ ln |Ψ|

}

+const, t �= 1,

K = C + UB(V D)Tft(B̃)V D(UB)T,

ft(B̃) =
(
Im − B̃2(t−1)

)(
Im − B̃2

)−1
,

C = Ψ + UD(UD)T, O = (xt − μ) (xt − μ)T ,

(20)
where Tr[·] is the matrix trace, const is a constant term.

To maximize the above H (p||q, θ, m) with respect θ,
a gradient-based adaptive algorithm is sketched in Table
1. The extra structure is removed via checking di → 0
and discarding the corresponding dimension yi (see the
line labeled by *** in Table 1).

Before closing, we further consider a variant algo-
rithm. Equation (13) comes from Eq. (12) that con-
siders the whole sequence X = {xt}Tt=1. Alternatively,
with temporal relation via Eq. (18), we may also make
the BYY harmony learning on an FA model instanta-
neously at time t. The former is a typical example of
temporal Bayesian Ying-Yang process system (TBYY p-
system), while the latter is a typical example of tempo-
ral Bayesian Ying-Yang instantaneous system (TBYY
i-system). The two systems are different. Conceptually,
TBYY p-system is preferred for a stationary sequence
X, otherwise TBYY i-system is preferred, e.g., for an
HRRP sequence that is not long enough to be station-
ary well. Readers are referred to Sect. 6.2 of Ref. [16] for
more details about TBYY p-system and TBYY i-system.

In this paper, we also make a further investigation
on this issue. We consider BYY harmony learning in-
stantaneously at time t, t–1 still with temporal relation
via Eq. (18). That is, with q (yt |yt−1, θy ) replaced by
q (yt, yt−1 |θy ) = q (yt |yt−1, θy ) q (yt−1 |θy ), we have

Ht (p||q, θ, m) =
∫

p (yt, yt−1|xt, θ) ln
[
q
(
xt|yt, θx|y

)

· q (yt |yt−1, θy ) q (yt−1 |θy )] dytdyt−1,

(21)
with q (yt−1 |θy ) still given by Eq. (18).

Accordingly, Eq. (20) is modified by one additional
term that comes from

∫
p (yt−1| θy) ln q (yt−1 |θy ) dyt−1,

that is, for t �= 1 we have
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Table 1 Automatic BYY harmony learning algorithm for TFA model

Input: An observed data sequence X = {xt}T
t=1.

Output: TFA model parameters Θ =
n

µ, Ψ, U, V , D, B̃
o

together with model scale m.

Initialization: Randomly initialize m with large enough value; set iteration index τ = 0 and H(τ) = −∞.

repeat

for t = 1 : T

First compute the following temporary variables at time t:

TV D = V D, TU D = UD, B = (TV D )T B̃V D
−1

, TU B = UB, O = (xt − µ) (xt − µ)T , C = Ψ + TU D (TU D)T .

if t = 1, Λt−1 = 0;

else

ft(B̃) = (Im − B̃2(t−1))(Im − B̃2)−1, Λt−1 = (TV D )T ft(B̃)TV D ,

K = C + TU BΛt−1(TU B )T, Γ = K−1CK−1, Δ = K−1OK−1, P = TU BΛt−1BT, TU = TV − K−1, Σ = D2,

TV = Γ −
h
ΓΣK−1 +

`
ΓΣK−1

´T
i

, T = TU + Δ, TB̃1 = UTTV TU B , TB̃2 = (Im − B̃2)−1TV DBTTB̃1 (TV D )T ,

TV 1 = B̃V D
−1

Λt−1(TU B )TTV TU D , TV 2 = ft(B̃)TV DBTTB̃1D, TV 3 = B̃TV DTB̃1Λt−1D−1;

end

Then update TFA model parameters in a gradient manner:

when t = 1, only update µ, Ψ, U, D.

µnew =

(
µ + η

`
Id − C−1UUT

´
(xt − µ) , t = 1,

µ + ηΓ (xt − µ) , t �= 1,

Ψnew = diag [(1 − η)Ψ + ηΨGΨΨ] , GΨ =

(
−C−1UUTΨ−1OC−1 + Ψ−1O

`
Im − C−1UUT

´
Ψ−1, t = 1,

−T , t �= 1,

diag[·] sets all off-diagonal elements of a matrix to zero.

Update U and V by gradient on the Stiefel manifold (see Ref. [48] for details):

Unew = U + η
`
GU − UGT

U U
´
, with GU =

8
><
>:

−C−1
`
OΨ−1UUT + UUTΨ−1O

´
C−1UΣ

−C−1OΨ−1U − Ψ−1OC−1U, t = 1,

− (TV P + TTU DD) , t �= 1,

V new = V + η
`
GV − V GT

V V
´
, with GV = − (TV 1 + TV 2 + TV 3) ,

Dnew = (1 − η)D + ηdiag (DGD D) , with GD =

(−UTC−1UUTΨ−1OC−1UD, t = 1,

−
h
(TU D)T T + BΛt−1 (TV TU B )T

i
U, t �= 1,

if di → 0 then discard hidden dimension yi and let mnew = m − 1; ***

Let bi =
esi − e−si

esi + e−si
, where bi and si are the ith diagonal elements of diagonal matrices B̃ and S, respectively.

We update bi indirectly via si to ensure the stability of the model.

Snew = diag
h
S + ηGB̃ (Im − B̃2)

i
, with GB̃ = −TV D TB̃1Λt−1 (TV D )−1 + TB̃2

h
(t − 1)B̃(2t−3) − ft(B̃)B̃

i
;

end for

Calculate H(τ) by Eq. (20), if |H(τ) − H(τ − 1)| < ξ|H(τ − 1)|, terminate the algorithm, else let τnew = τ + 1,

continue the algorithm. In our implementation, ξ is set as 10−5.

Ht (p||q, θ, m)

= −1
2

{
ln
∣∣D2

∣∣+ ln |Λt−1|+ Tr
[
K−1CK−1O

]

+Tr
[
(UB)TK−1UBΛt−1

]
+ln |Ψ|

}
+const. (22)

In Table 1, the gradients of V , D, B̃ (when t �= 1) are
thus changed into

GV = −
(
TV 1 + TV 2 + TV 3 + ft

(
B̃
)
TV DΛ−1

t−1D
)

,

GD = −[(TUD)TT + BΛt−1(TV TUB)T]U
−V Tft(B̃)V DΛ−1

t−1,

GB̃ =
[
TB̃2 −

(
Im − B̃2

)−1
TV DΛ−1

t−1 (TV D)T
]

·
[
(t− 1)B̃(2t−3) − ft

(
B̃
)
B̃
]
− TV DTB̃1

· Λt−1 (TV D)−1
. (23)

5 Experimental results

5.1 Data description

The experiments presented in this paper are based on
the same measured data of three planes as in Refs. [8,34].
The parameters of radar and planes are given in Tables
2 and 3 and the projections of plane trajectories onto
ground plane are segmented as displayed in Fig. 4. We
take the 5th and 6th segments of An-26, the 6th and
7th segments of Cessna and the 2nd and 5th segments
of Yark-42 as training samples, while the remaining data
are left for testing. These training data almost cover all
of the target-aspect angles. There are 25600 HRRPs in
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each segment except the 5th segment of Yark-42 which
has 10240 HRRPs. The training data are divided into
frames by the equal interval partition method with each
frame containing 1024 HRRPs. Thus, there are 50/50/35
frames for An-26/Cessna/Yark-42, respectively.

The HRRPs of three targets are measured at dif-

Table 2 Parameters of radar

parameters values

center frequency/MHz 5520

bandwidth/MHz 400

pulse repetition frequency/Hz 400

Table 3 Parameters of planes

plane type length/m width/m height/m

Yark-42 36.38 34.88 9.83

An-26 23.80 29.20 9.83

Cessna 14.40 15.90 4.57

ferent time and their signal-to-noise ratios (SNRs) are
slightly different. To avoid the use of SNR as discrimina-
tive information, we discard part of range cells contain-
ing only noise and the dimensionality of the truncated
HRRP is 128.

5.2 Recognition performance

In this section, we implement two types of recognition
experiments. The first type is based on the LDS, FA
and TFA models with the two-phase model selection,
whereas the second type is LFA and TFA models learned
automatically by BYY learning. Since in Ref. [8] BIC
shows better performance than AIC, only BIC is consid-
ered here for the two-phase model selection. To make the
final decision by Eq. (4), we compute the likelihood of
each testing sequence X = {x1, x2, ..., xN} by following
equation (see Appendix B for mathematical derivation):

p(X|c) =
N∏

t=2

p (xt|xt−1)p(x1),

p (xt|xt−1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p (xt, xt−1)
p (xt−1)

=

G

([
xt

xt−1

]∣∣∣∣∣

[
μ

μ

]
,

[
UΛtU

T + Ψ, Σt,t−1

ΣT
t,t−1, UΛt−1U

T + Ψ

])

G (xt−1|μ, UΛt−1UT + Ψ)
= G

(
xt|Fx′

t−1 + μ, W
)
, with x′

t−1 = xt−1 − μ, for TFA model,

p(xt, xt−1)
p(xt−1)

=

G

([
xt

xt−1

]∣∣∣∣∣

[
μ

μ

]
,

[
AΛtA

T + Ψ, Σt,t−1

ΣT
t,t−1, AΛt−1A

T + Ψ

])

G (xt−1|μ, AΛt−1AT + Ψ)
= G

(
xt|Fx′

t−1 + μ, W
)
, for LDS model,

p(xt) = G
(
xt|μ, AAT + Ψ

)
, for FA model,

Λt =

{
BΛt−1B

T + D2, for TFA model,

B̃Λt−1B̃
T + Ω, for LDS model,

Σt,t−1 = E(xt − μ)(xt−1 − μ)T =

{
UBΛt−1U

T, for TFA model,

AB̃Λt−1A
T, for LDS model,

F =

{
Σt,t−1(Ψ + UΛt−1U

T)−1, for TFA model,

Σt,t−1(Ψ + AΛt−1A
T)−1, for LDS model,

W =

{
Ψ + UD2UT + (UB − FU)Λt−1(UB)T, for TFA model,

Ψ + AΩAT + (AB̃ − FA)Λt−1(AB̃)T, for LDS model.

(24)

Fig. 4 Projections of three target trajectories onto ground plane. (a) An-26; (b) Cessna; (c) Yark-42
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where N is the length of each testing sequence, and here
we select N = 1, 2, 3, 4. For a more reliable evaluation,
each experiment is repeated 50 times with randomly ini-
tialized parameters.

The mean and standard deviation values of average
correct recognition rate (ACRR) and the average time
cost per frame by different models are listed in Table 4.
The results in Table 4 verify our analysis in Sects. 3 and
4 which are summarized as follows:

1) Compared with the FA model, the LDS model [27–
29] has too many extra free parameters and thus becom-
ing even worse in identifiability, thus the recognition per-
formance of the LDS model is actually inferior to that
of the classic FA model, and its performance will be im-
proved via adding constraints on the free parameters,
which is confirmed by the first three rows of Table 4.

2) The TFA model [11–19] extends the FA model to
the temporal case, and improves the identifiability of
the FA model (see Sects. III and IV in Ref. [13]), by
removing the notorious rotation indeterminacy, thus it
outperforms the FA model, which is confirmed by the
two rows located at the center of Table 4.

3) In the testing phase, the TFA model not only com-
bines the information carried by each individual HRRP
just as the FA model dose, but also further exploits
the temporal dependence among HRRPs which can be
viewed as an advanced form of information combination.
This is another reason why the performance of the TFA
model is superior to that of the FA model.

4) Owing to its unique model selection ability, similar
to Ref. [34], the BYY harmony learning based TFA fur-
ther outperforms the two-phase learning based TFA in
both estimation accuracy and computational efficiency.

5) When there is no or only a little temporal depen-
dence (N < 3) existing in the testing sequence, the LFA-
BYY model, capturing the non-Gaussian property of
HRRPs, shows better performance than others; however,
with the increase in the length of testing sequence, more
temporal dependence is used as discriminating informa-
tion, which makes the TFA-BYY model prevail over the

LFA-BYY model.
Also, we observe that TFA-BYY-i slightly outper-

forms TFA-BYY-p, which indicates that HRRP se-
quences are not long enough to be well stationary and
thus TBYY i-system is more preferred. In addition, the
performance of the FA model in the above table appears
not as good as in Refs. [8,34]. The reason is previously
given at the end of Sect. 5.1, that is, this paper uses the
truncated HRRPs to remove those superficial discrim-
inative contributions due to that the HRRPs of three
targets are measured at different time and SNR.

5.3 Rejection of unknown target

Assessing the performance of statistical models should
not simply be relied on ACRRs. An important issue in
radar target recognition is how to distinguish in-class
targets and out-of-class targets, i.e., the so-called con-
fusers. When we cannot guarantee that all testing HRRP
sequences belong to the training set classes, rejecting
those HRRPs with a low degree of membership to these
classes becomes important. In this experiment, 18000
HRRPs generated by simulation software— XPATCH,
are adopted as the confusers. To graphically compare
the rejection ability of the TFA and FA model, we adopt
the receiver operating characteristics (ROC) curve in the
detection theory [49]. For a given a detection threshold
γ, we consider two evaluation indexes as follows:

1) Detection probability Pd is the percentage of in-
class targets correctly classified;

2) False alarm probability Pf is the percentage of con-
fusers wrongly classified as in-class targets. Both Pd and
Pf can be computed via the following equations:

Pf =
M1

N1
, Pd =

M2

N2
, (25)

whereN1 is the total number of in-class testing sequences,
N2 is the total number of confuser sequences, M1 and
M2 are the numbers of in-class testing sequences and
confuser sequences whose likelihoods are larger than γ.

Table 4 Mean and standard deviation values of ACRRs (in percentage), training time cost per frame (in minute) and testing
time cost per sequence (in second, N = 3)

model model description
ACRR/% training

time/min

testing time/s

(N=3)N=1 N=2 N=3 N=4

LDS-G-BIC Eq. (6) Ψ, Ω are general covari-

ance matrices

91.4±3.6 91.8±3.4 92.5±3.1 92.9±2.9 72.5 3.3

LDS-C-BIC Ω = I, Ψ is diagonal 91.6±3.5 92.1±3.3 93.0±3.0 93.3±2.6 69.7 3.3

FA-BIC Ω = I, B̃ = 0,Ψ is diago-
nal

92.3±3.3 93.1±3.0 94.1±2.6 94.5±2.5 4.9 0.4

TFA-BIC Ω = I, B̃,Ψ are diagonal 92.2±3.0 93.5±2.7 94.6±2.6 95.2±2.2 62.0 3.3

LFA-BYY Eq. (3) in Ref. [34] 93.7±3.1 94.6±2.8 95.0±2.6 95.4±2.5 22.4 2.1

TFA-BYY-p Eq. (16) Ω = I, B̃, Ψ are diagonal,

with Eq. (20)

92.9±2.8 94.4±2.4 95.3±2.1 96.1±1.9 15.2 3.3

TFA-BYY-i Eq. (18) Ω = I, B̃, Ψ are diagonal,

with Eqs. (18) and (22)

93.0±2.8 94.5±2.3 95.5±2.0 96.2±1.8 15.2 3.3
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By changing γ, we will get an ROC curve by plotting
Pd against Pf as shown in Fig. 5. The TFA models al-
ways achieve a higher Pd than the FA-BIC model for a
same Pf . The good rejection performance of TFA model
can be attributed to the fact that the temporal correla-
tion utilized acts as a discriminant to pull the in-class
targets out of the confusers. Moreover, the TFA-BYY is
further superior to TFA-BIC which is mainly due to the
model selection ability of BYY learning.

6 Conclusions

Existing statistical models for HRRP-based radar target
recognition assume that HRRPs are temporally inde-
pendent, whereas theoretical analysis and experimental
results based on measured data show the independence
assumption regarding the HRRPs is inappropriate. To
incorporate the temporal correlation between adjacent
HRRPs, this paper adopts the TFA for the modeling
task. Moreover, to tackle the two problems of the con-
ventional two-phase approach for model selection, i.e.,
huge computation and unreliable evaluation, the BYY
harmony learning is employed with model selection im-
plemented automatically during parameter learning. Ex-
perimental results show incrementally improved perfor-
mances from the two-phase learning based LDS, to the
two-phase learning based FA, further to the two-phase
learning based TFA and to the BYY harmony learning

Fig. 5 ROC curves of FA-BIC, TFA-BIC and TFA-BYY-p
models (N=3). Since the TFA-BYY-p and TFA-BYY-i obtain the
similar ROC curves, only the ROC curve of TFA-BYY-p is given
here

based TFA with automatic model selection. First, TFA
obtains better recognition and rejection performances
than FA due to its integration of temporal correla-
tion among HRRPs. Second, the BYY harmony learn-
ing based TFA with automatic model selection outper-
forms models obtained by a two-phase learning, evalu-
ated by both recognition accuracy and time cost. More-
over, TFA-BYY-p slightly outperforms TFA-BYY-i. In
addition, adding many extra free parameters to the clas-
sic FA model and thus becoming even worse in identifi-
ability, the LDS model is actually inferior to the classic
FA model.

Appendix A Derivation of Eq. (20) from Eq. (13)

We compute p (yt, yt−1 |xt )=p (yt−1 |xt ) p (yt|yt−1, xt) from

p (yt−1 |xt )=
q (xt, yt−1)

q (xt)
and p (yt|yt−1, xt)=

q (xt, yt |yt−1 )

q (xt|yt−1)
.

We start from

q (xt|yt−1) =

Z
q (xt, yt |yt−1 ) dyt =

Z
q (xt|yt) q (yt|yt−1) dyt

=

Z exp
n
− 1

2

h“
xt − μ − Uyt

”T

Ψ−1
“
xt − μ − Uyt

”
+

“
yt − Byt−1

”T

Σ−1
“
yt − Byt−1

”io

(2π)(d+m)/2(|Ψ||Σ|)1/2
dyt

=

exp

»
− 1

2

`
x′

t−UByt−1

´T`
Ψ+UΣUT

´−1`
x′

t−UByt−1

´–

(2π)d/2|Ψ + UΣUT|1/2

= G
“

xt|UByt−1 + μ,Ψ + UΣUT
”

,

where x′
t = xt − μ and Σ = D2.

We further have p (yt|yt−1, xt) =
q (xt, yt |yt−1 )

q (xt|yt−1)
= G (yt|μ1, Z1) , with μ1 = M−1

`
Σ−1Byt−1 + UTΨ−1x′

t

´
,

Z1 = M−1, M = Σ−1 + UTΨ−1U for which it suffices to observe its exponential term

exp

(
−1

2

h
(yt − Byt−1)

T Σ−1 (yt − Byt−1) +
`
x′

t − Uyt

´T
Ψ−1

`
x′

t − Uyt

´

−x′
t
T
C−1x′

t − 2x′
t
T
C−1UByt−1 − yT

t−1(UB)TC−1UByt−1

i )
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= exp

(
− 1

2

h
yT

t

“
Σ−1 + UTΨ−1U

”
yt − 2yT

t Σ−1Byt−1 − 2yT
t UTΨ−1x′

t + x′
t
T `

Ψ−1 − C−1´
x′

t

+ yT
t−1

“
BTΣ−1B − (UB)TC−1UB

”
yt−1 − 2x′

t
T
C−1UByt−1

i )

= exp

j
−1

2
(yt − μ1)

T Z−1
1 (yt − μ1)

ff
,

where C = Ψ + UΣUT.

Next, from Eq. (18) and q (xt) =

Z
q (xt|yt−1) q (yt−1) dyt−1 = G

“
xt|μ,Ψ + U

“
Σ + BΛt−1B

T
”

UT
”
, we get

p (yt−1|xt) =
q (xt, yt−1)

q (xt)
=

q (xt|yt−1) q (yt−1)

q (xt)
= G

`
yt−1|μ2, Z2(t−1)

´
,

with μ2 = Pt−1x
′
t, Z2(t−1) =

ˆ
Λ−1

t−1 + (UB)TC−1UB
˜−1

, Pt−1 =
ˆ
Λ−1

t−1 + (UB)TC−1UB
˜−1

(UB)TC−1, Λt−1 =

(V D)T ft

“
B̃

”
V D, and ft(B̃) =

“
Im − B̃2(t−1)

” “
Im − B̃2

”−1

, which can be observed from its exponential term

exp

j
−1

2

»
yT

t−1Λ
−1
t−1yt−1 + x′

t
T

“
Ψ + UΣUT

”−1

x′
t − 2x′

t
T

“
Ψ + UΣUT

”−1

UByt−1

+ yT
t−1(UB)T(Ψ + UΣUT)−1UByt−1 − x′

t
T

“
Ψ + UΣUT + UBΛt−1(UB)T

”−1

x′
t

–ff

= exp

j
−1

2
yT

t−1

»
Λ−1

t−1 + (UB)T
“
Ψ + UΣUT

”−1

UB

–
yt−1 + yT

t−1(UB)T
“
Ψ + UΣUT

”−1

x′
t

+
1

2
x′

t
T

»“
Ψ + UΣUT

”−1

−
“
Ψ + U

“
Σ + BΛt−1B

T
”

UT
”−1

–
x′

t

ff

= exp

j
−1

2

`
yt−1 − Pt−1x

′
t

´T
“
Λ−1

t−1 + (UB)TC−1UB
” `

yt−1 − Pt−1x
′
t

´ff

= exp

j
−1

2
(yt−1 − μ2)

T Z−1
2(t−1) (yt−1 − μ2)

ff
.

From the above ones, we get p(yt, yt−1|xt) by Eq. (16), which is put into Eq. (13) jointly with q(yt|yt−1)q(xt|yt),

resulting in

Ht = −1

2
integration + term ,

where

term = −d + m

2
ln(2π) − 1

2
ln |Ψ| − 1

2
ln |Σ|,

integration =

Z
p (yt, yt−1|xt)

h
(yt − Byt−1)

T Σ−1 (yt − Byt−1) +
`
x′

t − Uyt

´T
Ψ−1

`
x′

t − Uyt

´i
dytdyt−1

=

Z
p (yt|yt−1, xt) p (yt−1|xt)

h
yT

t Myt − 2yT
t Σ−1Byt−1 − 2yT

t UTΨ−1x′
t

+ yT
t−1B

TΣ−1Byt−1x
′
t
T
Ψ−1x′

t

i
dytdyt−1

=

Z
p (yt−1|xt)

n
Tr

h“
Z1 + μ1μ

T
1

”
M

i
− 2μT

1 Σ−1Byt−1 −2μT
1 UTΨ−1x′

t

+ Tr
h
yt−1y

T
t−1B

TΣ−1B
i

+ x′
t
T
Ψ−1x′

t

o
dyt−1.

Moreover, we integrate out yt−1 in parts as follows:

part1 :

Z
p (yt−1|xt) Tr

h“
Z1 + μ1μ

T
1

” “
Σ−1 + UTΨ−1U

”i
dyt−1

=

Z
p (yt−1|xt)

j
Tr

"
MZ1 +

“
UTΨ−1x′

tx
′
t
T
Ψ−1U + UTΨ−1x′

ty
T
t−1B

TΣ−1 + Σ−1Byt−1x
′
t
T
Ψ−1U

+ Σ−1Byt−1y
T
t−1B

TΣ−1
”
M−1

#ff
dyt−1

= m + Tr
nh“

Ψ−1U + P T
t−1B

TΣ−1
”

M−1UTΨ−1 +
“
Ψ−1U + P T

t−1B
TΣ−1

”
M−1Σ−1BP t−1

i
x′

tx
′
t
T

o

+ Tr
h
Σ−1BZ2(t−1)B

TΣ−1M−1
i
,
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part2 :

Z
p (yt−1|xt)

“
−2μT

1 Σ−1Byt−1

”
dyt−1

=

Z
p (yt−1|xt)

“
−2x′

t
T
Ψ−1UM−1Σ−1Byt−1 − 2yT

t−1B
TΣ−1M−1Σ−1Byt−1

”
dyt−1

= − 2Tr
h“

Ψ−1U + P T
t−1B

TΣ−1
”

M−1Σ−1BP t−1x
′
tx

′
t
T

+ BTΣ−1M−1Σ−1BZ2(t−1)

i
,

part3 :

Z
p (yt−1|xt)

“
−2μT

1 UTΨ−1x′
t

”
dyt−1 = −2(x′

t
T
Ψ−1UM−1 + μT

2 BTΣ−1M−1)UTΨ−1x′
t

= − 2Tr
h“

Ψ−1U + P T
t−1B

TΣ−1
”

M−1UTΨ−1x′
tx

′
t
T

i
,

part4 :

Z
p (yt−1|xt) Tr

“
yt−1y

T
t−1B

TΣ−1B
”

dyt−1 = Tr
h
BTΣ−1B

“
μ2μ

T
2 + Z2(t−1)

”i

= Tr
“
BTΣ−1BZ2(t−1)

”
+ Tr

“
P T

t−1B
TΣ−1BP t−1x

′
tx

′
t
T

”
,

part5 : Tr
“
Ψ−1x′

tx
′
t
T

”
.

To sum up, we get

integration = part1 + part2 + part3 + part4 + part5 = terms with x′
tx

′
t
T

+ terms without x′
tx

′
t
T

,

terms with x′
tx

′
t
T

= − Tr
nh

P T
t−1B

TΣ−1
“
M−1UTΨ−1 + M−1Σ−1BP t−1 − BP t−1

”
− Ψ−1

+ Ψ−1UM−1
“
UTΨ−1 + Σ−1BP t−1

”i
x′

tx
′
t
T

o
,

terms without x′
tx

′
t
T

= m + Tr
“
BTΣ−1BZ2(t−1)

”
− Tr

“
BTΣ−1M−1Σ−1BZ2(t−1)

”
= 2m − Tr

`
Λ−1

t−1Z2(t−1)

´
,

integration = 2m − Tr
`
Λ−1

t−1Z2(t−1)

´ − Tr
h“

Ψ−1UM−1UTΨ−1 + P T
t−1B

TΣ−1M−1UTΨ−1

+Ψ−1UM−1Σ−1BP t−1 + P T
t−1B

TΣ−1M
−1

Σ−1BP t−1 −P T
t−1B

TΣ−1BP t−1 − Ψ−1
”

x′
tx

′
t
T

i
.

Noticing M−1UTΨ−1 = UTC−1, we further have

Tr(Λ−1
t−1Z2(t−1)) = Tr

˘
Λ−1

t−1

ˆ
Λt−1 −Λt−1(UB)T(UBΛt−1(UB)T + C)−1UBΛt−1

˜¯
,

and thus get

integration = m + Tr
ˆ
(UB)TK−1UBΛt−1

˜
+ Tr

`
K−1CK−1O

´
,

where

O = x′
tx

′
t
T
, K = UBΛt−1(UB)T + C .

Finally, we have

Ht = term − 1

2
integration = −1

2

n
ln |Ψ| + ln |D2| + Tr(K−1CK−1O) + Tr

h
(UB)TK−1UBΛt−1

io
+ const,

from which we get Eq. (20).

Appendix B Derivation of gradients for all TFA model parameters

First, we compute the partial derivative of Ht with respect to Ψ:

∂Ht

∂Ψ
= −1

2
Ψ−1 − 1

2
diag

h
−K−1CK−1OK−1 − K−1OK−1CK

−1
+K−1OK−1 − K−1 + K−1CK−1

i

= −1

2
Ψ−1 − 1

2
diag

ˆ
TV − K−1 + Δ

˜
,

with TV = Γ −
h
ΓOK−1 +

`
ΓOK−1

´T
i
, Γ = K−1CK−1 and Δ = K−1OK−1.

Second, we compute the partial derivatives of Ht with respect to V , U and D, respectively:

∂Ht

∂V
= −

h
B̃V D

−1
Λt−1(UB)TTV UD + B̃V DU

T
TV UBΛt−1D

−1 +ft(B̃)V D(UB)TTV UBD
i
,

∂Ht

∂U
= − `

TV − K−1 + Δ
´
UΣ− TV UBΛt−1B

T,

∂Ht

∂D
= −D−1 − diag

h
UT(TV − K−1)UD + D−1BΛt−1(UB)T(TV − K−1)U + UTΔUD + UTK−1U BΛt−1B

TD−1
i

= −D−1 − diag
h
UT

`
TV − K−1 + Δ

´
UD + UT TV UBΛt−1B

TD−1
i
.
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Next, we get the partial derivatives of Ht with respect to B̃ and S:

∂Ht

∂B̃
= diag

j
−V DUTTV UBΛt−1D

−1V T + (Im − B̃2)−1V D(UB)TTV UBDV T
h
(t − 1)B̃2t−3 − ft(B̃)B̃

iff
,

∂Ht

∂S
= diag

»“
Im − B̃2

” ∂Ht

∂B̃

–
,

where

B̃ = diag (b1, b2, . . . , bm), S = diag (s1, s2, . . . , sm) , and bi =
exp(si) − exp(−si)

exp(si) + exp(−si)
.

Particularly, at t = 1, the TFA-B model degenerates to FA-B:

x1 = Uy1 + μ + e1, y1 = ε1,

for which we get

H1 =

Z
p (y1|x1) ln [q (x1|y1) q (y1|y0)] dy1 = −1

2
ln |Ψ| − 1

2
ln |D2| − 1

2
Tr

h“
Id − C−1UUT

”
Ψ−1O

i
,

from p (y1|x1) = G
`
y1|UTC−1(x1 − μ), (UTΨ−1U + Σ−1)−1

´
and q (y1|y0) = G(y1|0,Σ), and accordingly we have

∂H1

∂Ψ
= −1

2
Ψ−1 − 1

2
C−1UUTΨ−1OC−1 +

1

2
Ψ−1O

“
Id − C−1UUT

”
Ψ−1,

∂H1

∂D
= −D−1 − diag

“
UTC−1UUTΨ−1OC−1UD

”
,

∂H1

∂U
= −1

2

h
C−1

“
OΨ−1UUT + UUTΨ−1O

”
C−1UΣ− C−1OΨ−1U −Ψ−1OC−1U

i
.

For the instantaneous TFA by Eq. (21), we get Eq. (22) with the following newly added term put in Eq. (20):

Z
q (yt−1| θy) ln q (yt−1| θy) dyt−1 = −m

2
− m

2
ln(2π) − 1

2
ln |Λt−1| .

Correspondingly, the partial derivatives of V , D and B̃ for the instantaneous TFA model are changed to

∂Ht

∂V
= −

h
B̃V D

−1
Λt−1(UB)TTV UD + B̃V DU

T
TV UBΛt−1D

−1 + ft(B̃)V D(UB)TTV UBD + ft(B̃)V DΛ−1
t−1D

i
,

∂Ht

∂D
= −D−1 − diag

h
UT

`
TV − K−1 + Δ

´
UD + UTTV UBΛt−1B

TD−1−V Tft

“
B̃

”
V DΛ−1

t−1

i
,

∂Ht

∂B̃
= diag

n
−V DUTTV U BΛt−1D

−1V T +
“
Im − B̃2

”−1

V D(UB)TTV UBDV T
h
(t − 1)B̃2t−3 − ft

“
B̃

”
B̃

i

−
“
Im − B̃2

”−1

V DΛ−1
t−1DV T

h
(t − 1)B̃2t−3 − ft

“
B̃

”
B̃

iff

= diag
n
−V DUT TV UBΛt−1D

−1V T +
“
Im − B̃2

”−1

V D
h
(UB)TTV UB − Λ−1

t−1

i

· DV T
h
(t − 1)B̃2t−3 − ft

“
B̃

”
B̃

i o
.

Appendix C Derivation of Eq. (24)

For an observation sequence X , we have

p(X) = p (x1, x2, . . . , xN ) =

NY
t=2

p (xt|xt−1) p (x1) , p (x1) = G(x1|μ, Ψ + UD2UT).

We can get

p (xt|xt−1) =
p (xt, xt−1)

p (xt−1)
,

from p (xt, xt−1) =
R

p (xt, xt−1, yt, yt−1) dytdyt−1 and p(xt−1) = G(xt−1|μ,Ψ + UΛt−1U
T).
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We start from

p (xt, xt−1, yt, yt−1)

= p (xt|yt) p (yt|yt−1) p (xt−1|yt−1) p (yt−1)

∝ exp

j
− 1

2

jh
yt − M−1

“
Σ−1Byt−1 + UTΨ−1x′

t

”iT

M
h
yt − M−1

“
Σ−1Byt−1 + UTΨ−1x′

t

”i

+ x′
t
T
Ψ−1x′

t + x′
t−1

T
Ψ−1x′

t−1 − 2x′
t−1

T
Ψ−1Uyt−1 + yT

t−1U
TΨ−1Uyt−1 + yT

t−1B
TΣ−1Byt−1

+ yT
t−1Λ

−1
t−1yt−1 −

“
Σ−1Byt−1 + UTΨ−1x′

t

”T

M−1
“
Σ−1Byt−1 + UTΨ−1x′

t

”ff ff
,

where

p (xt|yt) = G (xt|Uyt + μ, Ψ) , p (yt|yt−1) = G (yt|Byt−1,Σ) , p(yt−1) = G (yt−1|0, Λt−1) ,

x′
t = xt − μ, x′

t−1 = xt−1 − μ, Σ = D2, and M = Σ−1 + UTΨ−1U ,

from which we get

p(xt, xt−1, yt−1)

=

Z
p (xt, xt−1, yt, yt−1) dyt

∝ exp

j
−1

2

h
(yt−1 − Sut)

T S−1 (yt−1 − Sut) − uT
t Sut + x′

t
T

“
Ψ−1 −Ψ−1UM−1UTΨ−1

”
x′

t + x′
t−1

T
Ψ−1x′

t−1

iff
,

with ut = UTΨ−1x′
t−1 + BTΣ−1M−1UTΨ−1x′

t, S =
ˆ
Λ−1

t−1 + UTΨ−1U + BTUTC−1UB
˜−1

and C = Ψ + UΣUT,

p (xt, xt−1)

=

Z
p (xt, xt−1, yt−1) dyt−1

∝ exp

j
− 1

2

h
x′

t−1
T

“
Id −Ψ−1USUT

”
Ψ−1x′

t−1 − 2x′
t
T
C−1UBSUTΨ−1x′

t−1

+ x′
t
T

“
Id − C−1UBSBTUT

”
C−1x′

t

i ff
.

Finally, we obtain

p (xt|xt−1) =
p (xt, xt−1)

p (xt−1)
= G(xt|F x′

t−1 + μ, W ),

with F = UBΛt−1U
T

`
Ψ + UΛt−1U

T
´−1

and W = C + UBΛt−1(UB)T − F UΛt−1(UB)T.
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