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Abstract This paper presents a new discriminative
approach for training Gaussian mixture models (GMMs)
of hidden Markov models (HMMs) based acoustic model
in a large vocabulary continuous speech recognition
(LVCSR) system. This approach is featured by em-
bedding a rival penalized competitive learning (RPCL)
mechanism on the level of hidden Markov states. For ev-
ery input, the correct identity state, called winner and
obtained by the Viterbi force alignment, is enhanced to
describe this input while its most competitive rival is pe-
nalized by de-learning, which makes GMMs-based states
become more discriminative. Without the extensive com-
puting burden required by typical discriminative learn-
ing methods for one-pass recognition of the training set,
the new approach saves computing costs considerably.
Experiments show that the proposed method has a good
convergence with better performances than the classical
maximum likelihood estimation (MLE) based method.
Comparing with two conventional discriminative meth-
ods, the proposed method demonstrates improved gen-
eralization ability, especially when the test set is not well
matched with the training set.

Keywords discriminative training, hidden Markov
model, rival penalized competitive learning, Bayesian
Ying-Yang harmony learning, large vocabulary contin-
uous speech recognition

1 Introduction

Parameters of acoustic model in hidden Markov model
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(HMM) based speech recognition systems are usually es-
timated using maximum likelihood estimation (MLE)
[1,2]. The weakness of MLE lies in that it cannot di-
rectly optimize word or phone recognition error rates
due to its strong assumptions on sufficient training data
and model-correctness [1]. To solve this problem, a vari-
ety of discriminative training methods have been exten-
sively investigated to improve automatic speech recog-
nition (ASR) system for decades. Typical ones include
maximum mutual information (MMI) estimation [3],
minimum classification error (MCE) [4], and minimum
word/phone error (MWE/MPE) [5].

Generally, these discriminative methods achieve good
performances when acoustic conditions in a testing set
match well with those in the training set. However,
in most practical conditions, the test speech does not
match the training set well. Smoothing techniques have
been proposed to improve generalization ability of these
methods, such as smoothing sigmoid function in MCE
[4], acoustic scaling and weaken language modeling in
MMI [3], and I-smoothing in MPE [5]. The Baum-Welch
(BW) algorithm is extended to update HMM parame-
ters for implementing these techniques. Though recog-
nition performance can be improved in many large-scale
recognition tasks, a large amount of computational cost
should be used to make one pass or more of recognition
on all the training utterances in order to obtain confus-
able hypotheses of the training data in implementation
of the extended BW algorithm.

In our previous study [6], the Bayesian Ying-Yang
(BYY) harmony learning has been introduced into es-
timating Gaussian mixture model (GMM) components
by a two level procedure as shown in Fig. 1. Experiments
have shown better performances than ones by not only
the standard MLE training but also plus selecting GMM
components with the help of the classical BIC and AIC
criterions. In Ref. [6], the BYY harmony learning acts
on GMM components within the same hidden Markov
state and thus does not target at a discriminative train-
ing. To enhance discriminative ability, we may make the
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BYY harmony learning at the levels of states, phones,
and words for learning the GMM components across dif-
ferent states, as well as state transfer probabilities, for
which we may consider the Ying-Yang alternative learn-
ing algorithm given in Sect. 5.3 (especially Fig. 14) of
Ref. [7].

Fig. 1 Training framework of a two-level procedure

This paper attempts to embed the rival penalized
competitive learning (RPCL) [8,9] into the HMMs-based
acoustic model in a large vocabulary continuous speech
recognition (LVCSR) system. First proposed in 1992 [8],
RPCL is a further development of competitive learning
on a task of multiple classes or models that compete
to learn samples. For each sample, the winner learns
while its rival (i.e., the second winner) is repelled a little
bit from the sample, which reduces a duplicated sam-
ple allocation such that the boundaries between mod-
els become more discriminative. Moreover, RPCL can
be explained as a simplified approximation of the BYY
harmony learning. For a detailed discussion about the
link of RPCL to the BYY harmony learning, readers are
referred to Ref. [9].

In principle, this embedding of the RPCL mechanism
may be made on different levels (word, phone, state,
Gaussian) of HMMs-based acoustic model. Towards this
purpose, we move step by step for solid developments.
This paper still adopts the two-level procedure in Fig. 1
with the RPCL mechanism made at the levels of states
to enhance the discriminative ability across state. The
entire model is trained by the BW algorithm, with the
resulted model used as an initialization. Then, two levels
are trained alternatively. At the upper level, the trans-
fer probabilities across states are still trained by the
BW algorithm, while at the lower level, noticing that an
LVCSR task usually involves a large number of states, we
adopt an RPCL type learning featured by Eqs. (9) and
(34) in Ref. [10] for training GMM components across
different hidden Markov states. In implementation, for
every input we get the winner state according to the
identity of this input obtained by the Viterbi force align-
ment, while its rival state is sought among a set of candi-
date competitors. Not only the GMM components asso-
ciated with this rival state is updated for a downgraded
description of the input as the conventional RPCL does,
but also the ones associated with the winner state are en-
hanced for an improved description of the input, which

makes the states become more discriminative. Moreover,
the strengths of enhancing and de-learning in RPCL uti-
lize the information of the posterior probability of the ri-
val given the input. Experiments on LVCSR tasks show
that the proposed method has a good convergence with
better performances than the baseline model trained by
the classical maximum likelihood (ML) criterion. In com-
parison with two typical discriminative training meth-
ods, namely based on MMI and MPE respectively, the
proposed method demonstrates improved generalization
ability, especially when the sources of test sets are dif-
ferent from ones of training set.

The rest of the paper is organized as follows. Section 2
presents an introduction on the conventional RPCL and
derive one suitable for the task of discriminative learn-
ing in speech recognition. Section 3 provides details of
implementation and discussions on results. Finally, con-
clusion is made in Sect. 4.

2 RPCL-based acoustic model training

2.1 RPCL on state levels

First proposed in 1992 [8] and further developed subse-
quently, RPCL is a competitive learning featured general
problem solving framework for multi-learners or multi-
agents with each to be allocated to learn one of multiple
structures underlying observations. Readers are referred
to Ref. [9] for a systematic review and recent develop-
ments. In sequel, we only provide a brief introduction.

Using εt(θj) � 0 to measure the error or cost that the
jth learner describes the current input xt, the learner
with ct = argminjεt(θj) is called the winner while the
second winner rt = argminj �=ctεt(θj) is its rival, the key
idea of RPCL is that not only the parameter θct of the
winner is learned such that εt(θct) decreases by some ex-
tent, but also the parameter θrt of the rival is de-learned
such that εt(θrt) increases by a little bit. In general, the
winner and rival are decided by Eq. (1) based on the
measure εt(θj), while learning is simply implemented
by Eq. (2). The rival penalized mechanism makes the
boundaries between different learners or models become
more discriminative.

pj,t =

⎧
⎪⎨

⎪⎩

1, if j = ct,

−γ, if j = rt,

0, otherwise,

{
ct = argminjεt(θj),

rt = arg minj �=ctεt(θj),

(1)
θnew

j − θold
j ∝ pj,t∇θj εt(θj). (2)

Readers are referred to Sects. 3.1 and 3.2 in Ref. [10]
and particularly its Eqs. (9) and (34) for further details.

In speech recognition, we consider to make discrimina-
tive learning on p(xt|θj) across different hidden Markov
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states. For each state j, we have

εt(θj) = − ln p(xt|θj), (3)

where p(xt|θj) =
K∑

k=1

αjkN (xt|μjk, Σjk) is a mixture of

Gaussian distributions N (xt|μjk, Σjk) with mean μjk

and covariance matrix Σjk. For every input, instead of
getting ct = argminjεt(θj), the state that corresponds
to the identity of this input by the Viterbi force align-
ment is regarded as the winner state ct. Still, we get the
rival by rt = arg minj �=ctεt(θj). After the initialization
of all the parameters {θj} by the MLE-based BW algo-
rithm, the parameter θj can be iteratively optimized by
Eq. (2). One problem for the RPCL learning is how to
determine an appropriate penalizing strength γ that is
usually set in a heuristic way. Particularly, we consider

pj,t =

⎧
⎪⎨

⎪⎩

1 + p(rt|xt), if j = ct,

−p(rt|xt)γ, if j = rt,

0, otherwise,

(4)

where γ, playing a similar role as in Eq. (1), denotes
the de-learning rate. The bigger the γ is, the more
strengthen the de-learning is. Noticing that, Eq. (4) is
different from Eq. (1) as follows:

1) Not only the Gaussian components associated with
the rival state are de-learned, but also learning the Gaus-
sian components on the winner state is enhanced.

2) The strengths of enhancing and de-learning vary as
the posterior probability of the rival rt given the input
xt changes, which may make the discriminative learning
more efficiently.

In the following, we show how the above Eq. (4) is
obtained by approximately simplifying a general rival
penalizing mechanism of the BYY harmony learning.
RPCL can be regarded as a rough approximation of the
BYY harmony learning for learning a mixture of multi-
ple models, while the BYY harmony learning provides a
top-down guidance for choosing penalizing strength [7].
For a task of learning a mixture of multiple models to
which our tasks belongs, without a priori knowledge, the
BYY harmony learning is implemented via maximizing
H(p||q, θ) given in Eq. (8) of Ref. [9]. From its implemen-
tation by the flow ∇θH(p||q, θ), we observe its link to
RPCL learning. Particularly, we consider the one given
by Eq. (13) in Ref. [9], which is rewritten as

pj,t =

⎧
⎪⎨

⎪⎩

p(ct|xt) + ηt, j = ct = argminjεt(θj),

p(rt|xt) − ηt, j = rt = arg minj �=ctεt(θj),
0, otherwise,

(5)
where ηt = p(ct|xt)p(rt|xt)ρ(xt), ρ(xt) = ln p(xt|θct)

p(xt|θrt)
,

with p(ct|xt) = p(xt|θct)

p(xt|θct)+p(xt|θrt)
and p(rt|xt) = 1 −

p(ct|xt). By denoting de-learning rate γt = −1 +
p(ct|xt)ρ(xt), Eq. (5) can be rewritten into

pj,t =

⎧
⎪⎨

⎪⎩

p(ct|xt) + (1 + γt)p(rt|xt), j = ct,

−p(rt|xt)γt, j = rt,

0, otherwise.

(6)

Putting it into Eq. (1), we can make a gradient-based
iterative implementation of this RPCL simplified BYY
harmony learning.

Moreover, it follows from Eq. (3) that we get
pj,t∇θjk

εt(θj) = −pjk,t∇θjk
ln p(xt|θjk) with

pjk,t = pj,tp(k|xt, θj), (7)

where p(k|xt, θj) = αjkp(xt|θjk)/
[∑K

i=1 αjip(xt|θji)
]
.

Actually, getting pjk,t by Eq. (7) is another approx-
imation of the BYY harmony learning that leads to
pjk,t = pj,tp(k|xt, θj) + δjk,tp(j|xt) with δjk,t consider-
ing the winner-enhancing and rival penalizing mecha-
nism among the Gaussian components under the same
state j, see Fig. 13(b) in Ref. [7]. Still, we make further
simplifications. If the winner state ct is considered reli-
able, we let p(ct|xt) ≈ 1. Also, the γt is considered as a
small constant γ. Then, Eq. (6) can be simplified to Eq.
(4).

2.2 Parameter re-estimation

We may also make a batch way updating with the whole
training set used. Particularly, considering a Gaussian
p(xt|θjk) = N (xt|μjk, Σjk), it follows from solving

T∑

t=1

pjk,t∇θjk
εt(θjk) = 0,

that we get

αnew
jk =

∑T
t=1 pjk,t

∑K
k=1

∑T
t=1 pjk,t

,

μnew
jk =

∑T
t=1 pjk,txt

∑T
t=1 pjk,t

,

Σnew
jk =

∑T
t=1 pjk,t(xt − μnew

jk )(xt − μnew
jk )T

∑T
t=1 pjk,t

.

(8)

Together with Eq. (7), we iterate the following steps
that implements an RPCL-based acoustic model train-
ing:

1) Get RPCL-allocation by Eq. (7);
2) Re-estimate Gaussian components by Eq. (8);

which has a same format as the classical expectation-
maximization (EM) algorithm and thus shares a similar
computing complexity. The difference comes from the
weights pjk,t via which the rival penalized mechanism is
embedded.
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3 Experiment

3.1 Implementation details

Summarized in Fig. 2, the general framework for imple-
menting the RPCL learning on the entire GMM-HMM-
based acoustic model, with details addressed as follows:

1) Get a candidate rival set Cs for every state using
KL divergence to measure the differences between two
states.

2) Align the correct transcription to the training set
to get the correct state label ct for every frame xt.

3) For every frame xt, select the most competitive ri-
val rt of ct from the candidate set Cs.

4) Get RPCL allocation by Eq. (7) and re-estimate
Gaussian component parameters by Eq. (8).

5) Repeat steps 2), 3) and 4) iteratively until getting
a good convergence.

Fig. 2 Framework of discriminative training of GMM-HMM
acoustic model by RPCL learning

Since a practical speech recognition purpose involves
several thousands of tied states, considering all the states
as the candidate rivals is not only computational not fea-
sible but also unnecessary. Instead, we only consider a
subset of states, called the candidate rival set Cs con-
sisting of top-N nearest states that compete the correct
state ct of the input xt. Also, the states mapped to the
same monophone as the state ct are excluded from Cs.
The size of Cs is controlled to be much smaller than the
number of all states. Moreover, only the most compet-
itive rival is used in the iterative learning by Eqs. (7)
and (8), which will significantly reduce computational
complexity.

There could be different ways for judging whether one
state competes with the state ct. We adopt the KL diver-
gence KL(f ||g) via an efficient computed approximation
[11]:

KL(f ||g) ≈
K∑

i=1

αi · minj=1,2,...,KKL(fi||gj), (9)

which is based on a matching function between each
component of the GMM under the states f and g. In
Eq. (9), αi is the mixture weight of Gaussian fi. Theo-
retically, the candidate rival set needs to be updated iter-
atively. Practically, as long as the set size is big enough,
the elements of the rival set remain virtually unchanged
in the iteratively learning. To save computing cost, the
candidate set is prepared with a size N = 100 before
the iteratively learning in the following experiments. A
dynamic candidate rival set will be studied in future re-
search.

The correct state ct per input xt is obtained by the
Viterbi force alignment. At the beginning of learning,
the state transient probability and all the other param-
eters in the HMM were initially estimated by the classic
BW algorithm from which ct is also initially obtained via
the Viterbi force alignment. During the RPCL learning
by Eqs. (7) and (8), Gaussian components are updated
iteratively and the updated parameters may be used to-
gether with the state transient probabilities to get ct via
the Viterbi force alignment. After a certain period of
RPCL learning, we may also re-estimate the state tran-
sient probabilities by the BW algorithm.

For the RPCL-based acoustic model training, in addi-
tion to the allocation by Eq. (4), we also consider another
two choices (a) and (b) as follows:

pj,t =

⎧
⎪⎨

⎪⎩

1 + (1 + γt)p(rt|xt), j = ct,

−p(rt|xt)γt, j = rt,

0, others,

γt =

⎧
⎪⎨

⎪⎩

1 − p(ct|xt)ρ(xt), choice (a),

1 − ρ(xt), choice (b),
small γ > 0, choice (c),

(10)

where pj,t is computed by approximately letting
p(ct|xt) ≈ 1 in Eq. (6), and γt is computed by a fur-
ther stepwise use of p(ct|xt) ≈ 1 in different levels. It
should be noted that choice (c) equivalently implements
Eq. (4) if considering 1 + γt ≈ 1.

During the learning process, we consider the following
average posteriori probability of the correct states on the
training data:

FRPCL(θ) =
1
T

T∑

t=1

p(ct|xt), (11)

where ct is the winner state that corresponds to the iden-
tity of the input xt by the Viterbi force alignment. FRPCL

is used to control the iterative learning procedure to
avoid over-training. The learning procedure stops while
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it is not increasing or just gets little increment.

3.2 Experimental setup

The speech corpus employed in this paper is the con-
tinuous Mandarin speech corpora 863-I, which was pro-
vided by Chinese National Hi-Tech Project 863 for Man-
darin LVCSR system development. It contains about 120
hours, including 166 speakers, 83 male speakers and 83
female speakers. The training set consists speech of 73
male speakers and 73 female speakers. The test set (863-
I-Test) was selected from the remainder 20 speakers, 20
utterances each. From the same corpus with the training
set, this test set is well matched with the training set.
For investigating the generalization ability of the pro-
posed model, we also test the proposed model on a not
well matched test set, the 1997 HUB-4 Mandarin broad-
cast news evaluation (Hub-4-Test), which consists of 654
utterances, including 230 for male speakers and 424 for
female speakers.

The acoustic models chosen for speech recognition
were cross-word triphones models built using decision-
tree state clustering. After clustering, the resulted HMM
had 4517 tied states with 32 Gaussian mixtures per
state. The acoustic models were first trained using the
ML criterion and the BW update formulas. Then, the
proposed state-level RPCL-based model was trained ac-
cording to Fig. 2 with details given in Sect. 3.1. For
comparing with the traditional discriminative method,
the lattice-based MMIE and MPE based acoustic model
were also trained and tested on the two test sets. The
lattice-based MMIE and MPE methods are implemented
by the HTK 3.4 toolkit. I-smoothing is used in MMIE
and MPE based method and their configuration is set to
the recommended values in tutorial example [12]. The
language model is a word-based trigram built on a vo-
cabulary of 57k entries. The input speech data is made
up of Mel-frequency cepstral coefficients (MFCCs), with
13 cepstral coefficients including the logarithmic energy

and their first and second-order differentials. All experi-
ment results were obtained through a single pass recog-
nition on test speech. The performance evaluation metric
used in Mandarin speech recognition experiments is the
Chinese character error rate (CER).

3.3 Experimental results

Table 1 shows the CER results of the proposed RPCL-
embedded acoustic model training algorithm in its first
10 iterations. The three choices by Eq. (10) are imple-
mented respectively, where the choice (c) is implemented
by Eq. (4) under different de-learning strengths γ = 0.1,
γ = 0.2, and γ = 0.3. The results show that the choice
(c) outperforms the choices (a) and (b) on both two test
sets, while the choice (c) with γ = 0.3 is the best for
863-I-Test and the one with γ = 0.2 is the best for Hub-
4-Test data. On the contrary, in Fig. 3 the values of the
criterion FRPCL by Eq. (11) under choices (a) and (b)
are higher than that under choice (c). This observation
is understandable, because FRPCL indicates the accu-
racy of state alignment per frame xt from the training
data, whereas CER reflects the accuracy of joint state
alignments per character represented by a sequence of
frames {xt} from the test data. Also, as the de-learning
strength γ grows, the performance of the choice (c) be-
comes closer to those of (a) and (b) while the stability of
the choice (c) declines. Moreover, the choices (a) and (b)
given in Eq. (10) are more close to the BYY harmony
learning. It suggests that considering learning and de-
learning directly on the phone or word level may make
the BYY harmony learning further improve the CER
performance.

Moreover, we summarize the results of the RPCL ap-
proach in Table 2, in comparisons with MLE, as well as
other two traditional discriminative training (DT) meth-
ods. It can be observed that all methods perform better
on the 863-I-Test which well matches the training set
than on the Hub-4-Test from an unmatched corpus, and

Table 1 CER results of RPCL learning on 863-I-Test and Hub-4-Test varies with time

863-I-Test/% Hub-4-Test/%

a b c a b c

γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.1 γ = 0.2 γ = 0.3

1 13.78 13.71 13.45 13.26 13.37 26.34 26.43 25.72 25.76 25.72

2 13.78 13.47 13.39 13.49 13.54 25.97 25.97 25.71 25.60 25.54

3 13.36 13.49 13.36 13.28 13.28 25.95 25.90 25.66 25.43 25.41

4 13.24 13.28 13.32 13.26 13.08 26.02 26.03 25.67 25.33 25.54

5 13.32 13.13 13.23 13.12 13.02 26.16 26.16 25.71 25.48 25.51

6 13.23 13.15 13.34 13.02 12.89 26.44 26.34 25.61 25.54 25.43

7 13.45 13.26 13.30 13.08 13.10 26.41 26.50 25.61 25.77 25.64

8 13.41 13.26 13.21 13.08 12.87 26.35 26.17 25.65 25.32 25.27

9 13.43 13.41 13.06 13.02 12.97 26.18 26.12 25.28 25.36 25.42

10 13.41 13.34 13.08 13.08 12.99 25.96 25.92 25.58 25.17 25.24
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Fig. 3 Convergence criterion of RPCL learning varies with time

all DT methods outperform the classical MLE on both
two test sets. To further compare the relative strengths
of different DT methods, we calculate the relative re-
duction (RR) percentages of each DT method with re-
spective the MLE which serves as a baseline. As shown
in Table 2, the observations are as follows: 1) MPE
has an advantage in the matched test set but deterio-
rates rapidly when encountering an unmatched test set;
2) The RPCL implementations obtain evident improve-
ments over MLE and also is better than MMIE for the
matched test set, and become superior (especially the
choice (c)) for the unmatched test set, which indicates
that our proposed RPCL approach exhibits a better gen-
eralization ability.

Table 2 Performance comparison on 863-I-Test and Hub-4-Test
for different discriminative methods

863-I-Test Hub-4-Test

CER/% RR/% CER/% RR/%

MLE 13.67 — 26.61 —

RPCL(a) 13.23 3.21 25.95 2.48

RPCL(b) 13.13 3.95 25.90 2.67

RPCL(c) γ = 0.1 13.06 4.46 25.28 5.00

RPCL(c) γ = 0.2 13.02 4.75 25.17 5.41

RPCL(c) γ = 0.3 12.87 5.85 25.24 5.15

MMIE 13.28 2.85 26.11 1.88

MPE 12.38 9.44 26.14 1.77

3.4 Discussion

In the past few years, extensions of MPE have been de-
veloped and achieve good performances on English and
Arabic speech recognition systems [13]. However, when
evaluated on Mandarin broadcast news in term of CER,
MPE outperforms its two popular extensions, namely
minimum phone frame error (MPFE) and physical-state
level version of minimum Bayes risk (sMBR) based
methods [14]. Therefore, we consider MPE for Mandarin
speech recognition in this paper. However, MPE was
shown in Ref. [5] to have poor performance on the not-
well matched test data set, which is also confirmed by
our results in Table 2.

In our experiment in Table 2, MMIE only obtained
2.85% and 1.88% relative reductions on 863-I-Test and

Hub-4-Test respectively. This result is reasonable, be-
cause the performance of MMIE was shown in Ref. [15]
to deteriorate as the number k of Gaussian components
of GMM becomes large, and a large k = 32 is adopted
in this paper. Selecting an appropriate k is a model se-
lection problem, and there was a recent effort in Ref. [6]
towards this goal for the HMM-based LVCSR system.
Moreover, as in Ref. [5], the performance of MMIE also
deteriorates when we proceed from a matched test set
to an unmatched one, which is confirmed by the results
in Table 2.

In the literature, MCE is another discriminative learn-
ing approach for speech recognition task. In an early
study [16], the string-level MCE was shown to has simi-
lar performance with MMIE-based method on small vo-
cabulary tasks. Moreover, studies in recent years [17–
19] investigated lattice-based MCE methods, which have
comparative performance with MPE-based method on
the large vocabulary tasks. Therefore, although we did
not include MCE’s results in Table 2, the comparisons of
the RPCL approach with MMIE and MPE still indicate
that the RPCL discriminative learning is promising in
speech recognition, especially that the RPCL approach
has a very good generalization performance on the un-
matched test set which makes the task of speech recog-
nition very difficult.

Figure 3 and Table 1 imply that the current per-frame
state-level discriminative learning scheme may not be
the best for a CER result. Extending our method on
other levels (word, phone, Gaussian) and using more
prior knowledge (language model, speaker information)
for updating candidate rival set, may further improve
the performance.

4 Conclusion

We propose an RPCL-based discriminative acoustic
model training method for LVCSR system. The win-
ner state is enhanced by learning while its rival is pe-
nalized by de-learning, which makes GMMs-based hid-
den states become more discriminative. Experiments on
LVCSR tasks show that the proposed method has a good
convergence with better performances than the baseline
model trained by the classical ML criterion. In compar-
ison with two typical discriminative training methods
based on MMI and MPE, respectively, the proposed
method demonstrates improved generalization ability,
especially when the sources of test sets are different from
ones of training set.

The method is currently implemented on the state-
level acoustic models, and it is planned to be used on
other levels (word, phone, Gaussian). Moreover, the
RPCL mechanism may be replaced by a general BYY
harmony learning for a further improvement.
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