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ABSTRACT
Radar high-resolution range profiles (HRRPs) are typical

high-dimensional non-Gaussian and inter-dimensional de-
pendently distributed data, the statistical modelling of which

is a challenging task for HRRP based target recognition.

Considering the inter-dimensional dependence, a recent work

[1] applied Factor Analysis (FA) to model radar HRRP data

and showed promising recognition results, which however

still restricts to Gaussian distribution. This paper aims to

simultaneously consider the inter-dimensional dependence

and the non-Gaussian distribution, by using Local Factor

Analysis (LFA) model. For not only learning parameters but

also appropriately selecting the component number and local

hidden dimensionalities, we adopt the automatic Bayesian

Ying-Yang (BYY) harmony learning, in order to relieve the

extensive computation and inaccurate evaluation encountered

in the conventional two-phase implementation. Moreover, a

heuristic aspect-frame partition is implemented based on the

BYY harmony criterion rather than AIC or BIC in the previ-

ous work, to tackle the radar HRRP’s target-aspect sensitivity.

Experiments show improved recognition performances over

[1] on the same measured HRRP dataset, i.e., for both equal

interval and heuristic aspect-frame partitions, LFA automat-

ically learned by BYY always outperforms FA selected by a

two-phase procedure with either AIC or BIC.

Index Terms— HRRP, sensitivity, non-Gaussian, inter-

dimensional dependence, automatic model selection, BYY

harmony learning, heuristic aspect-frame partition.

1. INTRODUCTION
Radar automatic target recognition (RATR) is to identify the

unknown target from its radar-echoed signatures. A high-

resolution range profile (HRRP) is the coherent summation

amplitudes of the complex time returns from target scatterers

in several range cells and along the radar line of sight (LOS),

as illustrated in Fig. 1. The HRRP signal contains target struc-

ture information such as target size and scattering distribution,

radar target recognition based on which has received intensive

attention from the RATR community [2, 1, 3, 4, 5]. Bayesian

∗Corresponding author: Lei Xu. Email: lxu@cse.cuhk.edu.hk. The work

described in this paper was supported by RGC Direct grant project 2050427.

classifier has been widely-used for this typical pattern recog-

nition task, and thus the statistical modelling of the HRRP dis-

tribution becomes a main problem [1, 3]. Since nonparamet-

ric methods significantly suffer from the curse of dimension-

ality in this application [6, 7], parametric methods are usually

preferred [1, 2], for which this paper follows still.

Fig. 1. Radar returns from the scatterers on the target are

projected onto the LOS, resulting in an HRRP.

Radar HRRP data are typically high-dimensional, non-
Gaussian, and inter-dimensional dependently distributed,

the parametric modelling of which is a challenging task for

HRRP based target recognition [2, 1, 3, 4]. In the literature,

many efforts have been made on two important topics. The

first is how to determine a family of parametric model that

can appropriately describe HRRP data distribution. Then the

second is how to appropriately learn the model based on a

finite size of HRRP training samples.

On selecting an appropriate parametric model, several

early efforts [4] assumed the range cells (dimensions) in

HRRP are independently Gaussian distributed, while this

assumption was later found inappropriate from physical argu-

ments and results of empirical investigations [2, 1, 3]. There

are mainly two types of efforts for improvement. On one

hand, papers [2, 3] extended the distribution from Gaussian

to non-Gaussian, while the independence is still assumed

among different dimensions. On the other hand, Du et. al. [1]

considered dependence among dimensions by Factor Analy-

sis (FA) model, which is still in a Gaussian distribution. None

of these efforts considers non-Gaussian and inter-dimensional

dependence simultaneously. This paper is thus motivated to

consider both by Local Factor Analysis (LFA) model [8, 9].

Once a family of parametric models is chosen, the learn-

ing task consists of parameter learning for determining un-
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known parameters given a model scale k, and model selec-

tion for choosing one among a family of models with an ap-

propriate scale k [10, 9]. For an LFA model, this k consists

of the number of components and the local hidden dimen-

sionalities. One widely used method for parameter estimation

is the maximum-likelihood learning, usually implemented by

the expectation-maximization (EM) algorithm [11]. Model

selection is conventionally implemented via a two-phase pro-

cedure in help of a typical model selection criterion, such as

Akaike’s Information Criterion (AIC) and Bayesian Inference

Criterion (BIC) [10, 1]. For high-dimensional data, this im-

plementation inevitably suffers from two problems, namely,

an extensive computation and unreliable evaluation to the cri-

terion [9, 10], so that it is costly or even impractical for radar

HRRP modeling. To tackle these problems, an automatic

Bayesian Ying-Yang (BYY) harmony learning is thus adopted

in this paper for LFA learning, which conducts model selec-

tion automatically during parameter learning [9].

In addition to the statistical modelling, there are three

sensitivity problems in HRRP data, including translation,

amplitude-scale and target-aspect sensitivities [3, 1]. The for-

mer two could be commonly tackled by translation alignment

and amplitude-scale normalization, respectively. The last was

tackled by the aspect-frame based modelling in [1], i.e., parti-

tioning consecutive HRRP samples into several aspect-frames

and then modelling different frames separately. In this paper,

besides an equal interval partition, a heuristic aspect-frame

partition mechanism is employed under the BYY harmony

model selection criterion.

In help of automatic BYY harmony learning on the LFA

model and aspect-frame partition based on BYY harmony cri-

terion, the classification on the same dataset as [1] shows im-

proved recognition performances. The rest of this paper is

organized as follows. In Section 2, we introduce the LFA

model and an automatic BYY harmony learning algorithm,

together with a harmony criterion for aspect-frame partition.

Section 3 reports the improved recognition performance on

the same radar HRRP dataset as in [1]. Finally, some con-

cluding remarks are drawn in Section 4.

2. LFA MODEL AND BYY HARMONY LEARNING
2.1. LFA Model
LFA, or also called Mixture of Factor Analyzers (MFA) [8, 9],
performs clustering and local dimension reduction simultane-
ously. Considering a 𝑑-dimensional observable variable x,
LFA assumes that x is distributed according to a mixture of

𝑘 underlying components, i.e., 𝑝(x) =
∑𝑘

𝑙=1 𝛼𝑙𝑝(x∣𝑙), with

𝛼𝑙 ≥ 0 and
∑𝑘

𝑙=1 𝛼𝑙 = 1. Each component 𝑝(x∣𝑙) is de-
scribed by a single FA as follows:

𝑝(x∣y, 𝑙) = 𝐺(x∣U𝑙y + 𝝁𝑙,Ψ𝑙), 𝑝(y∣𝑙) = 𝐺(y∣0,Λ𝑙),
𝑝(x∣𝑙) = 𝐺(x∣𝝁𝑙,U𝑙Λ𝑙U

𝑇
𝑙 +Ψ𝑙), s.t. U𝑇

𝑙 U𝑙 = I𝑚𝑙 . (1)

In each component 𝑙, 𝛼𝑙 is the mixing weight, 𝑚𝑙 is the

hidden dimensionality, U𝑙 is a 𝑑 × 𝑚𝑙 loading matrix con-

strained on the Stiefel manifold U𝑇
𝑙 U𝑙 = I𝑚𝑙

, Λ𝑙 is an 𝑚𝑙 ×

𝑚𝑙-dimensional diagonal covariance, 𝝁𝑙 is a 𝑑-dimensional

mean vector, Ψ𝑙 is a diagonal noise covariance. As a whole,

LFA describes a non-Gaussian distribution by a mixture of

Gaussian components, each of which is equipped with the

inter-dimensional dependence. It should be noted that Eq. (1)

is a parametrization different from the commonly used form

[1, 8]. Although they are equivalent in maximum-likelihood

learning, the formulation by Eq. (1) has shown advantages in

the level of model selection, details of which are referred to

another upcoming paper [12].

Model selection for LFA is to determine the component

number and the local hidden dimensionalities appropriately

based on a finite size of samples. Due to the problems of

the two-phase implementation, an automatic BYY harmony

learning is employed and will be introduced in the following.

2.2. Automatic BYY Harmony Learning on LFA
Firstly proposed in 1995 [13] and then systematically devel-

oped over a decade [9, 14, 15, 16], BYY harmony learning

provides a general statistical learning framework for param-

eter learning and model selection. BYY harmony learning

with typical structures leads to a set of new model selection

criteria, new techniques for implementing regularization and

a class of algorithms with automatic model selection ability

during parameter learning.

Considered based on the observation X and its inner rep-

resentation R = {Y,Θ}, where a parameter set Θ collec-

tively represents the underlying structure of X, and Y cor-

respondingly is the inner representation of X, 𝑝(X,R) =
𝑝(R∣X)𝑝(X) and 𝑞(X,R) = 𝑞(X∣R)𝑞(R) form two types

of decomposition called Yang machine and Ying machine, re-

spectively. Such a Ying-Yang pair is called a BYY system.

The harmony measure based on this system has been system-

atically studied in the general form restated in Eq. (2), which

is different from the likelihood function. An important nature

is that maximizing it leads to not only a best matching be-

tween the Ying-Yang pair, but also a compact model with a

least complexity. Such an ability has been investigated from

several perspectives [9, 14, 15, 16].

Applied on LFA model described in Eq. (1), observa-

tion x is assumed i.i.d. generated from the hidden repre-

sentation Y = {y, 𝑙}, and thus the components in Ying

machine 𝑞(𝑙)𝑞(y∣𝑙)𝑞(x∣y, 𝑙) are determined accordingly

[9]. In Yang machine, a Parzen window smoothed density

𝑝ℎ(x) is considered given a dataset {x𝑡}𝑁𝑡=1, i.e. 𝑝ℎ(x) =
1
𝑁

∑𝑁
𝑡=1 𝐺(x∣x𝑡, ℎ

2I𝑑). According to the “uncertainty con-

versation principle”, one choice of Yang-pathway consists of

𝑝(𝑙∣x) = 𝛼𝑙𝑞(x∣𝑙)∑
𝑗 𝛼𝑗𝑞(x∣𝑗) and 𝑝(y∣x, 𝑙) = 𝐺(y∣W̃𝑙(x−𝝁𝑙),Γ𝑙),

where Γ𝑙 = [∂
2 ln[𝑞(x∣y,𝑙)𝑞(y,𝑙)]

∂y∂y𝑇 ]−1 = (U𝑇
𝑙 Ψ

−1
𝑙 U𝑙+Λ−1

𝑙 )−1,

and W̃𝑙 is a Yang machine parameter. For parameter distri-

butions, the prior is set as 𝑞(Θ) = 𝑞(ℎ) and 𝑝(Θ∣X) is con-

sidered as a free structure. After substituting each part into

Eq. (2) and simplification, we arrive at the specific harmony
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General form: 𝐻(𝑝∣∣𝑞) =
∫

𝑝(R∣X)𝑝(X) ln[𝑞(X∣R)𝑞(R)]𝑑X𝑑R. (2)

Typically on LFA: 𝐻(𝑝∣∣𝑞,Θ) = 𝐻𝑓 (𝑝∣∣𝑞,Θ)− 𝑍(ℎ), 𝑍(ℎ) = − ln 𝑞(ℎ) = ln[
1

𝑁

𝑁∑
𝑡=1

𝑁∑
𝜏=1

𝐺(x𝑡∣x𝜏 , ℎ
2I𝑑)],

𝐻𝑓 (𝑝∣∣𝑞,Θ) =
1

2𝑁

𝑁∑
𝑡=1

𝑘∑
𝑙=1

𝑝(𝑙∣x𝑡){2 ln𝛼𝑙 − (𝑑+𝑚𝑙) ln(2𝜋)−𝑚𝑙 − ln ∣Λ𝑙∣ − ln ∣Ψ𝑙∣

−𝑇𝑟[[W̃𝑇
𝑙 Λ

−1
𝑙 W̃𝑙 + (I𝑑 −U𝑙W̃𝑙)

𝑇Ψ−1
𝑙 (I𝑑 −U𝑙W̃𝑙)][(x𝑡 − 𝝁𝑙)(x𝑡 − 𝝁𝑙)

𝑇 + ℎ2I𝑑]]}. (3)

measure 𝐻(𝑝∣∣𝑞,Θ) for LFA in Eq. (3), where the regulariza-

tion term 𝑍(ℎ) helps adjust ℎ to an appropriate value during

learning, coming from an Induced Bias Cancelation (IBC)

improper prior on ℎ [9].

To maximize 𝐻(𝑝∣∣𝑞,Θ) in Eq. (3) w.r.t. parameters Θ =

{{𝛼𝑙,𝝁𝑙,Ψ𝑙,U𝑙,Λ𝑙,W̃𝑙}𝑘𝑙=1, ℎ}, an adaptive learning algo-

rithm is referred to Figure 8 in [9] and Section 2.3 in [16].

Maximizing the harmony measure in Eq. (3) will provide an

intrinsic force to push 𝛼𝑙 → 0 if a component 𝑙 is extra and

thus can be discarded. Also, the variance Λ
(𝑗)
𝑙 of a component

𝑙 will be forced to approach zero if the corresponding local di-

mension y
(𝑗)
𝑙 is extra and thus discarded. As long as the com-

ponent number 𝑘 and the local hidden dimensions {𝑚𝑙}𝑘𝑙=1

are initialized at large enough values, model selection will be

conducted automatically during parameter learning. More al-

gorithms are referred to Algorithm III in [15], where a unified

procedure is given for a number of different settings.

2.3. Harmony Criterion based Aspect-Frame Partition
One remaining but important problem for radar HRRP recog-

nition is the target-aspect sensitivity, i.e., the distribution of

HRRPs varies with the target aspect angle. Two kinds of

methods are usually used to tackle this problem. The first

uses a mixture model to describe the distribution of the total

samples based on all aspect angles, which however is usu-

ally so complex that its learning suffers from great computa-

tional complexity [1]. The second method adopts the divide-

and-conquer policy and models different sectors separately

[3, 1], with each sector defined as an aspect-frame. Specif-

ically, after HRRPs of a target 𝑐 are divided into 𝐾𝑐 aspect-

frames, a parametric model is used to describe the distribu-

tion 𝑝𝑐(x∣𝑗) in each frame 𝑗. Then during classification, the

class-conditional probability 𝑝𝑐(x𝑡) for class 𝑐 is calculated as

𝑝𝑐(x𝑡) ≜ max𝑗 [𝑝𝑐(x𝑡∣𝑗)𝑝𝑐(𝑗)], where 𝑝𝑐(𝑗) is a prior of the

𝑗-th aspect-frame in target 𝑐, which could be assigned propor-

tionally to its sample size in this frame. Due to its efficiency

and effectiveness, this method has been investigated in the lit-

erature [3, 1] and is adopted in this paper.

Therein, how to partition the consecutive training sam-

ples into aspect-frames becomes a key problem. As a typical

combinatorial optimization problem, both the frame number

and the frame partitions need to be determined. We adopt the

heuristic partition mechanism proposed in Section III.B of [1]

for comparison consistency, whose implementation consists

of two nested levels. The inner level determines the model in

a frame, and the outer level determines frames sequentially in

a two-phase procedure.
In addition to the nature of automatic model selection by

maxΘ 𝐻(𝑝∣∣𝑞,Θ), Eq. (2) in a two stage implementation also
consists of seeking the minimum of the following BYY har-
mony criterion [9]:

𝐽𝐵𝑌 𝑌 (k) = −𝐻(𝑝∣∣𝑞,Θ) +
1

2𝑁
𝐷(k), (4)

where 𝐷(k) = 2𝑘𝑑 + 𝑘 − 1 +
∑𝑘

𝑙=1 𝑚𝑙(𝑑 − 𝑚𝑙−1
2 ) is

the number of free parameters in an LFA model with a scale

k = {𝑘, {𝑚𝑙}𝑘𝑙=1}. Although based on a mechanism similar

to that in [1], our partition procedure has two key differences.

In the inner level, an LFA model is automatically learned by

BYY, instead of an FA model selected by a two-phase pro-

cedure. In the outer level, the above BYY harmony criterion

𝐽𝐵𝑌 𝑌 (k) replaces either AIC or BIC in [1].

3. EXPERIMENTAL RESULTS
Experimental investigation is conducted on the 3-class mea-

sured HRRP dataset same as in [1], including Yak-42, Cessna
Citation S/II, and An-26. The radar signal is of 400MHz band-

width, and the dimensionality of the HRRP data, i.e., the num-

ber of range cells, is 𝑑 = 256, with the plane targets’ param-

eters listed in Table 1. The projections of target trajectories

onto ground plane are shown in Fig. 2, where the measured

data are segmented into training and testing data [1]. Partic-

ularly, the 2nd and the 5th segments of Yak-42, the 6th and

the 7th segments of Cessna Citation S/II, the 5th and the 6th

segments of An-26 are taken as the training samples, with the

remaining left for testing.

During dividing aspect-frames, we implement both equal

interval partition and heuristic partition approaches. For the

equal interval partition, same as in [1], we set 35 aspect-

frames for Yak-42, 50 for Cessna, and 50 for An-26, with

Table 1. Description of the plane parameters.
plane length (𝑚) width (𝑚) height (𝑚)

Yak-42 36.38 34.88 9.83

Cessna Citation S/II 14.40 15.90 4.57

An-26 23.80 29.20 9.83

(a) Yak-42 (b) Cessna (c) An-26
Fig. 2. Projections of target trajectories onto ground plane.
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Table 2. The confusion matrices and average correct recognition rates (𝐴𝐶𝑅𝑅) by LFA classifier learned with BYY. For short,

𝑌 , 𝐶, and 𝐴 stand for the three planes, respectively. Results labeled by (*) are the 𝐴𝐶𝑅𝑅 collected from [1] for comparison.
Equal Interval Partition Heuristic Partition

no smoothing smoothing no smoothing smoothing

Plane 𝑌 𝐶 𝐴 𝑌 𝐶 𝐴 𝑌 𝐶 𝐴 𝑌 𝐶 𝐴
𝑌 100 0.80 3.30 100 0.45 2.70 100 0.15 1.85 100 0.10 1.75
𝐶 0 97.15 0.45 0 98.00 0.45 0 99.20 0.35 0 99.35 0.25
𝐴 0 1.95 96.25 0 1.55 96.75 0 0.65 97.80 0 0.55 98.00

ACRR 97.80 98.25 99.00 99.12
(*)FA-AIC 94.50 98.53

(*)FA-BIC 96.78 98.73

(a) Yak-42
(with 𝐾𝑌 = 28)

(b) Cessna
(with 𝐾𝐶 = 30)

(c) An-26
(with 𝐾𝐴 = 42)

Fig. 3. The heuristically partitioned aspect-frames. Each sep-

arated sector refers to an aspect-frame, with the angular size

proportional to its sample size. The notation 𝐾𝑖 represents

the number of resulted aspect-frames in class 𝑖.

1024 HRRP samples in each frame. Based on samples in each

aspect-frame of each plane, LFA learning by BYY is imple-

mented, with and without data smoothing. There are thus four

different implementations in total. A classifier is composed

once all aspect-frames have been determined and each frame

gets a learned LFA model. The recognition accuracy on test-

ing samples by each implementation is reported in Table 2.

The results by FA selected with AIC and BIC are collected

from [1] for comparison. Fig. 3 shows the sample size pro-

portions of aspect-frames obtained by the heuristic partition.

These results indicate the following observations. First,

compared to FA-AIC and FA-BIC in [1], the results by LFA

show improved recognition performances. For the equal in-

terval partition, LFA’s best result relatively improves FA-AIC

and FA-BIC by 3.97% and 1.52%, respectively. For the

heuristic partition, LFA’s best result relatively outperforms

them by 0.60% and 0.40%, respectively. Additionally, the

heuristic partition always outperforms the equal interval par-

tition, which reconfirms the observations in [1]. Second, the

results with data smoothing outperform those without data

smoothing by 1.04% in average. Third, interestingly, there

are (28, 30, 42) heuristically partitioned frames for the three

planes respectively, which are all smaller than (32, 39, 48) by

FA-AIC and (31, 35, 47) by FA-BIC in [1]. It should be noted

that, these observations come from a combination of several

effects, including the description ability of LFA model, the

learning performance by BYY-A, and the aspect-frame parti-

tion appropriateness, etc.

4. CONCLUDING REMARKS
As a further investigation of a recent work [1] on radar HRRP

target recognition, this paper considers LFA for describing

not only the inter-dimensional dependence but also the non-

Gaussian distribution of HRRPs. To determine an appropriate

model scale for LFA, this work adopts the automatic BYY

harmony learning. Furthermore, the BYY harmony criterion

is employed for the heuristic aspect-frame partition to tackle

the target-aspect sensitivity. Recognition results on the same

HRRP dataset as [1] show promising improvement.
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