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ABSTRACT

This paper investigates the Bayesian Ying-Yang (BYY) learning
for speech recognition via Gaussian mixture models (GMMs) based
Hidden Markov models (HMMs). A two level procedure is proposed
with the hidden Markov level trained still under the maximum like-
lihood principle by the Baum-Welch algorithm but with the GMMs
level trained under the BYY best harmony. We proposed a new
batch way EM-like Ying-Yang alternation algorithm and used it as
a plug-in block to the Baum-Welch algorithm. The advantage is
that number of GMM components can be automatically determined
during this BYY harmony learning and that the resulted model
parameters become less affected than EM-ML training by the prob-
lem of overfitting and singular solution. In comparison with the
standard EM-ML training and classical model selection criterions,
including BIC and AIC, speech recognition experiments in a large
vocabulary task on the Hub4 broadcast news database shown that
the proposed algorithm provides an improved performance and also
good convergence.

Index Terms— speech recognition, model selection, Bayesian
Ying-Yang learning, GMMs, HMMs

1. INTRODUCTION

The acoustic model in modern ASR systems has a very complicated
structure: hidden markov level is composed of a set of clustered
states and each state’s output distribution is represented by a multi-
variate GMM. Improvements on performance can be expected if op-
timal model size can be determined and thus more precise model pa-
rameters can be estimated. Some work has been done to prune mix-
ture components using classical model selection techniques like the
Akaike information criterion (AIC)[1], Bayes information criterion
(BIC) [2], and minimum description length (MDL) [3]. However,
there are two problems when apply them into ASR systems, first,
with a two stage implementation, they typically need to enumerate
all possible candidate number of components; second, the estima-
tion performance deteriorates when data dimension is high and the
number of parameters is large. The two problems have made them
impractical for speech recognition system trained on large databases.
Recently, the application of Variational Bayesian (VB) approach for
speech recognition systems has also been investigated [4, 5] and
achieve improvement on recognition accuracy, but the performance
seems sensitive to the choice of priors.

BYY learning [8, 9] is a relatively new learning technique that
allows model parameters and model scale be learned simultaneously

Fig. 1. The training framework of a two-level procedure .

and automatically.The problems for BIC and AIC can be avoided
in the BYY approach, in which extra components are automatically
pruned during training. To fully adopt BYY learning to generate
more precise acoustic model parameters, the whole framework can
be involved, that is, both model size at hidden Markov level and
Gaussian mixture level can be determined. Instead of applying BYY
learning for both levels at one time, as a first step, also for convenient
comparison with classical model selection criterions, model selec-
tion by BYY is primarily applied to the GMM level to determine the
number of Gaussian components in this work.

We propose a two level training procedure in which the hidden
Markov level is still trained under maximum likelihood principle
with Baum-Welch (BW) algorithm, while the GMM level is trained
under the BYY best harmony principle. The framework is illustrated
as in Figure 1. Instead of directly adopting the existing adaptive
BYY learning algorithm for GMMs, we proposed a new EM-like
BYY learning algorithm in help of an auxiliary function based regu-
larization. The proposed algorithm is compatible with BW algorithm
in that parameters are updated in batch mode. We have mathemati-
cally proved that by appropriately selecting a smoothing parameter
the algorithm can ensure convergence of harmony functional. Ex-
periments on large vocabulary Hub4 Mandarin speech corpus has
shown its effectiveness and good convergence.

The rest of this paper is organized as follows. Section 2 de-
scribes our proposed training method for acoustic models. Experi-
ments are presented in section 3, and conclusion is made in section
4.

2. PROPOSED TRAINING ALGORITHM FOR GMM-HMM
ACOUSTIC MODEL

2.1. BYY learning formulation for GMMs

Firstly proposed in [8] and systematically developed over a
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decade [9], BYY harmony learning theory is a general statistical
learning framework that can handle both parameter learning and
model selection under a best harmony principle. A salient advantage
of BYY learning is that model selection can be done simultaneously
with parameter learning.

The general form of harmony measure and its specific form for
GMMs are restated in Eq (1) and (2). The details are referred to
[10]) and especially a recent systematic tutorial in [11]. In Eq. (2)
the smoothing item h is ignored:

H(p||q, θ) = Hf (p||q, θ)− Z(h) (1)

Hf (p||q, θ) =
T�

t=1

k�

j=1

p(j|xt, θ) ln q(xt, j|θ) (2)

in which q(xt, j|θ) = αjN (xt|μj , Σj) and p(j|xt, θ) can be set
with Bayesian structure, i.e. p(j|xt, θ) = q(xt,j|θ)�

k

q(xt,k|θ)
.

To maximize Hf (p||q, θ), existing adaptive algorithm is imple-
mented via a Ying-Yang iteration procedure, in which at Yang-step,
p(j|xt, θ) and δtj in Eq. (3) are calculated according to above equa-
tions, then, at Ying-step, model parameters are updated with gradient
based approach.

∇θj
Hf (X, θ, k) =

�

t

(1 + δtj)p(j|xt, θ)
∂ ln q(xt, j|θ)

∂θj

(3)

where δtj = ln p(j|xt, θ)−
k�

l=1

p(l|xt, θ) ln p(l|xt, θ).

To be applied for GMM level in acoustic model, we propose
an EM-like BYY learning algorithm to embed into the Baum-Welch
training framework for hidden Markov state level since the BW al-
gorithm is typically in batch way and also free from determination
of any learning rate parameter.
2.2. Proposed EM-like BYY Learning Algorithm

Parameter estimation for GMMs under ML criterion is considered a
well solved problem based on the EM technique. This is an iterative
procedure in which each iteration is a two-step process, and which
is guaranteed to converge to a local optimum. The first step involves
accumulating statistics which depend on the current estimated dis-
tribution of a hidden variable, the second step maximizes a so called
“auxiliary function”, if its value is increased, the object function is
bound to increase too. Moreover the auxiliary function should be
easier to be directly maximized than the object function.

In the object function of best harmony criterion, the parameters
exist in both Ying part and Yang part and need to be estimated simul-
taneously. It is not straightforward to derive an auxiliary function
which is guaranteed to increase the objective function to perform an
EM-like updating. To solve this problem, we adopt the method used
in [6, 7]. In this method, instead of finding a strong sense auxiliary
function, a weak sense auxiliary function and a smoothing function
are constructed.

A weak-sense auxiliary function Gweak(θ, θ̃) has the same gra-
dient with the object function around the point θ = θ̃. For the BYY
harmony functional, a weak-sense function can be naturally written
according to Eq. (3):

Gweak(θ, θ̃) =
�

t

�

j

(1 + δ̃tj)p(j|xt; θ̃) ln q(xt, j; θ)

with δ̃tj = ln p(j|xt, θ̃)−
k�

l=1

p(l|xt, θ̃) ln p(l|xt, θ̃) (4)

A smoothing function has its maximum at current point θ = θ̃. It
can be added to a weak-sense auxiliary function to improve conver-
gence. For the BYY harmony functional, a possible form of smooth-

ing function can be as following, which satisfies ∂Gsm(θ,θ̃)
∂θ

���
θ=θ̃

=

0:

Gsm(θ, θ̃) = −0.5
�

j

Dj{ln |Σj |+ Tr[(Σ̃j + S̃j)Σ
−1
j ]},

where S̃j = (μj − μ̃j)(μj − μ̃j)
T and Dj is a constant that

controls the amount of parameters to be smoothed.
The two functions together, target the same property as a strong-

sense auxiliary function, thus the following auxiliary function can be
constructed:

F (θ, θ̃) = Gweak(θ, θ̃) + Gsm(θ, θ̃) (5)

Maximization of Eq. (6) leads to the following EM-like Ying-
Yang iteration:

• Yang-step: calculate p(j|xt, θ) and δtj

• Ying-step: updating αj , μj and Σj as follows

αj =
�

t

ξtj/
�

l

�

t

ξtl (6)

μj =

�
t

ξtjxt + Dj μ̃j

�
t

ξtj + Dj

(7)

Σj =

�
t

ξtj [(xt − μj)(xt − μj)
T ] + DjΣ̃j

�
t

ξtj + Dj

, (8)

in which ξtj = (1 + δtj)p(j|xt, θ).
For mixture weight parameters, a specific smoothing function

can also be constructed, then another smoothing constant will be in-
troduced and by appropriately setting it the positive of αj can be
ensured. However, preliminary experiments show that there is no
obvious effect on performance by adding smoothing function for the
mixture weight parameters. Therefore, in this work, we simply up-
date mixture weight parameters with Eq. (6), when αj falls negative,
the corresponding component is simply discarded.

It can be proved that by selecting appropriate Dj , the above up-
dating rule ensure positive projection on the gradient both for μj and
Σj (when Σj is diagonal), see following:

vec[μj − μ̃j ]
T · vec[∇μj

H ] =
1

N(
�
t

ξtj + Dj)
·

tr[(
�

t

ξtjxt −
�

t

ξtjμ̃j)
T Σ−1

j (
�

t

ξtjxt −
�

t

ξtjμ̃j)]

vec[Σj − Σ̃j ]
T · vec[∇Σj

H ] =
0.5

N(
�
t

ξtj + Djm)
·

tr[(Sj −
�

t

ξtjΣ̃j)Σ̃
−1
jm(Sj −

�

t

ξtjΣ̃j)Σ̃
−1
j ]

since the tr[·] part in above two equations are positive, by select-
ing Dj to keep (

�
t

ξtj + Dj) > 0, both vec[μj−μ̃j ]
T ·vec[∇μj

H ]

and vec[Σj − Σ̃j ]
T · vec[∇Σj

H ] can ensure to be positive. Under
mild conditions, the harmony functional has an upper bound, this
algorithm can monotonically increase the harmony functional and
converges to a local optimum.
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As for the setting of Dj , it is usually set on a per-Gaussian level,
e.g., a global constant E multiplied by the accumulated item �

t
ξtj .

when it is set a large value, training becomes slow but more stable.
The relation of the proposed updating rule and the gradient can be
found as:

μj − μ̃j =
1�

t

ξtj + Dj

Σ̃j
∂H

∂μj

Σj − Σ̃j =
1

0.5(
�
t

ξtj + Dj)
Σ̃−1

j

∂H

∂Σj

Σ̃−1
j

As can be seen in the above equation, also by keeping (
�

t
ξtj+Dj)>0,

since ∂H
∂Σj

is positive definite and Σ̃−1
j is diagonal and positive, the

positive updates of the variance Σj can be automatically ensured in
the proposed algorithm.

2.3. Integrated with Baum-Welch training algorithm

The proposed EM-like BYY-GMM algorithm can be naturally in-
tegrated into BW training framework. To be more specific, at E-
step, the posterior probability γtjm (j and m denote the indices of
state and Gaussian component respectively), is obtained as same as
in standard EM training.

Then, νtjm can be calculated by:

νtjm = (1 + δtjm)γtjm, (9)

in which δtjm is calculated according to Eq. (4).
At M-step, model parameters are updated as follows:

αjm =
�

t

νtjm/
�

l

�

t

νtjl (10)

μjm =

�
t

νtjmxt + Djmμ̃jm

�
t

νtjm + Djm

(11)

Σjm =

�
t

νtjm[(xt − μjm)(xt − μjm)T ] + DjmΣ̃jm

�
t

νtjm + Djm

(12)

The above alternation is repeated until harmony functional
converges. During training, when αjm → 0 the corresponding
Gaussian component can be discarded, thus automatic model selec-
tion is achieved.

An important difference can be seen compared with standard
EM-ML algorithm: νtjm actually provides a new allocation scheme.
If δtjm > 0, updating goes along the same direction of the ML
learning but with an increased strength. If 0 > δtjm > −1, i.e., the
fitness is worse than the average and thus this is doubtful, updating
still goes along the same direction of the ML learning while with
a reduced strength. When δtjm < −1, updating reverses to the
opposite direction, i.e., becoming de-learning (details are referred to
[9]).

3. EXPERIMENTS

We carried out speech recognition experiments on Hub4 Mandarin
broadcast news database to test the performance and efficiency of
the proposed training algorithm. The training set is 1997 Mandarin
broadcast news speech corpus (Hub-4NE) training data which con-
sist of about 30 hours of speech. The test set is Mandarin broadcast
news (Hub-4NE) evaluation data which consist of about one hour
speech.

Feature extraction is Mel-cepstrum based, with corresponding
first and second order time derivatives resulting in 39 dimensional
features. Channel normalization is applied using cepstral mean nor-
malization over each utterance. Acoustic models in our experiments
are context dependent phoneme based acoustic models in which each
unit is modeled by 3-state left-to-right HMM.After decision tree-
based state tying, the baseline acoustic model totally consists of 3000
tied states.

In EM-ML training, the number of mixture components per
senone is uniformly set to a constant empirically. Gaussian split-
ting strategy is used to increase model size from single Gaussian
distribution to mixture of Gaussian distributions. First, we examine
recognition performance of models trained using EM-ML in differ-
ent model size. Results are given in Table 1. As can be seen from

Table 1. Recognition WER function of GMM components.
# of Component 4 8 16 32 64

WER 26.12 23.17 21.98 21.89 23.29

Table 1, the performance seems saturate when the mixture number
increase from 16 to 32.

We experimented with two training strategies by using different
initialization method:

In Strategy A, HMMs with each state modeled by single
Gaussian are trained using EM-ML, then we simply perform five
times of Gaussian splitting consecutively to increase the single
Gaussian model to 32 GMMs and this model is used as the initial
model to perform our proposed training algorithm, that is, the model
is initialized with a large enough scale and parameters are learned
and pruned during training.

In Strategy B, similar as standard EM-ML training procedure
except that after each operation of Gaussian splitting, models are
trained by the proposed training algorithm, that is, the model scale
is increased incrementally and there is model selection performed
along with different model size.
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Fig. 2. The value of harmony functional in the training procedure.

In our experiments, Djm is selected by principles described in
last section with the constant E set to be 2.0. Training iteration
is stopped when harmony functional converges. Figure 2 shows
the harmony functional value in the training procedure. As can be
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seen, in strategy A harmony functional converges; in strategy B, each
times drop of harmony functional value correspond to an operation
of Gaussian splitting.

For comparison, we also performed experiments using classi-
cal model selection criterion as the AIC and BIC. In these experi-
ments, acoustic model with different size of GMMs are first obtained
with standard ML training, then AIC and BIC are used to chose best
model scale for each Gaussian mixture. Model selection and speech
recognition results are given in Table 2.

Table 2. Results of models trained using different approach.
EM-ML BYY BYY BIC AIC

strategy A strategy B
Aver # 32.00 19.96 22.79 10.39 25.29

of Comp
WER 21.89 20.80 21.21 23.48 22.21

As can be seen, GMM size for both models trained with strategy
A and strategy B are effectively reduced, and both achieve improve-
ments on recognition performance, by integrating BYY harmony
learning into BW training, more precise model parameters are gener-
ated by model selection and less suffering from overfitting problems.
Its superiority over BIC and AIC owing to that the estimating per-
formance of BIC and AIC can deteriorates when data dimension is
high and model scale is large, while in the BYY approach the ex-
tra model scale is automatically pruned during training. Another
remark concerns the time consumption, the proposed training algo-
rithm has similar convergence speed with EM-ML training, so in
strategy B, the time consumption is similar with EM-ML training,
while in strategy A, since models are initialized with high complex-
ity, the overall training time is about 2 times of EM-ML training.
The time consumed for BIC and AIC is nearly 1.2 times respectively
of EM-ML training, since acoustic models with different model size
can be preserved during the standard ”split and train” procedure.

Table 3. Detailed results with testing data divided into two parts.
EM-ML BIC AIC BYY (strategy A)

SNR > 20dB 16.61 17.32 16.63 14.89
SNR < 20dB 28.96 31.74 29.68 29.09

To further investigate the improved performance achieved by the
BYY learning, we divided the test utterances into two parts accord-
ing to their SNR. Detailed results are shown in Table 3. As can be
seen, for clean speech (sentences with SNR > 20dB), BYY achieves
significant improvements compared not only with EM-ML training
but also with BIC and AIC method. For the other part of speech
(sentences with SNR < 20dB), the best recognition WER appears in
EM-ML training. The explanation for this phenomenon should be
that, interferences in speech utterances including background music,
background speech and other background noise, which need some
room to accommodate in order to reduce disturbances to those rooms
for signals. All the three model selection methods seem not good on
measuring this part of model complexity. As shown in Table 2, the
EM-ML uses 32 components and thus get the best WER 28.96 while
BIC uses 10.39 components get the worst WER 31.74, and AIC im-
proves to a WER 29.68 by using 25.29 components. Interestingly,
BYY uses 19.96 (< 25.29 by AIC) components but still get a WER
29.09 that is better than 29.68 by AIC and is very closely to the best
WER at 28.96.

4. CONCLUSION

In this paper, we first propose an EM-like BYY learning algorithm
in which parameters can be updated in batch mode, then apply this

algorithm into speech recognition systems to determine the number
of Gaussian mixtures. Experiments are performed on Hub4 Man-
darin speech data set. We compared the proposed algorithm with
both standard EM-ML training and classical model selection criteri-
ons including BIC and AIC. Results show that model selection can
be effectively performed by making best harmony, and also lead to
improvements on recognition WER, which confirm that BYY learn-
ing suffer less from overfitting problems. In the future work, more
thorough study about the selection of the Djm need to be carried
out. Moreover, how to improve its performance in complicated back-
ground noise environment and also the application of BYY learning
for the whole GMM-HMMs to determine the model topology need
to be investigated.
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