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The problem of combining the outputs of several classifiers is encountered
in various applications of pattern recognition and has recently gained a lot
of interest. In this paper, a neural net model, called associative switch, based
on a new combination principle, is proposed for solving the problem. This
switch consists of: (1) a number of knobs which gate the output channels of
individual classifiers, and (2) a multilayer perceptron neural net trained by a
backpropagation technique with a modified error criterion. When an unla-
beled pattern is input to each individual classifier, it also enters a neural net
for associatively recalling a code which controls the knobs to decide whether
the output of each classifier could pass through as the final result. The prob-
lem of appropriately training the net to fulfill the associative control task is
further addressed, and advantages of the modified error criterion are ana-
lyzed. Furthermore, this associative switch is used to tackle the problem of
combining multiple classifiers for recognizing totally unconstrained hand-
written numerals. The experiments show that the associative switch can
improve the results of individual classifiers considerably.
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1 INTRODUCTION

Recently, the combination of multiple classifiers has been regarded as a new di-
rection for the development of highly reliable character recognition systems [1].
Preliminary results indicate that combination of several complementary classifiers
leads to classifiers with improved performance [1, 2, 3, 4].

In our recent paper [5], we argued that the combination of multiple classifiers
is a general problem which is important not only for character recognition but also
for various applications of pattern recognition. There are at least three reasons
justifying that claim.

1. In almost every application area there are many classification algorithms avail-
able based on various theories and methodologies. Each of these classifiers
could attain a certain degree of success, but maybe none of them is totally
perfect, or at least not as good as expected in practical applications. So there
is a need to study the methodology of integrating the outputs of different
classification algorithms so that better results can be obtained.

2. For specific recognition problems, usually many types of features can be used
to represent and recognize patterns. These features can be represented in many
different forms. It is very difficult to lump them together into one single clas-
sifier to make decisions. As a result, many classifiers are needed to handle
different types of features. Again, the problem of combining multiple classifiers
arises naturally.

3. Even for special application problems with only one feature type, it may be a
good idea to divide the high-dimensional feature vector into several vectors of
lower dimensions and input them to several classifiers, since it is well known
that high-dimensional vectors will not only increase computational complexity
but will also produce implementation and accuracy problems.

We recently summarized [5] problems of combining multiclassifiers into three cat-
egories according to the levels of information produced by various classifiers. Through
the use of voting principle, Bayesian Theory, and Dempster—Shafer Theory, four
approaches have been developed to tackle these problems. Application of these
approaches to the problem of recognizing totally unconstrained handwritten nu-
merals showed that combination of classifiers is significantly better than any in-
dividual classifier.

Since the recent renaissance of research in neural networks, many new ap-
proaches appeared, which can fulfill the task of pattern classification. The most
popular ones among them are backpropagation [6, 7], LVQ (1,2,3) [8, 9], ART
(1, 2, 3) [10, 11, 12], and Madaline (I, II, III) [13]. Due to many favorable char-
acteristics of neural nets, especially the massive parallelism and their adaptive
learning ability, these neural classifiers have recently been widely used to tackle
many pattern recognition problems. The occurrence of various versions of this new
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kind of classifiers has created the need for an in-depth study on methods of inte-
grating multiple classifiers. First, the different types of neural-net classifiers provide
different classification results which may also complement each other, and an
appropriate combination may produce a better result. Second, at present, almost
all neural-net classifiers require the input data to be expressed by a vector in
Euclidean space (i.e., they have the function similar to the conventional statistical
classifiers). From a practical point of view, it may be helpful to combine the
performances of neural-net classifiers and some conventional classifiers, especially
those based on structural or syntactic methods.

In this paper, we will explore the possibility of using the neural-net approach
to combine several classifiers. A new combination principle different from those
given in paper [5] is proposed, and a novel technique called associative switch is
developed to realize the principle. The switch is controlled by a feed-forward neural
net trained by the backpropagation technique with a modified error criterion. When
an unlabeled pattern is input to each individual classifier, it also goes to the neural
net for associatively recalling a code which controls the switch to decide whether
the result of each classifier could pass through as a final result. In Section 2, we
will propose the new combination principle and explain the basic model of the
associative switch, and then in Section 3 discuss how to train the switch to attain
the right control ability, and analyze the advantage of the modified error criterion
used here. In Section 4, we will show the results of applying this new approach to
a problem of combining multiple classifiers for recognizing totally unconstrained
handwritten numerals. Finally, we will conclude this paper in Section 5.

Recently, in the neural network literature, there has been an increasing interest
in the study of combining multinetworks or modular or experts so that the global
approximation task can be decomposed to several experts and fulfilled by these
modular with better performance. A good review of such results is given in the
recent papers [14, 15]. Our associative switch is different from the approaches of
these papers in several aspects. In our switch, experts can be either neural-net
classifiers, other conventional classifiers, or a mixture of different kinds of classi-
fiers. Before training the switch network, these classifiers already exist and have
been trained, and each of them is already capable to do classification. The switch
is used in the process of classification to choose the classification result of a specific
classifier for a specific input pattern. During the training of the switch, for each
pattern, the training signal is the indication of the desired classifier (i.e., one which
can produce the right classification of the pattern). In the approaches given in the
papers [14, 15], experts are only neural nets. The final output of the whole net is
the weighted combination of the outputs of each individual expert. Both the switch
network (called gating network) and all the expert networks are trained simulta-
neously. For each pattern, the training signal is the desired output value (e.g., in
classification, it is the right class label of the pattern). The purpose of our work is
to build a switch which can select among the existing classifiers; while the goal of
the approaches given in papers [14, 15] is to build a switch and all the expert
networks at the same time so that the whole task can be decomposed appropriately
among expert nets. Furthermore, our application here is also different from those
considered in the papers [14, 15].
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2 ASSOCIATIVE SWITCH TECHNIQUE FOR NEW
COMBINATION PRINCIPLE

2.1 A New Principle for Combining Multiclassifiers

As pointed out in our paper [5], the problems of combining multiple classifiers
could be classified into three types. Among them, Type 1 is one of the most general
ones since it requires no extra information from each individual classifier except a
class label assigned to the current input pattern and any classifier could provide
such information. In this paper, we will concentrate on the problem of this type.
A clearer description of the problem is given as follows.

Assume that there are K individual classifiers (or experts as called in the paper

[1] ex, K = 1, ..., K). For an unlabeled input pattern x (expressed by a vector
in the Euclidean space) each e, will give x a label j, € A U {$} with each label of
A = {1, 2, ... M} representing a pattern class and ¢ denoting the rejection.

Regardless of the internal structure of a classifier and regardless of theory and
methodology it based on, we may simply regard e, as a functional box which receives
an input x and outputs a label ji, in short denoted by e,(x) = ji. Then, the problem
is to build a big functional box E(x) = j, j € A U {¢} based on e, (x) = j,, k =
1, ..., K, such that a better classification performance could be obtained.

In our paper [5], several methods have been proposed for solving this problem.
Those methods are based on two general principles. One is committee voting, and
the other is evidence gathering for uncertainty reasoning. The two principles share
one common point of trying to assemble or synthesize the outcomes of all the
individuals as the final output. In this paper, we try to combine the results of
multiple classifiers based on a new principle which is totally different from the
above two principles. Simply speaking, the new principle is to select an expert to
be totally responsible in the area of his expertise (i.e., for an input pattern x), we
try to see if one of K individual classifiers is an expert at classifying x correctly, if
not, we reject x; if there is one, we use its classification as the final outcome, if
there are more than one, we could use the output of any one of them. It is quite
clear that the key task for implementing the principle is how to correctly select an
expert for each input pattern. If the task could be fulfilled well, the combined
classification performance will of course be better than the performance of any one
individual classifier since the combined E(x) will give a right result only when one
of K individuals could give the right result.

2.2 Associative Switch Model

We propose a technique called associative switch to fulfil the task of choosing an
expert for each input. The model of the switch is shown in Figure 1(a).

It consists of K knobs sw,, k = 1, . . . , K with each sw, installed on the output
channel of classifier e, to decide whether or not it is selected as the expert for the
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Figure 1(a). The basic model of associative switch for combining multiple classifiers.

present input (i.e., to let its output pass through). So, the output of each knob is
given by

S when sw, = “on”
Je = {d) when sw, = “off.” (1a)

K knobs are controlled by the output code O = [0, ...,04],0<0, =<1,k =

1, . . . K of an associative controller in the following way
_ J“on” when 0, = o,,
Wi = {“off”, otherwise (1b)

where 0.5 < o, = 1is a predefined threshold. When an unlabeled pattern x is input
to individual classifierse,, k = 1, . . . , K, itis also input to the associative controller
for recalling code O which controls K knobs to either select one of the outputs of
K classifiers as the final label j (when there is at least an expert for the present
input) or block all the output channels of individual classifiers and assign ¢ to j
(when there is no expert for the input). The associative controller could be any
existing neural net of heteroassociative memory type [8]. In this paper, we use
one-hidden layer feed-forward net architecture for our associative controller. The
key requirement for the controller net is to map each input x into code O which
satisfies a feasible condition defined by the following points:

1. For one input, the code O results in either all K knobs being “off” or one and
only one knob being “on” (i.e., either no expert is found or one and only one
expert is selected).
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2. The “on” knob should connect the output channel of one of classifiers which
labels x correctly (i.e., the selected expert should be a real expert).

Such mapping ability of the controller net is obtained through a learning process
on a training pattern set in which class label of every pattern is known a priori.
During the learning process, for each input pattern x, the desired mapping between
x and O is designed from the known class label of x and the output e,(x), k = 1,
. . ., K, and then the internal connection weights of the controller net are modified
to adapt to the desired mapping relation. In the ideal case, when the desired
mapping relation for the training set has been completely learned by the controller
net, and if the samples of the training set have the total representation such that
the desired mapping relation on the training set is the same as on all the other
patterns we are going to deal with, then each input x will associatively produce the
right code O which lets the knobs correctly conduct the task of expert selection.
In this case, the final output of the whole model could be expressed as

c_ ke i # b,
/= {4), otherwise (1<)

2.3 Some Further Remarks

In general, it is very difficult for the controller net to completely learn the desired
mapping for each input pattern we are going to deal with. Even when we assume
that after training each pattern of the training set could recall a desired code
designed during learning, some patterns encountered in the testing phase (or recall
phase) may need the mapping relations which have not been met or learned before.
Such difficulty can be partly overcome by the associative or generalization ability
of a neural net. Namely, when an unknown pattern reaches a net trained on a set
which does not contain the pattern, as long as the pattern is not too different from
those patterns in the training set (how different patterns can neural net tolerate
depends on its generalization ability), the net could still give a reasonable output
code. Another measure to tackle the difficulty is given in Equation (1b), where
the knobs are controlled not by the exact desired code but by the codes within an
interval of tolerance. For these reasons, we could expect that the controller net
could learn a good approximation of the desired mapping, thus it can select the
outcomes of individual classifiers very well even when there may occasionally occur
some wrong selections.

Due to the interval of tolerance in Equation (1b) as well as the possibility of
wrong selection by the controller net during the testing phase, it may occasionally
happen that more than one knob is “on” and the messages through these “on”
knobs conflict. There are several remedies in such cases. The simplest one is to
reject the present input (i.e., to turn off all the knobs). One could also regard that
these cases form a combination problem with a small degree of complexity and
treat them by some combining methods again (e.g., by appending the present
associative switch with another one which has a controller net of smaller com-
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plexity). For simplicity, in this paper, we add a simple conflict resolver as shown

in Figure 1(b). Let J. be a subset consisting of all j; # ¢. Upon modifying Equation

(1b), the output of the conflict resolver is given by

;= {j,;, if j, € J, and 3j;, # j; such that r(j}) = r(j}), (1d)
b, otherwise

where r(j,) denotes the number of those elements which take value j, in J,.

Furthermore, in Figure 1(b), we have also supplemented one other element of
Figure 1(a) (i.e., the input to the associative controller is M(x) instead of x). The
reason is that besides directly using the input pattern x to recall the controller net
one could also use some mapping or coding M(x) of x as the controller’s input as
long as M(x) is expressed as a numeric vector. One way to obtain such M(x) may
be dimension reduction transform or feature selection. Another possibility is to let
M(x) be just the label vector J(x) = [j,, . . ., jx] (Where we let j, = —1 replace
the nonnumeric notation j, = ¢) consisting of the outputs of all individual classifiers.
When the dimension of the input x is quite high, a large neural net is required as
the associative controller, which costs a lot of storage and computing time. In such
case, J(x) may be a good alternative to x since the number of individual classifiers
is usually much smaller than the dimension of x.

Before closing this section, we would like to make it clear that the above as-
sociative controller is different from the traditional logical code translator or de-
coder. For a logical decoder, although its output could satisfy the two points of
the feasible condition mentioned earlier, its input cannot directly be the input
pattern x itself, but a logical code of x. When recalling, this input logical code
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Figure 1(b). The model of associative switch with a conflict resolver.
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should be exactly right, otherwise a small error will result in a totally different
output code and will thus produce a completely wrong controlonsw,, k =1,.. .,
K. In contrast, the associative controller, being a neural net, permits its input to
be either directly the input pattern x itself or its mapping M(x) (including also
logical coding). An error bearing or distorted input or even a partial input will still
call out the right output code or a code which is near the right one (i.e., the
controller has associative recalling ability and is robust enough to tolerate noises
and distortions).

3 THE CONTROLLER NET AND ITS LEARNING
3.1 Backpropagation Method

The backpropagation method is a learning technique proposed for training the
multiple layer perceptron neural net [6, 7]. Here, by taking the one-hidden layer
feed-forward net as example, we briefly summarize the method as follows.

The one-hidden layer net is shown in Figure 2, the input layer consists of » units
each of which corresponds to a component of input pattern vector x = [x, . . .,
x,]. These input units are fully connected to n, units of the hidden layer. Again,
all the hidden units are fully connected to K units with the output o, k = 1,

., K.

For each unit, its input is usually given by

n(r=1)
yo = > w® 0D + g0 (2a)

i=

where y; is called the potential of unit j. It makes the unit produce an output o,
through an activation function given by

1
1+ e

) =
o =

(2b)

Figure 2. A one hidden layer forward net as the associative controller.



ASSOCIATIVE SWITCH 85

where r = 1, 2 denotes the hidden and output layers respectively with o, =
02,00 = x;and n® = n, n® = n,, n® = K. w{ is the weight of the connection
from unit i in the layer r — 1 to the unit j in the r layer, 6( is a variable bias with
similar function to a threshold. a > 0 affects the steepness of the activation function.
High a values give a steplike curve and lower values give a smooth curve.

To build the desired input-output mapping, the net is trained on a training set
in which the desired output to each input pattern is known a priori. When an input
x reaches the first layer, it is passed forward through Equations (2a) and (2b) to
generate an output O(x, W, 8) = [o,(x, W, 0), . . ., ox(x, W, 6)] depending on
the present input x, connection weights W and bias 6. The error between the current
output and the desired one O = [0%, . . . , 0%] is calculated by

ﬁ (0d(x) — ou(x, W, 0))% (3a)

NIF—‘

. o, doJ,
Its derlvatlves W 3 O(’) with respective to each of all the connections w(’) and

I
biases 6(’) are computed to modify these parameters in the gradient descent manner
with a learmng rate a, that is,

al, 0 —a al,

ow’ 300"

AwD = —a—=

(3b)

Each time, an input pattern is presented to the net randomly (or in some specific
order) from the training set, the above procedure is repeated once, until a con-
vergence is reached or the error is reduced below a predefined tolerance level.
This way of training is called the online or adaptive type. An alternative way,
called batch type, is also often used. It calculates the error J, after a batch of input
patterns x;, . . . , xy, are input to the net by the following Equation (3c) instead
of Equation (3a)

5= g 2, 2 01w) = o, W, 0) (30)

and then reduces the error by Equation (3b).

The key point of the above learning is the calculation of all the derivatives
T, al,
oW (r) and %;(7)-
Based on the chain rule, it starts at the output layer and goes down to the input

layer for calculating derivatives as follows:

The task is completed by the backpropagation technique [6, 7].

_a_".‘«i. = .QJLO(/—I) _'3_‘,L = ﬂZ_ (4a)
wp o™ T8 ay®
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forr =2

o, _ oI, 07 _ .
ay}(,) - ao;,) ay](,) - —a[l - Oj(x’ W7 e)]oj(xv W’ 0)[Oi - j(‘x7 W’ e)]? (4b)

and forr = 1

(r+1) r+1) ) (r+1)

_BJJ_. — 5 __‘?JZ . é& — @_Lﬂ = "2 a(l — o(’)) 0 W+ .,Q:lzm (4c)
4 1 4 j j ) >

ayl(r) =1 yl(r+ ) ao§r) ay}r) =1 ayj(_r+1)

O = /Y is already available after the calculation of
ay I(r+ D gy ](2)

Equation (4b) (i.e., by Equation (4c)), the required derivatives of the lower layer
could be computed based on those of the upper layers through backward propagation.

where in Equation (4c),

3.2 A Modified Error Criterion and Its Advantages

Although the least squares error criterion Equation (3a) or Equation (3c) is widely
used in neural net literature, we propose to replace it by another criterion given
by

Jer = —é {1 = of(x)] In[1 — o,(x, W, 8)] + 0f(x) In o,(x, W, 0)} (5a)

or

Jer = —g ﬁj {1 - of(x,)]In[1 - 0x(x,, W, 0)] + of(x,) In oi(x,, W, 8)}.  (5b)

Under this criterion, all the formulas for backpropagation given in Section 3.1
above are still valid by replacing J, by J,, except that Equation (4b) should be
changed into the following

aJ &g, 90"
gy*’f:'; = a_o% :9;](3 = —[of ~ 0)(x, W, 0)], forr=2 (5¢)
i i 9 '

(i.e., a factor of [1 — o,(x, W, 8)]o,(x, W, 6) in Equation (4b) is eliminated).
Krzyzak et al. have shown [16] that this elimination can partly solve the problem
of local minima encountered in the least squares criterion. They applied the mod-
ified criterion to handwritten character recognition problem with a significant speed-
up in the training process. In Hinton’s paper [17], by imagining that a real-valued
0y is randomly converted into a binary value with the probability o, being one,
and by interpreting of as the corresponding desired probability for the output unit
J being one, the minimization of J, in Equation (5a) or (5b) is interpreted as
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minimizing a cross-entropy. In the following, we will explore new properties of
this criterion.

In a classification problem, for each input x, the desired output is a binary vector
which has only one component being one indicating the class that x belongs to

of(x) = {}) ifx € o, ©)

otherwise

where w; expresses class j.

Let P(w;) denote a priori probability of class w; and P(w,|x) is a posteriori one
given x. We can prove the following theorem Wthh shows favorable features of
criterion Equation (5).

Theorem. The minimization of the expectation E(J,) is equivalent to minimiz-
ing Ex; + Eg; with respect to W and 6, where

Ey, = _,é:l P(w )f P(xle) In 5 P( |x |x“’) 6) = w
with
P(w|x, W, 8) = ofx, W, 0), P@x W, 0) = 1 = ox, W, 6) "

where w; denotes the complementary of w; (i.e., x € w; is equivalent to x € w)).

Proof. By taking expectation on the both sides of Equation 5(a), we get

E(Jg) = E{— Ef: [1 = of(x)]In[1 — ofx, W, 0)]} + E{—}K: of(x) In of(x, W, 0)}

j=

é - E{[l —of(x)] In [1 — o(x, W, 8)] + é — E[of(x) In o(x, W, 0)]}

Since of(x) = 1 for x € w; and of(x) = 0 for x & w;, we further have

E{[1 - of(®)] In[1 — ox, W, )]} = P(@)E{[1 — of(x)] In [1 — o[x, W, 0)][5}
+ P(0)E{[1 - of(x)] In [1 = ox, W, 8)]lw} = P(G)E{In [1 — o/x, W, 0)]|=}

Similarly
E[of(x) In o(x, W, 8)] = P(@)E[0{(x) In o(x, W, 0)[)]

+ P(w)E[0f(x) In o(x, W, 8)|w] = P(w;)E[ln o/(x, W, 8)|w)].
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So, collecting the above, we have

o]

EUx) = = 2 P@)EM[L - ofx, W, §)][w) ~ 2 P(w)E{In[1 - ofx, W, 0)][w}

j=1

x

1

K
-2 P f P(x[w) In P(wlx, W, 8) - 3, P(w) f P(x|xw;) In P(wj|x, W, 6)
i= x j=1 x
since it follows from Equation (7c) that

P(o)lx, W, 8) = o(x, W, 8), P(G|x, W, 0) = 1 — o/x, W, ).

Thus, it is not difficult to show that E(Jx,) — (Ex, + Eg;) equals
K K
El P(w)) f P(x|w) In P(w|x)dx + 21 P(m) f P(x|®) In P(w;|x)dx
j= j=

which is 1ndependent of W, so we proved that the minimization of E(J;) given
by Equation (5a) is equivalent to minimizing Ex; + Eg; with respect to W
and 6.

Notice that

E{-— % é {1 - of(x,)]In[1 - 0x(x,, W, 0)] + 0i(x,) In o,(x,, W, 9)}}

= E{— }f: [1 - o/x,)]In[1 = ofx,, W, 0)]} + E{— 2 of(x,) In o(x,, W, 0)}.

It is easy to see that the above proof is also true for the case that J; is given by
Equation (5b).

.QED.

It is interesting to note that Ey, is just the Kullback—Leibler information mea-
sure for posterior probability estimation since it could also be rewritten as Ex; =

3K,/ P(x, ) In P ( | (wx 1)4’) dx. Thus, the minimization of E; lets the sequence
of the top layer outputs o,(x, W, 8),j = 1, . . . , K be an estimate of the sequence
of posterior probabilities P(wjlx), j =1,..., under the Kullback-Leibler infor-

mation measure.
Eg; also resembles the Kullback—Leibler information measure for estimating
posterior probability P(w;]x), but it is not since

P(®,U®,) + P(®) + P(&,)
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(i.e., P(w),j = 1,. .., K do not represent a probability distribution on the basic
element space {w,, . . . , wg}). However, if we regard w, as a basis element and
consider the probability measure on set {w,, . . . , wx}, and introduce the following
definitions

__P®) _P@) . _
P@®) = 5 P(wj)_K—l’]_l""’K’ (8a)

,lx)

P'@)x) = =1,...,K, (8b)

then, we have the Kullback—Leibler information measure

= _ g P'(wx)
B = 3, P@) | Paim)in g 0 ax (99)
Substituting Equation (7) into Equation (9a) gives
= (K = DEg, (9b)

So we can see that minimization of Ex, is equivalent to letting the sequence
1-o0(x,W,0
K(— lwwz, j=1, , K be an estimate of the sequence of posterior prob-

abilities P'(w,|x) = P(w,-|x)/(K —1),j =1,..., Kunder the Kullback-Leibler
information measure. _

Although by only minimizing either Ex; or Eg; one could let o(x, W, 0),j =
1, ..., K be an estimate of the sequence of posterior probabilities P(w,|x), j =
1, ..., K, the resulting estimation may not satisfy the following basic constraint
for a probability measure

K

> ofx, W, ) = 1. (10a)

j=1

However, it follows from the above theorem that the minimization of E(J,) is
equivalent to minimizing Ex; and Eg, simultaneously. From P(a i1x) =1 — P(wy]x)
and Equation (7b), we see that these simultaneous minimizations try to let oj(x,
W, 6) approach P(w;|x) and 1 — o/(x, W, ) approach P(w,|x) simultaneously. This
is equivalent to letting o,(x, W, 0),j = 1, . . ., K learn the relations

Pof) =1~ P@x),j=1,...,K

which implicitly keeps the constraint in Equation (10a) satisfied.

Recall a well-known result [18] that minimization of E(/J,) given in Equation
(3a) or (3b) is equivalent to minimizing E,K 1 E[(of(x, W, 8) — P(w;|x))]] (i.e.,
letting the sequence o/(x, W, 0),j = 1, , k be the least square estimate of the
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sequence P(w;|x),j = 1,. . . , K). We could see that criterion J k1 given by Equation
(52) or (5b) is superior to J, also in the sense of probability estimation since the
Kullback-Leibler information measure is better than the least square measure for
probability estimation.

3.3 Training Neural Net as an Associative Controller

In this section we will discuss how to train the one hidden layer net given in Figure
2 as an associative controller by the backpropagation method under the criterion
of Equation (5a) or (5b). The key task is the design of the desired output codes
for training the controller net on a data set, because once we have the desired
output codes the training procedure is just the direct application of the back-
propagation method discussed in Sections 3.1 and 3.2.

To design the appropriate output codes (i.e., the input and output mapping
relations), we look at the information available in a training set for the problem
of multiple classifiers combination. For each sample x in the training set, although
its class label j € A = {1, 2, ... M} is known a priori, one cannot design the
desired output code for x by Equation (6) alone. The reason is that the task of the
controller net is not to classify x into some class, but rather to control K knobs in
Figure 1 so that the right classification made by the individual classifiers pass
through as the final result. Thus, the desired output should be designed based on
the classification results e,(x) = j,, k = 1,..., K. The following gives a simple
way to produce the desired output code according to three different cases:

Case1. Ifj, # jforallthe k = 1,..., K (i.e., there is no individual classifier
giving the right classification), then we let of(x) = 0,k = 1, ..., K.
Case 2. If there is only one k such that j, = j (i.e., there is only one individual
classifier giving the right result), then forj = 1, . .., K we let
)1, forj = k
of(x) = {0, otherwise
Case 3. When there is more than one individual classifier giving the right result
(i.e., there is a subset Sy C {1, 2, . . ., K} for each j' € Sy, j' = j). In
this case, we arbitrarily or randomly choose one j' among Sx and for
J=1,...,K,let

1 forj =y’
d = >
of(x) {0, otherwise

It is clear that the above design for the desired output code reflects our ideal
requirement for realizing the new combining principle described in Section 2.1 and
the feasible condition for the associative model given in Section 2.2. In fact, the
above design is equivalent to the procedure which regroups all the samples of the
training set into K classes (i.e., the problem of combining the result of K individual
classifiers on the samples of M original classes has been transformed into a problem
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of classifying the samples of K new classes). Under these new classes, Equation
(6) holds and the theorem given in Section 3.2 is applicable. Thus, one can directly
use criterion of Equation (5a) or (5b) to train the controller net given in Figure 2
by the procedure of backpropagation method introduced in Section 3.1 and in
Equation (5c).

In Case 3, there is also an alternative way of choosing a desired output code
among several possibilities. One could simply take all the choices, that is, let

1 for allj’ € §,
d = ’ k
of(x) {0, otherwise. (112)

Referring to the model of Figure 1, one could find that this will also make the
associative switch work. The reason is that instead of requiring the output code O
to control K knobs so that only one of the outputs of K classifiers could pass
through as the final label j, we can require that each code O turns “on” all the
knobs of the output channels of these classifiers which label x correctly and turns
“off”” all the other knobs. It should be noted that under this design of the desired
output, the theorem in Section 3.2 is not directly applicable. However, we can still
use criterion of Equation (5a) or (5b) to improve the local minimum problem
encountered by criterion of Equation (3a) or (3b).

Besides the above, there is also another method which can improve the original
one given in Case 3. For the original method, the desired output code is chosen
randomly or by arbitrarily picking one among several choices. However, the dif-
ferent choices will usually affect the final result. In fact, the different choices are
equivalent to regrouping x into the different classes, which will result in the different
regrouping of the training set. In general, the input-output mapping relation of
some regrouped K classes may be simpler than that of others, in turn, the simpler
mapping relation will need a neural net of smaller size and a shorter training period
as well. Thus, it is important to make selection carefully. In the following, a policy
called the minimal disturbance will be proposed for this purpose.

Let r = |Sk| denote the number of elements in Sx and O4(x, j),j = 1,...,r
all the possible choices of a desired output code for an input x. Although all O%(x,
7),j =1, ..., rsatisfy the required condition in Section 2.2 for the associative
switch, the current errors Jx;(j),j = 1, . . ., r obtained by putting O%zx, j), j =
1, ..., rinto Equation (5a) in the current net will be different. First, the smaller
error means that x is regrouped into one class which has learned quite a lot during
the past and thus a smaller effort is presently needed to adapt x, which implicitly
indicates that some choice may give a simpler input-output mapping relation. Sec-
ond, the smaller error also means that a smaller modification of the current weights
W and bias 6 will be made for adapting the input x, thus less learning time could
be expected. Clearly, these two considerations suggest to select the j' in S, such
that Jx, (j') = Min,cs, Jx;(j) (i.e., to make the minimal modification of the current
net or to give the minimal disturbance to what was learned in the past). For short,
we call this the minimal disturbance policy.

To implement this policy, we insert the process for designing the desired output
into the whole process of training. That is, for each randomly picked x, if it does
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not correspond to Case 3, then one assigns x a desired output code as described
in the above Cases 1 and 2, and modifies the connecting weights W and bias 6 by
the backpropagation method described in Section 3.1 and Equation (5c). Other-
wise, we try to select j' such that Jg, (j') = Min;cs, Jx;(j), and assign x a desired
output code by

1 forj =7
d, - s
of(x) {O, otherwise

which is then used for a modification made on the net by the backpropagation to
adapt the present input x. In real implementation, one actually only needs to choose
J' such that o, (x, W, 8) = Max,cs, o/(x, W, 8), since the problem of finding j' such
that Jx,(j') = Mines, Jx.(j) is equivalent to finding j' such that oy(x, W, 8) =
Maxjcs, ofx, W, 8). This fact is made obvious by the following equation

() = —Ino;(x, W, 8) — i In[1 = o,(x, W, 0)] (11b)

which is a simplified version of Equation (5a).

4 COMPUTER EXPERIMENTS ON COMBINING MULTIPLE
CLASSIFIERS FOR RECOGNIZING TOTALLY
UNCONSTRAINED HANDWRITTEN NUMERALS

4.1 Individual Classifiers and Database

The four classifiers proposed in the paper of Suen et al. [1] are considered as
individual classifiers in the experiments. As in the paper [1], the four classifiers
are named expert #1, expert #2, expert #3, and expert #4, and are denoted by e,
€,, €3, e,. The first three are based on the features extracted from the skeletons,
while e, is based on the features derived from contours. See the paper [1] for more
details.

The data used here come from the U.S. zip code database of the Concordia
OCR research team. This database contains run-length coded binarized digits. The
samples were originally collected from the dead-letter envelopes by the U.S. Postal
Service at different locations, some of these samples are shown in Figure 3.

After some preprocessing (see paper [1] for details), 4,000 samples (400 x 10
digits, that is, each of the 10 numeral classes contains 400 samples) were used for
training the four experts, and then, a new set of 2,000 samples (200 x 10 digits)
was used for testing. The following results were obtained from the testing set.

In Table 1.1, Recogn., Subtsti., Reject., and Reliab. are abbreviations of
recognition, substitution, rejection, and reliability rates, respectively. The relia-
bility rate is defined by

Recognition
100% — Rejection’

Reliability = (12)
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Figure 3. Samples of numerals collected from the U.S. Post Office.

Table 1.1. The Results of Four Experts

(%) (%) (%) ' (%)
Recogn. Substi. Reject. Reliab.
e, 86.05 2.25 11.70 97.45
e, 93.10 2.95 3.95 96.98
e; 92.95 2.15 4.90 97.74

e, 93.90 1.60 4.50 98.32
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In addition, if e, assigns a subset of labels to an input, the input is regarded as
being rejected in Table 1.1. Moreover, in the following, this nonunique recognition
of e, is also always regarded as a rejection except for some cases specifically
indicated.

In addition, for some practical reasons, we presently could only access the
classification results for the above mentioned 2,000 test samples. We have to further
divide them into two sets, each contains 1,000 samples (100 samples for each digit),
the first set is used as the training set to train the associative switch, the second
set is used to test the combination performances of the associative switch. For
convenience of comparing the combination performances with those of individual
classifiers, we decompose the results of Table 1.1 into Table 1.2 and Table 1.3 to
show the performances of individual classifiers on the 1,000 samples of the first
set and the second set, respectively.

By comparing the above two tables, one could see that the performances of ¢,
i =1, 2, 3,4 on the first set are better than those on the second set (i.e., we
selected the difficult half of the original 2,000 samples for testing our associative
switch).

4.2 Experiments on the Combination by Associative Switch

For the above specific problem, we have K = 4 and M = 10 for the associative
switch model given in Figure 1(b). In addition, a mapping M(x) of x, instead of x
itself, is used as the input to the controller net. As suggested in Section 2.2, this

Table 1.2. Results of Individual Classifiers on the 1,000 Samples
of the First Set

(%) (%) (%) (%)
Recogn. - Substi. Reject. Reliab.
e, 87.0 1.5 11.6 98.31
e, 94.4 24 3.2 97.52
e; 95.0 1.2 3.8 99.79
e, 94.8 0.9 4.3 99.06

Table 1.3. Results of Individual Classifiers on the 1,000 Samples
of the Second Set

(%) (%) (%) (%)
Recogn. Substi. Reject. Reliab.
e, 85.1 3.0 11.9 96.59
e, 91.8 3.5 4.7 96.33
e, 90.9 3.1 6.0 96.70

e, 93.0 2.3 4.7 97.59
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M(x) is simply the label vector J(x) = [jy, . . ., ji] with j, = —1 replacing the
nonnumeral notation j, = ¢. Each j, is the label assigned to x by classifier e,. We
choose J(x) for practical reason: the four classifiers e, e,, e;, e, are based on
different methods and features, the common pattern input to the four is actually
the binary matrix of digits, which is usually of high dimension when represented
as a vector x. The direct use of such x as the input to the controller will greatly
increase the size of the neural net, thus some feature extraction or dimension
reduction transform is needed to produce M(x). For simplicity, we just use J(x)
since it is already available without any extra work.

In our experiments, the initial values of the connection weights w'” and the bias
9}’) are given by random numbers from a uniform distribution on [—0.5, 0.5]. For
simplicity, the learning rate is fixed at « = 0.15, and the desired output codes are
designed by Equation (11a). The preliminary results are quite promising, they show
that the proposed associative switch works well. For illustration, we list some results
below.

Table 2.1 gives the combination results of the associative switch with different
values of the threshold o, in Equation (1b). Here, the controller net is quite simple,
it only contains four units in the hidden layer. The listed results are obtained after
the net has been trained by 20,000 learning steps, where one step means one whole
process of randomly picking a pattern x from the training set and modifying the
present W and 6 to adapt x. For convenience of making a comparison with the
results of the individual classifiers given in Tables 1.2 and 1.3, here we also rewrite
the results of individual classifier e; for the training set and e, for the testing set
since e; and e, performs best among the four individual classifiers on each set,
respectively.

The improvements obtained in combination approach are easily noticeable in
Tables 2.1 and 2.2. To show details of classification results, we also give the
confusion matrices corresponding to o, = 0.6 in Tables 2.3 and 2.4, respectively.

5 CONCLUSIONS

In our previous paper [5], we argued that combination of several individual clas-
sifiers is a general problem which is often encountered in various application areas

Table 2.1. The Combination Results on the Training Set

(%) (%) (%) (%)
o, Recogn. Substi. Reject. Reliab.
0.9 95.7 0.2 4.1 99.79
0.8 95.8 0.2 4.0 99.79
0.7 95.8 0.2 4.0 99.79
0.6 97.3 0.2 25 99.79
0.5 97.3 0.2 25 99.79

e;: 95.0 1.2 3.8 99.79
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Table 2.2. The Combination Results on the Testing Set

(%) (%) (%) (%)

o, Recogn. Substi. Reject. Reliab.
0.9 94.3 0.2 5.5 99.79
0.8 94.7 0.3 5.0 99.68
0.7 94.8 0.4 4.8 99.58
0.6 95.9 0.4 3.7 99.58
0.5 95.9 04 3.7 99.58
€,: 93.0 2.3 4.7 97.59

Table 2.3. The Combination Result on the Training Set

ilo 0 1 2 3 4 5 7 7 9 rej
0: 95 0 0 0 0 0 1 0 0 0 4
1: 0 99 0 0 0 0 0 0 0 0 1
2: 0 0 95 0 0 0 0 0 0 0 5
3: 0 0 0 98 0 1 0 0 0 0 1
4: 0 0 0 0 98 0 0 0 0 0 2
5: 0 0 0 0 0 97 0 0 0 0 3
6: 0 0 0 0 0 0 97 0 0 0 3
7: 0 0 0 0 0 0 0 97 0 0 3
8: 0 0 0 0 0 0 0 0 99 0 1
9: 0 0 0 0 0 0 0 0 0 98 2
Recogn.: 97.3% Substi.: 0.2% Reject.: 2.5% Relab.: 99.79%
Table 2.4. The Combination Result on the Testing Set

ilo 0 1 2 3 4 5 6 7 7 9 rej
0: 96 0 0 0] 0 0 0 0 0 0 4
1: 0 97 0 0 0 0 0 0 0 0 3
2: 0 0 93 0 0 0 0 0 0 0 7
3: 0 0 0 93 0 0 0 0 0 0 7
4: 0 0 0 0 94 0 0 0 0 0 6
5: 0 0 0 0 0 98 0 0 0 0 2
6: 1 0 0 0 0 0 97 0 0 0 2
7: 0 0 1 0 1 0 0 97 0 0 1
8: 0 0 0 0 0 0 0 0 98 0 2
9: 0 0 0 0 0 0 0 0 1 96 3

Recogn.: 95.9% Substi.: 0.4% Reject.: 3.7% Relab.: 99.58%
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of pattern recognition. In the present paper, we further argued that availability of
various neural net classifiers may also raise the need for a study of integrating
techniques for multiple classifiers. We thus explored the possibility of using the
neural-net approach to perform the task of combining multiple classifiers. In our
paper [5], several combination methods were proposed based on two general com-
bination principles: the committee voting and the evidences gathering with uncer-
tainty reasoning. The two principles share one common point of trying to assemble
or synthesize the outcomes of all the individuals as the final output. In this paper,
we proposed a new principle which only selects one expert for the total respon-
sibility. This new principle is realized by a novel technique called associative switch.
The switch is controlled by a multilayer perceptron neural net trained by back-
propagation technique with a modified error criterion. When an unlabeled pattern
is input to each individual classifier, it also goes to the neural net for associatively
recalling a code which controls the switch to decide whether the result of each
classifier could pass through as a final result. We studied how to appropriately train
the net to fulfil the associative controlling task, and analyzed the advantage of the
modified error criterion used here. Furthermore, we applied this associative switch
to tackle the problem of combining multiple classifiers for recognizing totally un-
constrained handwritten numerals. The experimental results have shown that the
associative switch works well and can produce considerably better classification
results.
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