“

International Journal of Neural Systems, Vol. 3, No. 3 (1992) 253-290
© World Scientific Publishing Company

RECENT ADVANCES ON TECHNIQUES OF STATIC FEEDFORWARD

NETWORKS WITH SUPERVISED LEARNING

LEI XU
Department of Computer Science, Concordia University, Canada
Harvard Robotics Laboratory, Harvard University, USA
Department of Mathematics, Peking University, P. R. China

STAN KLASA
Department of Computer Science, Concordia Universily, Canada

and

ALAN YUILLE
Harvard Robotics Laboratory, Harvard University, USA

Received 23 Mar(;h 1992

The rediscovery and popularization of the backpropagation training technique for multilayer perceptrons
as well as the invention of the Boltzmann machine learning algorithm has given a new boost to the
study on supervised learning networks. In recent years, besides widely spread applications and various
further improvements of the classical backpropagation technique, many new supervised learning models,
techniques as well as theories, have also been proposed in a vast number of publications. This paper tries
to give a rather systematic review on the recent advances on supervised learning techniques and models
for static feedforward networks. We summarize a great number of developments into four aspects:

(1)

2

®3)

(4)

1. Introduction

Various improvements and variants made on the classical backpropagation techniques for Mul-
tilayer (static) perceptron nets, for speeding up training, avoiding local minima, increasing the
generalization ability as well as for many other interesting purposes.

A number of other learning methods for training multilayer (static) perceptron, such as derivative
estimation by perturbation, direct weight update by perturbation, genetic algorithms, recursive
least square estimate and extended Kalman filters, linear programming, the policy of fixing one
layer while updating another, constructing networks by converting decision tree classifiers and
others.

Various other feedforward models which are also able to implement function approximation,
probability density estimation and classification, including various models of basis function
expansion (e.g. radial basis functions, restricted coulomb energy, multivariate adaptive regression
splines, trigonometric and polynomial bases, projection pursuit, basis function tree and many
others) and several other supervised learning models.

Models with complex structures, e.g. modular architecture, hierarchy architecture and others.
Altogether, we try to give a global picture of the present state of supervised learning techniques
(not including all the theoretical developments) for training static feedforward networks.

applications have been explored. In particular, the

The newly renascent neural network research has ex-
perienced an explosive period in recent years. During
this period, not only numerous improvements and
developments have been made on those models and
methods developed in the 1960s and 1970s but also
a number of new models and methods have been
proposed. Moreover, many theoretical issues have
been studied and clarified and tremendous practical

253

study on supervised learning neural nelworks has
developed drastically and has become perhaps the
most popular branch in this field.

Triggered by Rosenblatt’s Perceptron!31:132 and

Widrow’s Adaline,?®° the study of supervised learn-
ing nets was prosperous in the 1960s with a num-
ber of interesting algorithms proposed. Some of
these algorithms like Perceptron,'3!:132 Adaline?3®

254 L. Xu

and Ho-Kashyap®3 algorithms still survive vigorously
nowadays. However, the research of this period was
mainly concentrated on using one single neuron as
a classifier which is only suitable for solving the lin-
ear separable problem.*%1% Due to the lack of effec-
tive and workable training tools for multilayer neural
networks and the shunting force of the increasingly
heated waves of symbolic artificial intelligence in the
same period and probably also partly due to Minsky
and Papert’s influential book,!4® the earlier wave of
neural networks ceased around the end of the 1960s
and the beginning of the 1970s.

The rediscovery and popularization of the
backpropagation training technique for multilayer
feedforward networks by Rumelhart, Hinton and
Williams in 198633 as well as the invention of the
Boltzmann machine learning algorithm? has caused
a new boost to the study of supervised learning nets
which has rapidly become a main stream of the cur-
rent neural network renaissance. In recent years,
besides widely spread applications and various fur-
ther improvements of the classical backpropagation
technique, many new supervised learning models,
techniques as well as theories have also been pro-
posed. Currently, there has already been a huge
amount of publications about these topics in the lit-
erature. In order to pick up the main threads of
recent developments, we first classify the results of a
great diversity of learning techniques into categories
and then define the scope of our survey in this paper.

Roughly speaking, various supervised learning
nets can be grouped into two big categories: feed-
forward nets and recurrent nets. In a feedforward
net, there is no circular or feedback information flow.
By contrast in a recurrent net, there exists some cir-
cular or feedback (also called recurrent) information
flow. The two categories of nets have salient dif-
ferences in their dynamic characteristics. Recurrent
nets are dynamic systems which can demonstrate
dynamic behaviors of different complexities. Feed-
forward nets can be further divided into two subcat-
egories. One consists of static nets which simply map
static inputs into static outputs without any dynamic
processing. A feedforward net is a static net if the
temporal properties of all its neurons® and synapses®
are ignored (i.e. these neurons and synapses are time-
delayless devices). The other subcategory consists

® Or units or cells. These names are used interchangeably in
this paper.

> Or connections or weights. They are also used interchange-
ably in this paper.

of feedforward nets in which some neurons and/or
synapses have temporal properties (e.g. time delay
and finite impulse response studied in Refs. 223, 47
and 22). These nets are again dynamic nets. In gen-
eral, static nets are suitable for memory, association
and recognition of spatial (or static) patterns while
the dynamic nets are more suitable for memory, as-
sociation and recognition of temporal sequences, and
thus more suitable for the tasks of speech recogni-
tion, (Refs. 129, 3 and 100) robot control, (Refs. 106,
238) identification and control of other dynamic sys-
tems (Refs. 231, 154 and 137) as well as for studying
the rhythmic and chaotic behaviors of biological sys-
tems (Refs. 6, 217, 36 and 251).

Due to space limitations, this survey will only
focus on feedforward nets of the static subcategory,
trained by supervised learning. In recent years, the
studies of dynamic nets have also experienced an ex-
plosive development period, ranging from the studies
of the classical quasistatic full connection symmetric
net (i.e. the so-called Hopfield nets3?) to stable dy-
namic nets (e.g. feedforward nets with time delays
or finite pulse response properties (Refs. 223, 47 and
22), synchronous partially recurrent nets,°6:56 recur-
rent nets of real or continuous time (Refs. 241, 168,
230 etc.), oscillatory pattern generating nets?!? and
even chaotic nets (Refs. 36, 224 and 251). Their de-
velopment constitutes a rather comprehensive new
subcategory. Thus we will put them aside and not
review them here.

Presently in the literature, the developments on
supervised learning static feedforward nets are scat-
tered among many different publications. Although
some of these developments have been reviewed in
a number of the recently published survey papers
(Refs. 12, 32, 45, 46, 139, 115, 87, 240, 5, 117, 170,
and 75) and books (Refs. 74, 67, 116, 84, 156, 226,
185, 161, 111, 48, 83 and 20), there is still the lack
of a complete and systematical review which covers
all the major developments, especially those made in
the recent two years. Here, according to our knowl-
edge, we would like to summarize these major devel-
opments into the following five aspects.

o First, based on the classical backpropagation tech-
niques for multilayer (static) perceptron nets,
many improvements and variants have been made
for speeding up training, avoiding local minima,
increasing the generalization ability as well as for
many other interesting purposes. E.g.

(1) several heuristic techniques have been pro-
posed for avoiding local minima and for speed-

ing up learning (Refs. 119, 157, 135, 178, 248,
4, 216, 147, 228, 191, 58, 33, 204, 189, 41, 220,
202, 8, 86, 219, 38, 243 and 77) and other gra-
dient techniques (Refs. 122, 141, 179, 21, 225
and 163) have been used to replace the simple
steepest descent approach to increase conver-
gence speed;

(2) a number of techniques are proposed for in-
creasing the network’s generalization ability
(Refs. 183, 130, 206, 84, 124, 34, 35, 87, 80,
153, 101, 221, 215, 234, 13, 78, 85, 126, 76
and 19);

(3) in addition to the least square error criterion,
several other error criteria’ have been tested
(Refs. 31, 81, 151, 152, 13, 71, 184, 223, 109,
200, 125, 82, 17, 87, 89, 57, 252, 94, 4, 141,
79, 11, 60, 108, 30, 58 and 127);

(4) some other variants (e.g. obtained by using
other types of neurons) have been also studied
(Refs. 211, 123, 235, 90, 200, 212, 243, 112,
97, 132, 70, 199 and 52).

Second, the monopoly role of the backpropaga-
tion learning technique in the training of multi-
layer perceptrons has been shared by a number of
other learning methods such as derivative estima-
tion by perturbation (e.g. MRIII” and model free
learning®®), direct weight update by perturbation
(e.g. local variation,'®® random optimization® and
simulated annealing®®), genetic algorithms (Refs.
236, 149, 237, 146 and 120), recursive least square
estimate and extended Kalman filters (Refs. 205,
53, 172, 196, 190 and 118), linear programming, !9
the policy of fixing one layer while updating an-
other (Refs. 1, 208, 72 and 66), constructing
networks by converting decision tree classifiers
(Refs. 194, 195, 27 and 218), and others (Refs. 114,
63 and 145). These methods may have one or more
advantages over back propagation techniques, e.g.
these advantages include better performance, fast
learning, avoiding local minima, easy for VLSI fab-
rication etc.

Third, many other models of static feedforward
nets have been attracting the interests of more
and more researchers. Examples of these models
are various models which implement function ap-
proximation or probability density estimation by
basis function expansion (Refs. 64, 95, 12, 65, 161,
10, 61, 173, 164, 175, 176, 192, 133, 98, 193, 209,
210, 37, 62, 171, 28, 169, 39, 68, 150, 177, 121,
158, 213, 186, 247, 166, 233, 107, 105 and 24),
as well as a number of other unsupervised learn-

Advances on Supervised Learning Techniques 255

ing models (Refs. 117, 116, 155, 19, 99 and 249).
Having some significant differences from the back-
propagation approach, these models usually have
closer relations with the theories of mathematical
function approximation, statistical decision analy-
sis and regression analysis.

o Fourth, instead of the sole preference of the con-
ventional multilayer feedforward structure (i.e. the
general purposed, distributed network structure
fully connected between layers), in the recent two
years, hierarchical, modularized and other specif-
ically designed problem-dependent network struc-
tures have become increasingly popular (Refs. 103,
159, 244, 214, 187, 160, 23, 40, 16 and 25) because
of the need for solving more complicated real prob-
lems. Moreover, these special structured nets can
usually save a lot of training and storage cost and
improve performance.

e Fifth, a number of theoretical issues have been
studied and clarified. These results involve the
universal approximation of continuous functions,
best approximation ability, learnability, capability,
generalization ability and the relations between
these abilities to the number of layers in a network,
the number of the needed neurons (or hidden neu-
rons), as well as the number of training samples.
These results can not only mathematically justify
the uses of various neural nets but also guide the
design, modification and application of these nets.

This paper is organized in such a way that from
Secs. 2 to 4, the first four aspects above are surveyed
in order. The issues of the fifth aspect will be
addressed in a separate paper.

Due to the drastic rate of developments and the
great number of publications in the literature, it is
impossible to mention all the new developments in
this single survey. Hence, we would like to say that
our survey will only give a schematical outline (but
by no means complete) with focus on the issues of
methods and techniques. In particular, there are
no applications reviewed here, although the tremen-
dous and successful applications of supervised learn-
tng nets is an important feature in neural network
research in recent years. Many application papers
can be found in a number of journals and confer-
ence proceedings. The information not outlined in
this paper can be found in several other good review
papers such as Widrow?4° for the 30 years work of
his group at Stanford University, Poggio!™ for reg-
ulation theory and RBF nets as well as their rela-
tions to several other kinds of nets, Barron et al.!?

256 L. Xu

for the earlier results on theoretical tissues, Amari,®
Kohonen,''” Grossberg and Carpenter3? for the sur-
veys of their work over more than twenty years re-
spectively. Moreover, the surveys on those previously
developed and already quite well established meth-
ods and models can be found in several previous sur-
vey papers (Refs. 45, 46, 139, 115, 87 and 75) and
a number of text books (Refs. 74, 67, 116, 84, 156,
226, 185, 161, 111, 48, 83 and 20).

2. Backpropagation Techniques:
Improvements and Variants

2.1. Multilayer percepirons and
backpropagation

The backpropagation technique was proposed for
training multilayers (static) perceptrons by Rumel-
hart et al.133°

The architecture of the networks have the follow-
ing three features:

e Layered structure.
All the neurons are aligned into multiple layers.

o Directed forward connections.
The neurons within the same layer have no con-
nections while the neurons between two successive
layers are fully connected (i.e. each neuron in a
layer emits directed connections towards all the
neurons of the suceeding layer).

e Homogeneous neurons.
Every neuron in the whole net has the same type of
sigmoid-summation function and every neuron in
the same layer has the same fan-in number (i.e. the
same number of connections towards every neuron
of the same layer).

Assume that such a net has L+ 1 layers with the
Oth (i.e. the bottom) layer being the input layer and
the Lth (i.e. the top) layer being the output layer.

Let o; (9 denote the output of the jth neuron in the

gth layer and wj(") the connection synapses coming

from the kth neuron in the ¢ — 1th layer, then we
have
qu) — a(y](.q))

ﬂq..l 1)
1 (
ygq) — Z w;«;c)ogcq)

¢ In fact, the invention of the technique has a colorful history.
It was invented independently several times (Refs. 29, 229 and
162) before it finally became popularized by Rumelhart et al.
in 1986.

() :

where y; 1s called the activation level of the neuron,
ng_1 is the number of neurons in the ¢ — 1th layer
and o(y) is a sigmoid activation function given by

o(y) =1/(1+e%)
o(y) = (e —e™¥)/(e® + %),

where a is a slant parameter which is usually set at
a=1.

When given an input x = [z, 22, . xn] to the
bottom layer, we have o(®) = [0(0) . os.] =xand
ng = n. The input goes up through the intermediate
layers (usually called hidden layers) to the output
layer to produce the outputs f;(z) = oEL), i=1,...,
m, where m = np. Therefore, as a whole, the net

functions as a compound vector function F(x) =

[fi(x),..., fm(x)] given by
fi(x) = oo (Sl Vo (- o(Z w‘”z;)))()

(2)

fi(%) = P oSl Vo(- - o “’x,)))

In fact, the function is determined by the value of
each element in the weight set W = {w(q)|w(9) € R,
g=1,...,Lii=1,...,n_1,5 =1,. .,nq} By
varying the values taken by the set W, the net is
capable of implementing a set of functions

Y ={F:R" - R"|F(x)= F(x,W),

5
wg’) €R, forall w(q) EW}. ©)

Given a set of training data D = {(xp,dp),p =
1,...,N,}, with each x, being an input vector
and each d, being the correspondent desired output
vector as supervisor, where x, can be either real
(i.e. x, € R™) or binary (i.e. x, € [0,1]*); and d,
usually can be one of the three choices:

(1) real d, € R™ when the net is used for
approximating a real function;
(2) binary d, € [0,1]™ when the net is used as a
coder;
(3) a Vertex of the m dimensional unit hyper-
cubic, i.e.
d, evclo1™,

V={[bir,... ,bim]|bix = bix
fori,k=1,...,m}d

Sik =1, ifi=k; otherwise, 6 =0.

when the net is used as a classifier. The
task of supervised learning is to let W = W
with W being a set of specific values taken by
each element of W in order to give a specific
function

F(x) = F(x,W)|lw=w , (6)

such that under the least square error criterion ¢ =
||d — F(2)||? the total error

P
Ex=) ¢, ¢=llel?
p=1 (7)

€P=dP_F(xP)’

is minimized.

Thus, one reaches a typical nonlinear optimiza-
tion problem. The backpropagation technique uses
the gradient descent method for solving the problem,
i.e. by iteratively adjusting each connection weight
w](-?) by

At = a2 (8)

where « is the step factor called the learning rate.
The key of the technique is to obtain the deriva-
9E, .

tives o) for every weight in the net. When p =
It

L, F(x) = [ogL),... ,059, it follows from Eq. (7
that the derivatives can be obtained by directly dif-
ferentiating E; for ¢ < L, by applying the chain rule
on E5, we can obtain

OFE, OF, ay}q) _ OFE, (g-1)

= = T0;
ol oy oD 9yl®

) (9)

OB, _ g~ 0B ™)
33/](-4) p ay§c41+1) ay](ﬁ)
— O\ aﬁi‘L (0)
=0 (y])zk_Jay,Eq*_l)wkj) (10)

i.e. the derivatives of the lower layer can be
recursively obtained from the derivatives in its
immediate upper layer. Or in other words the deri-
vatives are propagated downwards by the simple
formula Eq. (10) in the opposite direction to the up-
ward information flow by Eq. (1), hence the name
backpropagation.

The technique is really simple but it works, which
makes it the most popular technique in the neural
network field. However, it also has some disadvan-
tages. Many variants and improvements have been

Advances on Supervised Learning Techniques 257

made to overcome them, we will review the main re-
sults in the sequel.

2.2. Techniques for avoiding local minima
and speeding up training

The first drawback of the above classical backpro-
pagation is that gradient descent may sometimes
be stuck at local minima. Although the problem
is considered not to be serious in many cases, it
does affect performances for some problems.143:125
The following heuristics are often used to ease the
problem (Refs. 41, 220, 202 and 8).

o On-line updating.
In Eq. (8), the derivatives are calculated via the
total error E3 which is obtained after a batch
of P patterns has been presented. The way is
sometimes called batch updating. A simple version
can be obtained by using the one-line error e;‘; to
replace E; in Egs. (8), (9) and (10), i.e. the weight
updating is made once a pattern is presented.
This way is called on-line updating. By choosing
each pattern randomly from the training set, it
will produce small random fluctuations which let
the system get out of local minima, since these
minima are usually not too deep.

o Adding noise explicitly.
One way is to let Eq. (8) be replaced by Aw](-g) =
—aa—e:”f—?%;v + n; with n; being Gaussian white noise
of a small variance. Another way is to directly
add such a n; to each input pattern x,. The noise
n; can make fluctuations which let the system get
out of local minima. However, the variance of n,
should be selected appropriately.

e Annealing.
In the above cases, let the variance of n; be initial-
ized by a sufficiently large value and then gradu-
ally reduced to zero. This process is similar to
simulated annealing,'' which can usually get the
global solution but make the learning quite slow.
There is also another similar way. For on-line up-
dating, after each updating of weights, we calcu-
late the error change Acf,. It may sometimes be
positive (i.e. ‘overshot’ happens in the updating).
In such a case, we accept the update by a Boltz-
man probability p = exp(—Acf, /T); if the update
fails to be accepted, then what has been learned
in the update is abolished. Here the parameter T,
called temperature, is initialized by a sufficiently
large value and then gradually reduced to zero.
This form of annealing is quite like that originally

258 L. Xu

proposed in Ref. 113.

The second and also more influential drawback
of the classical backpropagation is its slow learning
speed. There are four major reasons which cause the
problem. Each of them, together with the existing
remedies, are summarized in the sequel.

o The gradient direction somelimes changes drasti-
cally.
For the error-surface of valleys with steep sides but

a shallow slope along the valley floor, the gradient

descent will oscillate across the valley for a very
long time and trace a very inefficient long zigzag
path. One commonly used remedy is to replace

Eq. (8) by

Awi(t+1) = _a 0B BAWD (), (11)
6w§3) 7

where 0 < B < 1 is a coefficient (often chosen to
be 0.9), i.e. we add a momentum or inertia to
smooth the drastic changes of successive learning
directions.*1:36

e A single uniform and constant learning rate « is
unable to suit the complezx error-surface.
If « is too small, the learning will be very slow
while if « is too large, the learning will ‘overshoot’
which again slows down the learning or even makes
the learning diverge. Moreover, an appropriate «
value at the beginning may not be so good later
on. The main remedy for curing the problem is to
adapt the learning rate as the learning progresses.
Jacobs’ DBD rule suggested two points for this
adaption!?2;

(1) each weight has its own learning rate,

(2) « is increased when the derivative of a weight
possesses the same sign for consecutive steps
and « is decreased when the derivative of a
weight changes sign.

Several improved versions of the rule and other
similar heuristics have been proposed by a number
of authors (Refs. 216, 58, 33, 204, 228, 147, 189,
219, 38, 4 and 191). These techniques differ mainly
in the following several issues:

(1) How to use the increment of «, e.g. whether
to let the increment be an additive factor or
a multiplication factor, let the positive and
negative increments be the same or different;
(2) How to estimate the increment of «, for ex-
ample, based on the minimum value of all
the derivatives o’ (yJ(Q))4 via a measure of the

change of curvature,3® by gradient correla-
tion!®! or by analyzing the local extreme value
of the derivative of error with respect to each
weight?228;

(3) How to coordinate the changes in a and 8
(Refs. 4, 216 and 147);

(4) How to treat the ‘overshoot’ case,2!6:147 e.g.
unlearn the recently updated weight incre-
ments, either resetting the weights or choosing
some weighted average of several past values
that the weight took.

Premature saturation.

Due to the nonlinear sigmoid function given by
Eq. (2), for a neuron qu) = a(yJ(-q)) when og-q) is
near its maximum or minimum (i.e. zero or one),
its derivative o’ (yJ(q)) is also near zero or one re-
spectively. Since the derivative is a multiplication
factor in Eq. (10), it follows that 8—5;%?; and all

the derivatives in the layers lower than this neuron
will be near zero too. In these cases, the weights
have almost no change and the corresponding error
will stay almost constant (but maybe quite large)
for a rather long period which can significantly
slow down the learning process. This phenomenon
is called premature saturation!3® or a standstill
state.?*® The basic remedy is to let the slant pa-
rameter a in Eq. (2) be adjustable so that when the
learning falls into premature saturation the slant
parameter a is reduced appropriately. This goal
can be fulfilled by different ways. In Ref. 248, a
rule is proposed to first detect a learning standstill
state and a is reduced from its normal value ag to
a value such that the conditions for the learning
standstill state are not satisfied, then make weight
update once and switch a back to its normal value
ag. In Ref. 178, the parameter a is treated sim-
ilarly to all the weights w,(}) and is updated in
every learning step. While in Ref. 243, Eq. (1) is
replaced by a version with normalized weights

q-1 -1
o= 2 il /
k=1

and parameter a is also updated at the same
time as updating all the weights wg). Here, not
only the adjustments of a can evade the standstill
state but also the normalized weights can avoid
the cases that the large and small weights let
the learning fall into the standstill state, thus the
learning is more stable. In addition, the problems -

of a standstill state caused by the neurons in the

Ng-1)
P2 (12)
k=1

output layer can also be avoided by reconfigurating
the error function such that the usual bell-type
error shapes :fv o (y§4)) for the neurons in the
top layer can be changed into linear or sigmoid
shapes (Refs. 17, 125 and 30).
o Inappropriate initial weights.

It has been shown that the backpropagation learn-
ing technique is quite sensitive to the initial
weights.!1® The inappropriate initial weights can
either let the learning be stuck at local minima or
considerably increase the learning time. In addi-
tion, the large or small weights will also let the ini-
tial learning fall into premature saturation which
as stated above, makes the learning slow down con-
siderably. Generally, the appropriate selection of
good initial values is not an easy task. In Ref. 157,
it is observed that in a one-hidden-layer multi-
layer net, each hidden unit tries to sample the de-
sired mapping function specified by the training
set. Thus, it is found that the learning can speed
up significantly by picking the initial weights in
such a way that all the hidden units are scattered
uniformly in the input pattern space. In Ref. 135,
the probability of premature saturation caused by
the initial weights is calculated which is used as a
guide for selecting the initial weights to avoid this
situation.

In addition to the above heuristic techniques, other
heuristics are also used to accelerate of backpropa-
gation, e.g. in Ref. 77, a Hebbian unlearning term
is attached to Eq. (8) to give Aw](-?) = —aa'zfjg -
705.4)05"_1) with 4 being a parameter 0 < v < 1;
while in Refs. 87 and 138, a weight decay term is
added, i.e. Aw](-g) = _aa?f? - 7w](-q.). It was re-
ported that both measures work.

Besides the above heuristic techniques for in-
creasing convergence speed, a number of authors
have also proposed to use other more advanced gra-
dient techniques to replace the simplest gradient de-
scent technique. Among them, the two major types

are summarized as follows:

e Conjugate gradient.
By this technique, the weight update is given by

Aw = ad™"

drev — _vEgew + ﬂdOId (13)

where w consists of all the elements of the weights
set {W} as components. The parameter 3 is se-
lected such that (d°'9)* Hd™*W = 0 for the Hessian

Advances on Supervised Learning Techniques 259

matrix H. Such a 8 can be chosen by the polak-
ribiere rule

'3 _ (VEgew _ VEgId)tVEgew
IVES"||2
The technique has advantages in both speed and

convergence over steepest descent. Note that the
computations involve only the derivatives i’-"(ﬁ)—

(14)

which can still be calculated by the backpropagJ;.-
tion rule given in Eq. (9) and Eq. (10),12214! and
no explicit knowledge of H is needed.

Newton’s method.

The weights are updated by

Aw = —aH 'VE}*". (15)

The computation of this method is very expensive
because of the need for inverting the Hessian H.
This is usually not directly used in practice. In-
stead, the following Quasi-Newton method is used

Aw = —aGM¥VESM,
G — Gold + F(Go]d’ AW, VE;ew _ VEgld) ,
(16)
where G is the approximation of H~! and the ma-
trix F' is a complicated function of its three argu-
ments. Like the conjugate gradient method, the

computations here also involve only the deriva-
tives % which are obtained by the backprop-
It

agation rule give in Egs. (9) and (10). It has been
found??%163 that the technique can increase the
speed of gradient descent backpropagation by an
order of magnitude.

An alternative way is to approximate Newton’s
rule so that a matrix inversion is not required
(Refs. 163, 179 and 21). One simple way is to
use only the diagonal elements of the Hessian H
by setting all the other elements to be zero, which
simplifies Eq. (15) into

OE, | OE2
«

A = —o B2 [OB
W00 gu”

(17)

or its modified version (the ¢ given below is a
constant)

O OE3
AuP) = —a (3)/ ” 0%
6wji 6wji

+ c2] . (1)

However, this kind of pseudo-Newton rule usu-
ally cannot obtain comparable results to those ob-
tained by conjugate gradient or the quasi-newton
method and seems to give only a modest speed in-
crease over the simple gradient descent method.

260 L. Xu

2.3. Techniques for increasing
generalization ability

One goal of learning is to let the net remem-
ber as many as possible arbitrary mapping pairs
{xp,dp,p = 1,...Np}°. It is not difficult to see
intuitively that the larger the number of neurons,
the larger the number of pairs the net can memo-
rize. Given a training set Dy, as long as the net
has enough hidden units, the total error E; given
in Eq. (7) can become very small or even zero after
backpropagation learning has been implemented for
a long enough period; i.e. a net with a large num-
ber of hidden units can memorize the training set
very well. The other and even more important goal
of learning is to make sure the net can generalize
correctly to new mapping pairs after training on a
training set of given mapping pairs; i.e. given a set of
training data Dy, = {(x,,d,),p=1,...,N,} drawn
from the desired function F(x) (maybe subject to
noise), the mapping function F(x) specified by the
net after training can approximate F(x) well under
a given measure not only on the samples from D,
but also on the samples outside of D;,. Such kind of
ability is called the net’s generalization ability.

Another drawback of a net trained by classical
backpropagation is that it may have a poor gener-
alization ability. Unlike the case of memorizing, a
net having a large number of neurons may generalize
very poorly if the number of samples in D;, is not
large enough. Roughly speaking, the generalization
ability depends on the size #X of the set ¥ given
in Eq. (5) (i.e. the total number of functions imple-
mentable by the given net architecture), the size N,
of the training set Dy, and the size #X 7 of the subset
Y7 C X where each function F(x) € X can approx-
imate F'(x) well on the samples from and outside of
Dtr) le.

Yr={F(x)|F(x) € X, for x€ D,
me(F(x), F(x) < e}, (19)

with D = R™ or D C R™ being the domain
of x which may be much larger than the subset
{zi,i = 1,...N,} occupied by the training set
Dy, where m.(a,b) > 0 is a given error measure
(e.g. me(a,b) = |la — b||?) and ¢ is a prespecified
error bound. The larger the number of neurons in
a net, the larger the number of free weight para-

¢ When dp is a binary vector (i.e. its component takes binary
values), Ny is called the net’s capacity.

meters in the weight set W and thus the larger #X.
In this case, a large enough N, is required; otherwise,
a poor generalization will be obtained since there are
a vast number of functions in ¥ which are consistent
with the training set Dy, but not all are in & 7 and
hence the function specified after training is unlikely
tobein X7. However, on the other hand, if the num-
ber of neurons in the net and thus the number of free
weight parameters is not big enough, there may be
no function in ¥ which can approximate F(x) well
and so X5 may be empty. i.e. the net obtained after
training might even have a poor memorizing ability.
An illuminating analogy can be drawn between the
learning of a net and the fitting of a curve by a para-
metric model. When the model has a lot of param-
eters, one encounters the overfitling problem which
prevents smooth interpolations and reasonable ex-
trapolations; on the other hand, when the model has
too few free parameters, one meets the underfitting
problem which again gives a poor result.

In recent years, a number of methods have been
made to improve the generalization ability of a net
trained by classical backpropagation. The key ideas
behind these methods are to reduce the number of
neurons or the number of free parameters in order
to cut down the size #X while at the same time not
to overly reduce the net’s memorizing ability. These
methods can be summarized into two groups. The
first group consists of methods which impose certain
constraints on the values taken by the weights in
a network architecture without modifying the net’s
hardware. The second group contains the methods
which dynamically adjust the number of neurons
(usually in the hidden layer) and thus modify the
net’s hardware. In the sequel, we survey the major
methods in each of the two groups.

In the first group, the proposed major methods
are the following types:

o Task-dependent constraints.
For the specific applications, there is sometimes
some task-dependent prior information which can
be used to impose constraints on the weights of the
net, e.g. equality constraints can be used to imple-
ment the so called weight sharing technique!33:130
(i.e. let several weights be controlled by a single
parameter) which has been successfully used in ro-
bust handwritten zip code recognition;'3! others
like symmetry, order, geometrical and topological
constraints can also be used in some problems.206:34

e Distributed bottleneck.
Suppose that the kth layer has B neurons and the

(k = 1)th layer has A and let Wp4 denote the
weight matrix that connects the (k — 1) layer to
the kth layer; the idea of this method is to impose
a constraint on the rank of Wg4 such that it can
be written as Wgy = WBQWQA and B > Q < A.
This is equivalent to creating a “virtual bottleneck
layer” of @ linear neurons between the kth and
(k — 1)th layers. The method does not explicitly
cut out some neurons but causes the neurons to be
as similar as possible, i.e. causing them to become
redundant. The goal is realized by simultaneously
compressing the weight vectors of Wg 4 into a low
dimensional space and clustering them within the
low dimensional space.!?4

The minimum network.

The idea is to force the “useless” weights to be-
come zero and thus be implicitly deleted to ob-
tain a minimum network. The idea is implemented
through adding a term in the error function that
penalizes big nets with many weights (Refs. 34,
35, 87, 80, 153 and 101), i.e. to let Eq. (7) be re-
placed by E3+cost. Where the simplest cost term
is cost= b3, cw wf; Which is sometimes called
ridge regression in statistical theory. This extra
cost term is equivalent to put a weight decay term
in the gradient formula Eq. (8), i.e.

Aufp = _af% +bul?, (20)
wj;

where b is an adjustable constant that usually
starts from zero and then gradually increases to
some value in order to gradually introduce the
decaying force which tends to prevent a net from
using table lookup and forces it to discover reg-
ularities in the training set.3” In Ref. 34, a more
complicated cost is used in a one-hidden-layer net,
given by

> ooy W

E;+ta 5+ b 5

all hidden units 1+ 0 all wi;EW 1+ wij
(21)

which also tends to force the used hidden units
to be as small as possible. In addition, it tries to
slow down the decay of large value weights to avoid
washing away what was already learned earlier.
Another extended version of the cost function is
given as follows227

w? /c?
B Y S @
all wi; €W 1+ wj/e
where ¢ is a constant and it reduces to the usual
ridge regression case Eq. (20) when ¢ — oo. It

Advances on Supervised Learning Techniques 261

is interpreted by Ref. 227 to be related to the
information theoretic minimum description length
(MDL) criterion.
e Other global penalizing term.

Penalizing terms other than the above minimum
strategy may also be used for improving the gener-
alization ability, e.g. in Ref. 54, an additional cost
term 3;(422)? is also minimized together with
E, where z; is a component of x = [z1,...z,]".
The motivation is based on their observation:
after training, if all gradients at the output layer
are zero, then the gradients at the input x should
also be zero. However, in practice, this is usually
never true. Thus, in order to let the output be less
sensitive to amplitude variations of the input so
that a smoother approximation is obtained, they
thought that it would be desirable to force the in-
put gradients to be zero even if the gradients of
the preceeding layers are nonzero.

Like the second of the above methods, the purpose
of the methods in the second group is also to create
a bottleneck layer (i.e. the hidden layer for the com-
monly used one-hidden-layer net) in the network’s
architecture. The key difference here is that the bot-
tleneck is not distributed but is obtained by dynam-
ically pruning or deactivating some neurons in the
hardware. The main techniques of this group can be
classified into the following three types:

o Selecting an appropriate architecture according to
some error criteria which take generalization abil-
ity into consideration.

The basic idea is to select the best, under a given
criterion, of a number of architectures trained by
backpropagation separately. The implementation
of the idea is usually to start from an architecture
with a given small number of neurons in the bot-
tleneck layer and then gradually to increase the
number of neurons to produce the next architec-
ture until the criterion value is below a prespeci-
fied threshold or reaches a minimum and tends to
rise again. There are several error criteria pro-
posed for this purpose. Here, we list some of
them. One includes simultaneously the error terms
Eapprox- + Egener-1313¢ Eapprox. is just E3 given
in Eq. (7) or the classification error when the net
is used for pattern recognition tasks. Egener de-
scribes the generalization error, e.g. in Ref. 136,
it is specified by b\/(dvcB/Np) In(N,/dvc) with
b being a weighting factor and dyc being the
so-called Vapnik-Chervonenkis dimension. Some
similar but different criteria are given in Ref. 13.

262 L. Xu

The second one is the prediction probability given
by Ref. 215. It gives the probability that a net,
trained on a training set, can correctly predict an
example which is independent of the training set.
The probability is highly correlated with the gen-
eralization ability of the net, as measured outside
of the given training set. The third one is the hy-
pothesis testing criterion given by Ref. 234. The
idea is to test whether a trained net represents ex-
actly a given mapping function subject to inherent
noise or whether there are some nonlinear struc-
tures in the mapping neglected by the net, based
on the methods that determine whether or not
there exists some advantage to be gained by adding
hidden units to the given net. The fourth is the
information theoretic measure given in Ref. 221.
o Heuristic dynamical adjustment of the number of
neurons in the bottleneck layer.
There are several ways. The first one is to start
from a large number of neurons, and then decre-
mentally reduce the number by some heuristics,
e.g. in Ref. 78, a “badness factor” describing the
backpropagation error for each hidden neuron is
used to detect the worst hidden neuron to prune
off; while in Ref. 110, the redundant neurons were
pruned away by a heuristic sensitivity measure.
The second way is to start from a small number
of neurons and incrementally increase the num-
ber of neurons heuristically until some predefined
condition is satisified and then start to prune neu-
rons one by one until the condition no longer holds
e.g. in Ref. 85, the error E; given in Eq. (7) is
checked after every 100 learning updates, if it does
not decrease by more than one percent of its previ-
ous values, a new hidden neuron is added. Other-
wise, another 100 weight updates are made. Once
the net reaches E5 = 0, one starts to remove a
neuron and the net is trained again, if still £, = 0
holds, then remove another until it no longer holds.
The third way is to remove from a trained net the
neurons which are regarded as redundant by some
heuristic judgements, e.g. in Ref. 203, to prune
away:

(1) neurons which either have approximately con-
stant output across the training set or have
outputs across the training set which mimic
the outputs of other units.

(2) neurons which are independent of the other
units in the layer but given information that
is not required at the next layer.

The fourth way is to estimate the expected number

of neurons in the bottleneck layer by some heuris-
tic method, e.g. in Ref. 126, subspace projection
with least square approximation is used to select
the best subset of hidden neurons. Another exam-
ple for estimating the expected number of neurons
is a net with binary input given by Ref. 76.

It is not difficult to see that the methods of the
second group above can also help to speed up the
training process of a net because of the reduction of
the number of hidden units. Moreover, besides the
two groups of methods, there are also some other
ways for improving the net’s generalization ability,
e.g. Ref. 19 proposed an algorithm which constructs
hidden units using examples and queries.

2.4. Criteria of different types

The core of the backpropagation technique described
in Sec. 2.1 is to use the chain rule on the compound
function given in Eq. (3) to obtain derivatives of
E, given in Eq. (7) with respect to weights of the
nonoutput layer. Without changing this core, we
can still obtain a number of other variants of back-
propagation by modifying some other factors, such
as by using different criteria and activation func-
tions etc. This subsection with survey the variants
resulted from using different criteria and the next
subsection will review some other variants.

According to their characteristics, the presently
used criteria can be roughly grouped into the follow-
ing five types.

1. Minkowski-r error (or L, norm).
The criterion is given by

P

r
25
p=1

(23)

m

Z 'dpi - f,-(xp)|’)

E,
,
€P

.
-

where

dp = [dpl"“ ’dpm]t)
F(xp) = [fi(xp),--- ,fm(x,,)]‘

and 1 < r < oo. Obviously, the criterion is
a direct extension of the least square error
since it includes Eq. (7) as the special case
r = 2. As pointed out in Refs. 31, 81, 151 and
152, the least square criterion is suitable only
when the probability distribution of error noise
e, = d—F(x) is Gaussian. However, when the

distribution is Laplace (e.g. the exponential
distribution), it is best to use Eq. (23) with
r = 1. When the distribution is uniform,
it is best to use Eq. (23) with r = +oo.
The smaller » < 2 is generally suitable for
suppressing noises (may vary with the problem
and the nature of noise); the larger r > 2
tends to weight large deviations and increase
the sensitivity to the geometry of the desired
patterns.

This often used criterion has some important
theoretical interpretations. The minimization
of E, given in Eq. (23) is equivalent to letting
F(x) to be the maximum likelihood estimation
of the desired function d(x) in three special
case (Refs. 151, 152, 81, 13 and 31):

(i) for » = 2, when e, obeys a Gaussian
distribution,
(ii) for » = 1 when e, obeys a Laplace
(e.g. exponential) distribution,
(iil) for » = +o00, €, obeys a uniform distribu-
tion.

Furthermore, for the case that r = 2 and the
net is used as a classifier (i.e. for the desired
d(x), one has d;(x) = 1, if x belong to class
C;, otherwise dj(x) = 0). It can be shown
(Refs. 55, 71, 184, 223, 109 and 200) that
minimization of E; is equivalent to choosing
fi(x) given in Eq. (3) to approximate p(C;/x)
in the least square sense with p(C;/x) be-
ing the posterior probability of class Cj; i.e.,
minE(Y°~ [di(x) — fi(x)]?) is equivalent to
minE (Y%, [p(Ci/x) — fi(x)]?). Thus, classi-
fying x according to ¢ = arg max; f;(x) by the
net can be regarded as a kind of approximation
of classifying x according to Bayesian decision
rule ¢ = arg max; p(C;/x).

Presently, there are two ways to decide the
value of r for using E,. One is to select r
externally according to the analysis results of
the problem and the nature of noise. The other
way i1s to modify r also by gradient descent
method through solving %’%’— which is easy
to obtain and does not need the use of the
chain rule. However, as indicated in Ref. 81,
it is important that the update of r should
be several times slower than the updates of
weights. The details for the derivatives of E,
are given in Ref. 81, and for the special case of
r =1 and r = 400 are given in Ref. 31.

Advances on Supervised Learning Techniques 263

2. Entropy-like criteria.

There are several variants. The most popular
is given as follows:

P
Je = an
p=1

Mp = — Z[dpi(x) In fi(xp)
i=1
+ (1 = dpi(x)) In(1 = fi(x,))] -

The criterion has one interesting feature.
When the activation function of the neurons
in the output layer is sigmoid and given by
Eq. (2), the derivatives for the output layer is
given by

(24)

0J. o~ Onp
PO Z 59D
y] p=1 y]
5 o (25)
s = 3 ldpi(%) — fi(xp)],
ayj i=1
instead of that for E,, given by
8E2 _ i af;
any) p=1 any) ,
0€? i (26)
_"(%)‘ = QZ[dpi(x)
3!/,' i=1

= fi(xp)] fi(xp)[1 = fi(xp)]

That is, the factor fi(x,)[1 — fi(xp)] has been
removed in Eq. (25). As mentioned in Sec. 2.2,
the factor is responsible for premature satura-
tion problem which can slow down the learning
speed. Thus, the removal of the factor in the
output layer by criterion Eq. (24) can speed
up learning and improve convergence. This
feature was realized earlier by Refs. 17 and 87
and later experimentally verified by Refs. 125,
82 and 89.

The criterion also has several theoretically
justified interpretations. First, when f;(x) is
considered as the estimate of the posterior
probability p(C;/x, W) given the weight set
W, the minimization of Eq. (24) is equivalent
to maximize the following likelihood function

Maxw L = Maxw [[5(Ci/x, W)%X)
=1
x [1 — p(Ci/x, W))1=4:(X)) |
(27)

264 L. Xu

Second, if di(x) is also regarded as a proba-
bility (taking values in [0,1]), Eq. (24) is also
interpreted as an entropy by Ref. [17] or a cross
entropy by Ref. 87. Third, by taking expecta-
tion of 7,, one can also show?% that the max-
imization of E(n) is equivalent to estimating
the posterior probability p(C;/x) under an ex-
tended Kullback-Leibler information measure.
In Ref. 57, one other entropy-like measure is
suggested by modifying 7, in Eq. (24) into

m
mp == > In[fi(x,) — (1 = dpi(x))]*. (28)
i=1 .
It is shown that the criterion can also improve
convergence.
. Heuristic criteria for classification purpose.
When a net is used as a classifier, one can
reach a right decision as long as fi(x,) =
maxg fr (%) and fi(xp) > tn (a threshold,
often 0.5) even when the least square error
Yoiildpi(x) — fi(xp)]? can be quite large.
This gives us a hint that the large values of
dpi(x)— fi(xp) are more influential for the right
classification than the smaller ones. Based on
this observation, a modification of the least

square error Ej is given as follews (Refs. 252,
94 and 4)

Ey =) max{[dyi(x) - fi(x,)]*,c}, (29)
i=1

with ¢ being a positive constant parameter.
Usually, it is not easy to select an appro-
priate value for ¢. Thus, in practice, ¢ is
initially given a rather large value and grad-
ually reduced to a small value according to
a certain schedule similar to that of simu-
lated annealing.!!3 It has been observed that
such a criterion cannot only improve the per-
formance of classification but also speed up
convergence and avoid local minima.?524 A
different but somewhat similar criterion is pro-
posed by Ref. 141 which is given by
m
E} = Z
i=1
x{ cldpi(x) = fi(xp)]* i dpi(x)fi(xp) > 0
[dpi(x)— fi(xp)]? otherwise ,
(30)

with ¢ gradually increasing from 0 to 1.
Reference 79 proposed a more sophisticated
criterion for classification purpose. The cri-

terion focus most heavily on the reduction of
misclassification rate through maximizing

P

=2 E1+exp(—pA+g) 0 BV

p=1 \i#r

where a,3 > 0 are parameters, r is the in-
dex of the right class (i.e. d, = 1,d; = 0 for
all i # r), and A; = fi(xp) — fr(xp). It has
been shown experimentally that the criterion
can improve classification performance signifi-
cantly. Moreover, it is also proved in Ref. 11
that the criterion is equivalent to the Bayes
rule for the special case that the input z is one
dimensional.

. Heuristic criteria for speeding up.

The key idea of these heuristics is to modify
the shape of —(L)- given in Eq. (26) so that

the negative mﬁuence of the factor fi(x,)[1 —
fi(xp)] can be removed. As shown above, the
entropy criterion Eq. (24) can reach this goal.
However, in addition to this criterion, there are
also several other heuristic ways; in Ref. 60,
the goal is achieved by a modified least square
criterion
m

2= o7 (dpi(x)) — o (fi(xp)], (32)

i=1

where ¢71(.) is the inverse of the activa-
tion function o(.) of the output neurons. In
Ref. 108, it is shown by some experiments that
the following modification can also speed up
convergence considerably

m
& = D _[dpi(x) — fi(xp)IP/[1 = f7(x,)]. (33)
i=1
Furthermore, it has been noticed by Refs. 30
and 58 that for the least square error Fs,

the derivatives é(ep) = -(,3 has a Bell or

Bump-like shape with error epi = dpi(x) —

fi(xp), i.e. é(epi) has values only within a
range in which |ep;| is smaller than certain
values. Because é(ep;) becomes very small or
zero when |ep;| is large, the learning increment
can be very small even when errors are large.
The remedying policy is to redesign a criterion
such that 6(epi) has a linear or sigmoid like
shape. Two examples of such criteria are given
by Refs. 30 and 58 respectively. In addition, it
is not difficult to see that the criteria given in

Egs. (32) and (33) are actually also consistent
with this policy.

5. Criteria for improving generalization.
There are a number of such criteria which we
have already summarized in Sec. 2.3.

As described above, each type of criteria has its
own characteristics. In practice, the selection of
an appropriate one is usually problem-dependent.
Roughly speaking, when the net is used for a general
function approximating task, the Minkowski r-error
with 1 < r < 2 is more appropriate. In particular,
that with » = 2 (i.e. the least square error E;) is the
most popular used one. When the net is used as a
classifier, then the criteria of the 2nd and 3rd types as
well as the Minkowski r-error with larger r are better.
We believe that investigations are still needed for
further comparison and verification of these different
criteria.

Before closing this subsection, we would also like
to mention that there are also some other types of
criteria that have been suggested in recent years,
e.g. in Ref. 127, it is reported that the minimization
of a weighted mixture of the mean and the variance
of the least square error e:, may give a more robust
performance. However, due to the limited space, we
omit here those miscellaneous issues.

2.5. Some other variants

There are also a number of other types of variants
which are obtained by keeping the key feature of
backpropagation while varying some other issues,

e.g.

(1) let the sigmoid function of the output neu-
rons be replaced simply by the linear func-
tion (i.e. let o(y) = y) such that the net
is more suitable for approximating arbitrary
functions (Refs. 91, 92, 93, 211, 123 and 235);

(2) to constrain the weights in a net to take only
a finite set of discrete values (i.e. three val-
ues in Ref. 200 and finite precision integers
in Ref. 90) or bounded values?!? or normal-
ized values?*3 in order to facilitate hardware
implementations and improve performance;

(3) to extend the real valued inputs, outputs and
weights into complex valued domains in order
to tackle some signal processing problem!!?;

(4) to replace the simple summation-sigmoid
neurons of Eqgs. (1) and (2) by more compli-
cated neurons too get some desired features.

Advances on Supervised Learning Techniques 265

The above first three types are quite straightfor-
ward. Thus, in the sequel, we review in detail several
examples of the last type:

e Using other activation functions.
The simplest version is to use Gaussian function
9(y) = exp(—y?/a?) to replace the sigmoid func-
tion o(y) used in Eq. (2). One such example
can be found in Ref. 97 where g(y) is used in
the hidden layer of an one-hidden layer net with
the neurons in the output layer being simply lin-
ear. The net is still trained by the chain rule
backpropagation method and experiments have
shown that it is more suitable for representing
EMG ((electromyogram) signal. One other example
is given in Ref. 243, it has been shown that only
one of the following normalized Gaussian neurons

(q) _ g(y q))

n(

.,_
o9 = MORGE /

can beat the XOR problem effectively and it has
been further shown that a net of one-hidden layer,
with hidden neuron given by Eq. (34) and only one
linear output neuron, can solve the hard classifi-
cation problem given in Ref. 96 with considerably
less neurons and fast training speed. It has been
also suggested in Ref. 243 that the hybrid use of
sigmoid neuron Egs. (1) and (2) and Gaussian neu-
ron Eq. (34) in the same hidden layer will be more
effective in reducing both the number of neurons
and the training times. There is also another type
of Gaussian neuron which has been widely used in
the literature recently. The neuron is simply given
by of = g(l]wg',lc) — x||?) and just used in the hid-
den layer of a one-hidden-layer net called Radial
Basis Function net. Strictly speaking, this kind of
net is trained no longer by the chain-rule-based-
backpropagation technique, thus, we will postpone
the survey of such nets until later in Sec. 4.

N(q-1)

Z[(41)

(34)

Besides Gaussian activation functions, some other
types of functions have also been tried; e.g. in
Ref. 132, sine function s(y) = sin y is used to
replace o(y) in Egs. (1) Eq. (2) to give an accurate
computation of forward kinematic solution of a
robot arm.
e Using high order neurons
Le. to replace Eq. (1) by a polynomial of order r,

266 L. Xu

e.g. when r = 2,

Ng-1

{ -1

= w0t 35wl
. k=1

Ng-1Mg-1

35 e,)

i=1 k=1

with wj;; being 2nd order connection weights. The
net with high order neurons can treat some com-
plex problems with a few number of neurons. In
principle, the chain rule based backpropagation
can be still used to train such a net. The dis-
advantage of the net is that it requires a large
number of high order weights due to combinato-
rial explosions. Usually, some a priori knowledge
about inputs should be preset in the net.”® A vari-
ant of high order neuron is recently proposed by
Ref. 199 which is given by

r Ng-1
v =T] (Z w,ggogg-v) . (36)
k=1

This variant can solve the combinatorial explosion
problem of high-order weights and convergence
improvement is reported too.

o Using neurons in clusters.
Reference 52 suggested replacing each hidden neu-
rons in a one-hidden-layer- net by a cluster of neu-
rons which are constrained to behave in a coordi-
nated way. The net is trained by backpropagation
in such a way that each time only one neuron in
each cluster is updated in the usual backpropaga-
tion sense. This update causes a change in the
centroid of the cluster and all the neurons in this
cluster are updated in a coordinated way according
to the centroid change. Such a net is believed to
have fault tolerance ability and can speed up train-
ing. However, it seems that some further studies
(especially experiments) are needed on this sort of
variant.

o B-spline receptive field function.
The variant is proposed in Ref. 128. The idea to
replace Eq. (1) by

Ng-1

vi= 3 Y Wl Ba (oY), (37)
k=1 r

where B, (y) is one-dimensional spline of order
n. We see that a weight wj(.i) in Eq. (1) is split
into a group of weights w‘g',’c)r for suming several
transformed values of the output o{’™" by the

k
spline functions By, (y)’s, called B-spline receptive

field functions. These split weights are updated
again by backpropagation based gradient descent
rule.

3. Beyond Backpropagation: Other
Learning Techniques for
Multilayer Perceptron

Although backpropagation was and still is the most
widely used technique for training multilayer percep-
tron, its monopoly role is now being shared by a
number of other learning methods which have been
increasingly used for training the architecture of the
multilayer perceptrons given in Sec. 2.1 especially in
the recent two years.

These alternative methods may be roughly clas-
sified into two groups according to their approaches
on weight updating. For the methods of the first
group, like the backpropagation method, the amount
by which each weight should to be updated is calcu-
lated based on the current final error value E5 and on
the transfer function between the weight and the fi-
nal FE,; therefore prior knowledge of the networks’
internal transfer characteristics is crucial to these
methods. By contrast, for the methods of the sec-
ond group, the amount of each weight update is not
calculated from the present E5 value but is obtained
by some random or heuristic variations or perturba-
tions. No knowledge of networks’ transfer function
is needed and the weight update can be decided just
by measuring the output Ey by regarding the net as
a black box.

For convenience, we reverse the order and first
consider the methods of the second group. This
group consists of three types of methods:

(1) derivative estimation by perturbation, e.g.
MRIII? and model free learning®°;

(2) direct weight update by perturbation, e.g. lo-
cal variation,'®® random optimization® and
simulated annealing?®;

(3) genetic algorithms.

These methods have two common advantages. The
first one is that they are more suitable for imple-
mentation by analog (or partially analog) circuits
which can provide several advantages over digit cir-
cuits in terms of cost, packing density, power us-
age and in some cases, speed, since there is no need
to know a priori accurate the networks’ architec-
ture and the transfer characteristics of the comput-
ing devices, which are expensive to obtain accurately
for analog devices; thus the analog devices are not

suitable for learning methods with features of
weight updating similar to backpropagation. The
second advantage is that it is also suitable for those
nets consisting of neurons with nondifferentiable ac-
tivation function which cannot be handled by the
gradient based techniques like backpropagation. Fur-
thermore, the method of the last two types have also
the advantage that it can avoid local minima for get-
ting a global optimal solution. The main disadvant-
age of this group is that most methods are slow in
learning speed except for some special cases. In the
sequel, the details of these methods are further re-
viewed:

e Dertvative estimation by perturbation.
Instead of estimating AW = —ag—Evf in the top
down way through the chain rule based back-
propagation in a net, the key idea of estimating
derivatives by perturbation is to first inject certain
perturbations into the net and to forward calculate
the change §E; caused by the perturbations and
then to use this § E; and the perturbations to esti-
mate AW or %‘%z' One representative of this type
of techniques is MRIIL."24° By this method, each
time one neuron (say that one given in Eq. (1)) is
chosen randomly or circularly and a small pertur-
bation § is injected on yJ(q). The perturbed y](.")+6
is passed up to the upper layers which causes a
change in the final least square error E5, denoted
by egq). Then cgq)/é is used as an approximation

of 8%%7. As a result, one can obtain the following
J

estimates
E, 0y}
611;;?,c = —a———-g 42—-—8 y]q
Yj OWjg
&9
~ ——a—lé—oscq—l), k=1,...,n4-1,

(38)

it is not difficult to see from Eq. (9) that the
above method is just a kind of approximation of
backpropagation. The other representative is the
model free distributed learning technique given by
Ref. 50 adapted from the “M.I.T. rule” in the field
of adaptive control. The method has two points of
differences from the above one. First, each of all
the weights in a net is injected by a perturbation
signal and these signal are mutually uncorrelated
with zero means. Second, each time all the deriva-
tives a%%- are simultaneously estimated from these
perturb;tion signals and the change § E5 caused by
these signals. The detailed theoretical analysis of
the method is also available in Ref. 50.

Advances on Supervised Learning Techniques 267

o Directly weight update by perturbation.

The key idea is to perturb each weight and to ob-
serve whether the change AE, caused by the per-
turbation is acceptable. If it is acceptable, the
perturbation is granted; otherwise the perturba-
tion is discarded. The idea is somewhat similar to
the above technique, however, the main difference
is not to estimate derivatives -z;—s'-fi— but just to up-

date w}k by the perturbation if AE; is acceptable.
Here we introduce three algorithms of this type of
technique.

The first is given by Ref. 165. By this algorithm,
at each time t, a weight wj?k is chosen randomly or
circularly and a positive variation § > 0 is made

to produce w;; = w]; (t)+6 which causes a change

AE,. If AE; < 0, then w}k(t+1) = w};; otherwise

make a negative variation “’qu = w}k(t) — 6 and
similarly let wf, (t4+1) = w}; if AE; < 0, otherwise
go to next weight. The algorithm is iterated
with time until E5 is below a preset limit or a
minimum. It is interesting to note that whenever
a local variation is attempted on a given weight,
the entire forward propagation for patterns need
not be carried out. Instead, only the variables
along a path affected by the variation should be re-
evaluated. This requires some extra variables such
as activation and outputs of neurons to be stored
for each pattern in the pattern set. However, it
can bring significant reduction in computation for
every pattern presentation.

The second algorithm is proposed by Ref. 9. The
algorithm perturb all the weights in the net at each
step instead of just one weight each step. By the
algorithm, at each step, a perturbing matrix A(t)
is generated from a Gaussian distribution with
mean matrix B(t) to perturb the weight matrix
W (t) in such a way that:

Let W' = W(t) + A(t) and see whether the
correspondent AE; < 0; if yes, let W(t+1) = W'
and B(t + 1) = 0.4A(t) + 0.2B(t); otherwise let
W' = W(t) — A(t) and see if AE3 < 0; if yes, let
W(t+1) = W and B(t + 1) = B(t) — 0.4A(¢); if
again not, W(t+1) = W(t) and B(t+1) = 0.5B(t).

The initial W(0) is set randomly and B(0) is zero
matrix. In fact, the algorithm is a direct applica-
tion of the modified random optimization method
given by Ref. 207.

One may already notice that the above two algo-
rithms have the common point that a perturba-

268 L. Xu

tion is accepted only when AFE; < 0. This condi-
tion can be relaxed by using the simulated anneal-
ing technique!!2 for escaping local minima. This
idea leads to the third algorithm: let the accep-
tance of a perturbation be made by the probabil-
ity exp(—AE3/T), T is a temperature parameter
which starts from an initial value and gradually
reduces to zero as learning goes. An example of
such algorithm is given in Ref. 49.
e Using genetic algorithm.

The idea is to apply Holland’s genetic algorithm™
for optimizing weights or even architecture of a
neural net. In Refs. 236 and 149, the problem of
training the weights of a net with fixed architec-
ture is studied. The whole set W of weights in
the net is encoded into a binary string (called a
chromosome) which has an associated fitness value
to describe the string’s goodness. The fitness can
be just the negative of the error criterion value,
e.g. —FE5 when using the least square error. Ini-
tially, a population of strings is generated ran-
domly and then genetic operators are used on the
population to produce new strings. Usually, there
are two kinds of such operators. One is “crossover”
which exchanges part of one string with part of
another to produce two new strings. The other is
“mutation” which randomly alters bits of a string
to give a new string. The “mutation” operation
is usually used at a considerably lower frequency
than the “crossover” operation. During these ge-
netic operations, some strings of the population
will die when their fitness values are weaker than
others. After enough many generations, the final
solution can be obtained by choosing the best fit
string (or even by randomly choosing one).

In Refs. 237 and 146, a genetic algorithm is also
used to prune the networks’ architecture by en-
coding the networks’ connectivity into a string. In
this case, the evaluation of the fitness of a string
is very expensive: for each stri'ng (i.e. a network
architecture), backpropagation is used to train it
and then its classification rate is calculated on the
testing samples. To reduce training times, Ref. 237
suggested training a net with a reduced number
of training circle. Very recently, there is also an
attempt to use the genetic algorithm to simul-
taneously optimize the networks architecture and
weights.}20 The key points of using the genetic al-
gorithm are to have an appropriate coding and a
good design of “crossover” and “mutation” opera-
tors. Usually, the resulted code is very lengthy and

large costs in both speed and storage are needed
for a net of large size. Many efforts are still needed
to make the genetic algorithm practical for a net
of large size. Perhaps, combining the genetic al-
gorithm with other learning techniques may give
some chances for improvements, e.g. in Ref. 149,
the combination of the genetic algorithm and back-
propagation can outperform either method alone.

Now, we continue to consider the methods of the
first group. As pointed out previously, for these
methods the amount by which each weight should be
updated is calculated from the final error E; and the
net’s internal transfer function. This group can still
be further divided into two subgroups. The methods
of the first subgroup still need to calculate derivatives
by using the chain rule or directly using Egs. (9)
and (10) although the update Aw](.g) is not made in
a gradient descent way. While the methods of the
second subgroup no longer use the chain rule at all
and the weight updates are made almost in a layer-
by-layer decoupled manner. In the sequel, we review
in detail the main methods and the characteristics
of both the subgroups. These methods are grouped
into five types, among which the first two belong to
the first subgroup and the other three to the second
subgroup.

1. Recursive least square estimale and Ezlended
Kalman filter.
Let us rewrite Eq. (7) as

€ = dk - F(xk,w), (39)

where w is a vector with all the elements of
the weight set W as its components, k is the
time index, at which a pair (dg,xx) randomly
comes from the training set D;.. Moreover,
€r is considered as a zero-mean stationary
Gaussian noise sequence.

Suppose wy, is an estimate of w at time k, we
linearize F(.) about wy as follows:

F(xk,w) = F(xp,wi) + Hi (W — wy)

Hy ow

W=Wj

Thus, we have
€ = d;c - H,tcw
(41)
d;c =d; — F(xk,wk) + Hiwk .

We let the next wgy1 be estimated by the

minimization of the following weighted least
square error

k k
B =g allall= X e~ Hiwi2,
= =1 (1)
which results in
k
Wil = R;l Zaledf
=1 (43)

k
Ry = ZaszHf,
=1

where {a;} are appropriate weighting factors.
Furthermore, by some simple manipulation,
Eq. (43) can be rewritten into the following
recursive version

Rr = Rp—1 + o Hi H}

Wil = Wi + akR;IHk[dk - F(xk,wk)] .
(44)

The result obtained by Eq. (44) is usually
called recursive least square estimate of the
parameters of the nonlinear system function
F(x,w).%3 Observing the definition of the ma-
trix Hy in Eq. (40), we see that its elements
can either be obtained directly by differen-
tiation of each weight (if the weight belong
to the output layer) or by using the chain
rule in a way similar to Egs. (9) and (10) (if
the weights belong to hidden layers). More-
over, by using the matrix recursive inversion
lemma to R;l and by defining P = R;l and
a; = A¥-1,0 < XA < 1, one can obtain the Ez-
tended Kalman filter algorithm as follows:

Gy = Pr_1Hy
Ki = Ge(M\ I + HEGy) ™!

1 (45)
P, = X(P,,_l - KiGih)

Wil = Wi + Ki[dy — F(xx, wi)],

which was first applied for training multilayer
perceptrons in Ref. 205. Although at each
step both Eqgs. (44) and (45) will spend more
computations than backpropagation takes, it
has been reported that they can speed up
training and improve convergence.2°5:53 Some
variants of Eq. (45) have also been proposed.
In Ref. 172, weights are divided into groups
(e.g. in Ref. 172 either the weights of each neu-
ron was considered or simply just each weight

Advances on Supervised Learning Techniques 269

as a group) and it is assumed that the el-
ements of P corresponding to weights from
different groups can be ignored. Thus, by
re-ordering the components of w, P can be
arranged into a block diagonal matrix. As a
result, one can use Eq. (45) separately on each
group with reduced dimensions (i.e. the dimen-
sion of each block). This variant can reduce
computation complexity while it does not se-
riously affect performance. In Refs. 196, 190
and 118, each neuron qu) = o(ol4~1), w(q)) =

(R J(") (9=1)) s treated as an inde-
pendent system function and it is assumed
the desired output of the neuron is given by
d(q) = o(q) + egq),e(q) = —(ﬁ—gfq . Thus from

2

egq) = dg-q) - o'(o(q‘l),wg-”)), in a way sim-
ilar to that used for treating Eq. (39), one
can obtain a recursive least square estimate
formula for w;. The method, called inde-
pendent extended Kalman filter, can further
reduce computational complexity. However,
it can lead to unstable behavior during train-
ing and will often result in solutions that are
inferior to those found by either Eq. (45) or
backpropagation.!72

. Linear programming method.

The idea is to find a weight change matrix §W
such that for every pair (d,,x;), the following
condition is satisfied:

5(e2)? = [fi (xp, W+6W) —dpi]?
—'[fi(xﬂy W)_dpi]2so,i=1, ce,m

(46)
and such that at the same time the §(ef)?,i =
1,...,m are as small as possible. By taking a

local first order approximation to this inequal-
ity, we have

E ()6 ()<0 l—-—l,...’m,
J")

(47)
where e} = f;(x,, W) — d,; and 6w(q) is the
change on the weight wfq). Furthermore, the
weight changes must be restricted to minimize

the second-order effects |6w§"lc)| < 55?’

6w(.") < _e(q)

5w(7) > 6(9) (48)

where eg.i) are prespecified non-negative small

270 L. Xu

quantities.

In summary, the problem of deciding appropri-
ate values of 6wJ(~i) for all j, k, q has become the
following constrained optimization problem,

06(ef
Min,, «,,Z 3 a((3 sul, (49)

p_l all w (4) eEw

subject to inequalities Eqs. (47) and (48) for

all j, k, q, p where all the gﬂ—ef%—’s can be

calculated just from bankpropagatlon formula
Egs. (9) and (10). Thus, Egs. (49), (472
and (48) are all linear with respect to wg'}c
and the above optimization problem is just
a linear programming problem which can be
solved by a number of algorithms available
in the mathematical programming literature.
According to Refs. 198, the method can avoid
local minima, improve convergence and can as
well give better degradation properties. The
disadvantage is that each step will take a large
amount of calculation. However, the total
computation may be not so large since much
less steps are needed in comparison with that
spent by backpropagation.

. Fizing one layer while updating another.

This is a common policy for simplifying the
problem and speeding up calculations and it
is usually used for training a net with only
one hidden layer. There are a number of
algorithms based on this policy. Here we give
four major examples as follows;

(1) In an algorithm called BRD given in
Ref. 66, the weights of the hidden layer
are randomly set and they are fixed when
the weights of the output layer are trained
by the simple perceptron algorithm. After
being trained, the misclassification rate of
this net is checked to see whether it is be-
low the prerequired threshold. If not, an-
other set of values are randomly generated
to set the weights of the hidden layer and
the above same schedule is repeated again
until the misclassification rate fits our sat-
isfaction.

(2) In Ref. 1, the weights of the output layer
are first fixed and the weights of the hid-
den layer are determined through the so-
lution of the following equations by the

3)

4)

Newton-Raphson method;

OE,

p (1) =0, foralli,j. (50)
w;

Then the weights of the hidden layer are
fixed, the weights of the output layer are
decided through the solution of the fol-
lowing equations again by the Newton-
Raphson method

0E;

5 —@y = for all 4,5 . (51)
wjy

The same calculations are iterated for the
weights 5 k), (2) respectively until a con-
vergence is reached

In Ref. 208, for each training pair (dp,x,),
first the weights of the output layer are
modified according to the simple least
square method for one layer case since the
derivatives for this layer are directly ob-
tainable. After that, a hidden target vec-

tor 0(1) [0f,0%,...,08] is estimated by
Mingg[|dy = WPol”, (52)
d

where W(2) denotes the matrix consisting
of all the current weights of the output
layer. Next, the weights of the hidden
layer can be modified in the same way as
those of the output layer by using 0&1) as
the desired output of the hidden layer.
Reference 72 suggested another one-pass
training method for the problem with bi-
nary desired output. The basic ideas are
as follows: assume that the nonlinear map-
ping between the input x and output ogl)
given by a hidden neuron can be approxi-
mated by

xw = Kd, j=1,...,n, (53)

where

X=x1,..., %), dV=[a,...,dPr

is a unknown vector but with the con-
straint dp; € {—1,1} and K}l) isapxp
unknown diagonal matrix. Singular value
decomposition analysis is used on X to
decide, for each hidden neuron, one solu-
tion of wgl) which satisfies Eq. (53). After
that, X can be propagated forward into its

corresponding output matrix Dj of hidden
neurons. Similarly, assume that the non-
linear mapping of an output neuron can
be approximated by

thJ(z) = K}z)dg-z), ji=1,...,ny,
(54)
with d{ = [@{?,..., d{]* being a binary
vector which is determined from the given
desired output vector dp,p = 1,...,P.
Then SVD is again used on Dj to deter-
mine, for each output neuron, one solution

of wi®) which satisfies Eq. (54).

4. Networks converted from decision tree classi-

fiers.

Recently several authors have studied the con-
nections between multilayer perceptrons and
the conventional decision tree classifiers (Refs.
194, 195, 27 and 218). It has been shown
that a net can be built by converting a special
kind of binary decision tree into a multilayer
architecture.

In this kind of binary decision trees, each of all
the nonterminal nodes is a simple Perceptron
or Adline with the whole input vector x as its
input (i.e. each node defines a hyperplane wo+
w'x = 0 which divides the input pattern space
into two halves). Each leaf node corresponds
to the class that x is finally classified into.
Such a binary decision tree can be trained
by a number of classical techniques in the
literature of statistical pattern recognition and
statistical decision theory (Refs. 174, 104 and
26).

After being trained, it can be easily converted
into a two-hidden-layer feedforward network.
All the nonterminal nodes of a binary tree are
converted into the neurons of the first hidden
layer. As aresult, each neuron in the first layer
is fully connected to the input x and its weight
vector is just the parameter vector of the hy-
perplane defined by the corresponding nonter-
minal node in the binary tree. Furthermore,
each path in the decision tree from the root
node to a leaf node is converted into a neuron
of the second hidden layer. Each of these neu-
rons is only connected to those neurons of the
first hidden layer which are corresponding to
the nodes located on this path of the binary
tree and the weight of each connection is ei-
ther +1 or —1 depending on whether the path

Advances on Supervised Learning Techniques 271

passes the left or right branch from the node
corresponding to the connected neuron in the
first hidden layer to this node’s two children.
Finally, each neuron in the output layer corre-
sponds to a single output class and it connects
all the neurons of the second hidden layer with
weight +1 if each of these neurons corresponds
to a node on the path with its leaf node repre-
senting this pattern class. In Ref. 194, the sec-
ond hidden layer is called the AN Ding layer
since each of its neurons computes a conjunc-
tion of its inputs or their negatives; the output
layer is called the ORing layer since each of its
neurons computes a disjunction of its inputs.

After the above conversion, the resulted net
can either be directly used as classifier or as
a good starting approximation for other train-
ing techniques such as backpropagation. One
advantage of this way of constructing a net is
that, in comparison with backpropagation, the
training is much faster and the performance
can be improved substantially!®%27, In ad-
dition, through this channel various classical
techniques for designing tree classifiers can be
introduced into the literature of neuron net-
works. ‘

. Construction of networks based on perceptron

learning.

There is recently a seemingly renewed interest
in using perceptron learning rules. The deci-
sion tree related method, described above, is
one such exainple. There are also a number of
attempts of using perceptron learning to con-
struct a net forward layer-by-layer (Refs. 114,
63 and 145). These attempts share a common
point: to gradually add neurons (or equiva-
lently hyperplanes) into a net such that parts
of training patterns can be correctly classi-
fied by some single hyperplanes and others can
be correctly classified by combinations of a
number of hyperplanes until all the training
patterns are correctly classified. One exam-
ple of such attempts is given by Ref. 114 in
which each neuron is gradually added into the
first hidden layer in such an order that linear
separation of each class is tried first and the
linear separation of pairs of classes is tried
after, then a binary decision tree is tried to
introduce successively hyperplanes (i.e. neu-
rons) until all the remaining training patterns
are rightly classified. Hereafter, one or more

272 L. Xu

additional layers are externally designed to
perform explicit boolean functions that will
combine appropriately all the hyperplanes to
form the final output layer. Other two exam-
ples are the tiling algorithm!4® and the upstart
algorithm %3

Generally speaking, there are usually a great
number of ways to split an input pattern space
by gradually introducing hyperplanes, the op-
timal design of hyperplanes is identical to the
optimal design of a tree decision classifier with
each node being a hyperplane. Thus, the
heuristic forward constructed algorithms given
by Refs. 114, 63 and 145 are closely related
to the design of tree classifiers. From this as-
pect, the way of constructing a net to con-
vert a binary decision tree classifier might be
a better choice for networks construction than
these heuristic algorithms, since there are al-
ready a number of sophisticated methods for
suitably designing tree classifiers and the pro-
cess of converting a tree classifier into a net is
pretty simple.

4. Other Models for Feedforward Networks

After several years of extensive studies on multilayer
perceptron, researchers’ attentions have been turned
to a number of other models for feedforward net-
works, especially in the recent two years. For con-
venience, here we group these models into three big
categories. The first and the biggest one consists
of various models which implement function approx-
imation or probability density estimation by basis
function ezpansion (Refs. 64, 95, 12, 65, 161, 10, 61,
173, 164, 175, 176, 192, 133, 98, 193, 209, 210, 37,
62, 171, 28, 169, 39, 68, 150, 177, 121, 158, 213, 186,
247, 166, 233, 107, 105 and 24), i.e. the networks
function given by Eq. (3) is replaced by

N
fix) =) wiibi(x), i=1,...,m. (55)

i=1

Represented in the network formalism, the func-
tions correspond to a one-hidden-layer architecture
with N hidden neurons. Each hidden neuron is fully
connected to every components of input x and rep-
resents a basis function y; = ¢;(x). The output
layer has m neurons with each being a linear sum-
mation neuron ¢; = Ef;l wi;jy; with weight vector
w; = [wi1,...,Wim]'. Apparently, this architecture

can be regarded as a variant of one-hidden layer per-
ceptron by changing the hidden neuron’s functions,
as we previously discussed in Sec. 2.5. However,
there is a key difference that the updating of function
#j(x) is no longer decided by the chain rule based
supervised learning but predetermined externally or
specified directly by training samples or developed
by some self-organizing techniques. Thus we would
like to consider them as a group of new models.

- The second category collects several other su-
pervised learning models of feedforward networks,
such as Kohonens learning vector quantization
algorithm,!17116 feedforward Boltzman machine,!5®
query learning (Refs. 19, 99 and 249) etc.

The third category consists of models which have
various complex structures: hierarchies, modules and
others which contain some of the previously reviewed
nets (e.g. multilayer perceptrons) as building blocks
in order to deal with more complicated problems or
to gain some specific advantages (Refs. 103, 159, 244,
214, 187, 160, 23, 40, 16 and 25).

In the sequel, we will survey the models of the
first category in Sec. 4.1 and the last two categories
in Sec. 4.2.

4.1. Models related to various basis
functions

Given a training set Dy = {dp,x,,p = 1,..., P},
the weights wyj,i=1,...,m,j = 1,..., N of the out-
put layer can be easily determined if the basis func-
tions y; = ¢j(x),j = 1,..., N are known a priori,
i.e. W = [wij]lmxn can be obtained by minimizing
the following least square error E,

P
Ey=)_|ldp — Wyl
p=1

(56)
Y 2

Yp =1
y" = 4i(x).

We can tackle the minimization problem either
in block way by directly solving a linear equation
derived from Eq. (56), or in on line way by the
following simple gradient updating rule

W(t+1)= W) +o(dy - Wy,)yl (57)

Thus, the key point of building a basis function
network is to appropriately select basis functions
#;j(x),j =1,...,N. There are various ways for such
kind of selection which result in different models.
Here we roughly divide these models into two groups

according to the types of basis functions presently
used in the neural network literature. The first
group is called localized basis functions. That is,
the basis functions of the models in this group can
be expressed in the following general form

¢i(x) =d(x—c¢;,%;), j=1,...,N, (58)

where ¢(.) is called a mother function. Each basis
function is obtained by locating the mother function
at a point of pattern space given by the locating
parameter vector ¢; and may or may not be subject
to some deformation caused by an n x n parametric
matrix ¥;. The second group is called nonlocalized
basis functions which are not expressible by Eq (58).

For convenience, we start at the review of the
models in the second group since they are relatively
easier to describe in a smaller space. The models
given in the followings are several typical examples
of this group:

o Polynomial related basis functions.
In the simplest case, ¢;(x) is directly chosen as
canonical polynomial terms z{'z5? - -zi» r; > 0;
le, ¢o = comnst. ¢; = z;,5 = 1,...,n,¢; =
zizg, i,k =1,...,j=n+1,....n24+n+1,...,
etc. suggested by Refs. 161, 210 and 37. Further-
more, ¢;(z) can be some sophisticated polynomial,
e.g. in Ref. 10, Bernstein polynomials are used as
basis functions for the special problems of approx-
imating a 1-dimensional function; and a more gen-
eral example is given in Ref. 61 where an infinite
sum of polynomials called reproducing kernels are
used as ¢;(x) i.e.
o~ 1
¢j(x) = K(X, xj) = Z r(xtxj)r) (59)
r=0 Pr
with x; being a training sample and p, being a
predefined sequence of positive number satisfying
a specified condition.
o Trigeometry basis net.

When x = =z is one dimensional, the simple
functions sin(jrz),cos(jrz),j = 0,..., N can be
directly used as ¢;(z)'®! while when x € R2?,
cosine bases cos(iwzy)cos(jrzs),i = 1,...,N,

Jj=1,...,N are suggested in Ref. 173. Moreover,
they also take the probability density p(x) in con-
sideration and suggest to first transform x into
u = [, p2]', pip2s = p(x)dzidzs and then the
above cosine basis are used in the space (u1, y2).
However, it seems that this transform is not prac-
tically useful since it is usually quite hard to know

p(x) priori.

Advances on Supervised Learning Techniques 273

e Projection pursuit.
This is a nonparametric statistical regression
model (Refs. 64, 95 and 12). In this model, all
the weights w;;’s in the output layer are fixed
at constant 1 while basis functions are given by
¢j(x) = gj(x'0;) where 6;,j = 1,...N are nor-
malized unit length vectors for representing N
projection directions and g;,j = 1,..., N are one-
dimensional nonparametric functions. Both the
directions 6;’s and functions g;’s should be de-
termined empirically from training data set, ob-
tained by using an algorithm called backfitting.
Using this algorithm, we initialize g; = 0,0; =
89,5 =1,...,N, then for each j, find first a one-
dimensional smooth function s(x*6;) as the new g;
which “best” fits rj(x) = f(x) — 2&1’# ; 9i(x*6;)
and then solve for a new direction 6; by mini-
mizing 3°F_ [rj (%, — g (x56;)1%/ E:::l r#(x). This
process is iterated until convergence. In order to
estimate g;, techniques such as cubic splines can
be used. Recently, Ref. 254 used this kind of learn-
ing technique to learn 2-Joint robot arm dynamics
and reported reasonable results. This seems to be
an interesting model to be further investigated.
e Basis function tree.

Polynomials have a natural representation as a
tree structure. In this representation, the output
of a subtree determines the weight from that node
to its parent. For example, f(z,y) = az?+bzy+cy
can be expressed into f(z,y) = A(z,y)z + cy =
(az + by)z + cy. In this tree representation, we
have a weight A(z,y) on the link from node z to
the root f(z,y) and a weight ¢ from node y to the
root f(z,y). Furthermore the weight A(z, y) is the
output of a subtree of two nodes ¢ and y in which
there are a weight a from node z to A(z,y) and a
weight b from node y to A(z,y). Based on this
representation, Ref. 188 proposed an algorithm
called the “LMS tree” to approximate functions
by separable basis functions. That is, assuming
that there are a finite set of one variable function
{sr};2, and each basis function ¢;(x) given in
Eq. (55) can be written into

$;j(x) = S50 5,5 (n), (60)

where z, is the pth component of X, 8,5 (zp) is a
scalar function of scalar variable z, chosen from
the set {s;};2; (i.e., r} is an integer between [1,
n,]). In this case, one can regard f;(x) given in
Eq. (55) as a n-order polynomial of n,n variables

274 L. Xu

in terms of {s,(zx)}r2,,k = 1,...,n. Thus, the
function can be expressed in the form of a tree of
depth n. The tree can have at most n” number of
nodes. The building of such a tree is very hard for
large n, and n. Reference 188 proposed a solution.
It first arbitrarily select one variable (say ;) for
building the first layer

fi(x) = fi(z1) = Z.wsl)sr(‘cl)- (61)

The parameters w’s are decided through the
Widrow-Hoff LMS learning rule?*® with a constant
learning rate. The learning will reach its balance
with E(Awgl)) = 0 but the variance Var(wsl)) #0
due to the constant learning rate. Thus, in the
next step, the largest of these variance is selected
and the corresponding parameter (say wR)) is
further approximated by one subtree of the second
layer

u = B+ 3 ulsnler), (62

r=1

which use a new variable z5. Here, the error
E(Awgl)g can be used to determine the param-
eters w{!)’s by LMS rule again. In Ref. 188, new
subtrees would include all dimensions and could
be grown below any s.(z,). Thus, a very large
tree will usually be obtained. It is suggested that
weights below a threshold level are set to zero and
any leaf with zero weight can be removed.!33 It is
reported that the algorithm has a very high learn-
ing speed and a very low storage requirement, and
it can also adapt to slowly-varying nonstationary
environments.

Now, let us proceed to the first group of models —
localized basis functions. Studies of these mod-
els have been quite vigorous in the past two years
and probably it forms the second focus point of su-
pervised learning nets after backpropagation. The
typical models includes Multivariate Adaptive Re-
gression Splines (MARS) nets,®® Wavelet function
nets,’®* Restricted Coulomb Energy (RCE) nets
(Refs. 175, 176, 133, 98, 192 and 193), Radial Ba-
sis Function (RBF) nets and variants (Refs. 62, 171,
169, 150, 28, 39, 68, 177, 121, 158, 105, 213, 186, 247,
166, 233, 107 and 24). These models are generating
an ever-increasing interest in the literature.

In the sequel, these models are further reviewed
in detail.

o Multivariate Adaptive Regression Splines (MARS)
nets.
The basic idea is to modify the tensor-product
spline method for regressing or approximating
multivariate functions into some adaptive version
such that the high computational costs can be re-
duced considerably.%® Similar to Eq. (55), a func-
tion can be approximated by the combination of
spline basis as

f,-(x): Zw;;B,(x), 1= 1,....,m, (63)
1

where the basis function set {B;(x)} is obtained
by taking the tensor product of the set of ¢ order
spline functions {a}}{_, {(z; —ti;)% Y, over all
the axes j = 1,...,n of input vector x € R*. That
is, each of the K + ¢ + 1 functions on each axis j
is multiplied by all of the functions corresponding
to all of the other axes k,k = 1,...,n,k # j. As
a result, the total number of basis functions are
(K +¢+1)" which is usually a huge number. Each
basis function is located on a specific one of the
regions partitioned by knots t;j(k = 1,... K,j =
1,...,n).

This simple tensor-product spline basis function
have severe limitations due to computational costs
that preclude their use for high dimensional data
(n > 2). To overcome the limitations, the key
idea of MARS is to select a relatively small subset
among the huge set of (K + ¢+ 1)" basis functions.
The particular subset for a problem at hand is ob-
tained through standard statistical variable subset
selection, treating the basis functions as the “vari-
ables”. At the first step the best single basis func-
tion is chosen. The second step chooses the basis
function that works best in conjunction with the
first. At the mth step, the one that works best
with the m — 1 already selected, is chosen and so
on. The process stops when including additional
basis function fails to improve the approximation.

In Ref. 65, a network implementation that ap-
proximates the above adaptive spline strategy is
described. It is equivalent to selecting a sub-
set of basis functions in such a way that at the
beginning, ¥ = 0,Bo(x) = 1 is chosen as one
basis function, then at the £ = 1 step, choose

f

(xj —tk;)9 is known as the truncated power function, i.e. (z; —
tkj)?‘_ is 0 when x; < txj and (z; — tx;)? when x; > tx; and
there is one for each knot location tkj(k = 1,...K) on each
input axis j(j = 1,...,n).

one z; from the set z;,j = 1,...,n to produce
the second and the third basis functions B (x) =
Bo(x)(z; — tr)}, B2(x) = Bo(x)(tx — z;)%. Fur-

thermore at the k = K step, choose one z;
from the z;,5 = 1,...,n and choose B,, from
the By, k = 1,...,2K + 1 to form another pair

of basis functions Bakya(x) = B.(x)(z; — tx)},
Bik+3(x) = Br(x)(tk — zj)%. The process is
repeated until k reaches its maximum My,ax. Dur-
ing the process, at each k, there are three param-
eters 7, ji,tr that need to be determined. The
goal of training the network is to choose values
for these parameters by the following generalized
cross-validation criterion

GCV = —— E Z(d (%p)

1-1p 1

—f.(xp)z)/ (1—ﬂ“+—1))

with (dj(x,),x,),p = 1,..., N being the training
set. The training strategy used is a semi-greedy
one. At step K, the GCV criterion is minimized
only with respect to the present ri, ji,tx and the
new weighting parameters in Eq. (63) correspond
to the two new basis functions Bak 42, Bok 43 with
all the pervious parameters fixed. This optimiza-
tion can be done very quickly. The total compu-
tation is O(nNM32,,). Although this method is
obviously suboptimal, experiments conducted by
Ref. 65 show that the better optimization seldom
resulted in even a moderate improvement. The
reason is that the basis functions added later can
compensate for the suboptimal settings of param-
eters introduced earlier.

One interesting property of MARS is that it unifies
additive function and CART models into a single
framework. Both additive and CART approxima-
tions have been highly successful in largely comple-
mentary situations: additive modeling when the
true underlying function is close to additive and
CART when it dominantly involves high order in-
teractions between the input variables. It is hoped
that MARS will be successful at both these ex-
tremes as well as the broad spectrum of situations
between where neither works well. It seems that
further experimental works and applications are
required to be made to test the new model.
Wavelet function net.

Given a function y = f(z) of one real variable
and assuming f € L2(R) the space of square
integrable functions on the real line, then there

Advances on Supervised Learning Techniques 275

exists a convergent series representation for f(z)
f(z)= Z Z CmnPmn(Z) (65)
m n

where basis functions are of form
Ymn(z) = a"™/2p(a"™z —nb), (66)

with the function 1 satisfying appropriate admissi-
bility conditions (e.g. 4 = 0) and suitable choices
of @ > 1,b > 0. Here, the representation of f by
Eq. (65) as a series in dilatations and translations
of a single function ¥ is called a wavelet expansion
and the function 4 is known as the analyzing or
mother wavelet for the expansion. Given appro-
priate ¢ and a,b, the expansion parameters ¢,
can be computed in a way similar to that of solv-
ing w;; in Eq. (55) discussed in Sec. 4.1. The key
idea of a wavelet net is, based on a training set,
to appropriately select a mother wavelet 1 and
a,b as well as a finite subset ¥; = {9} such
that f is approximated by the truncated expansion
22 Ymne¥; Cmn¥mn(z). In Ref. 164, ¢ is defined
as P(z) = o(z + 2) + o(z — 2) — 20(z),0(z) =
1/(1 + e=%) and then a,b are chosen appropri-
ately. Furthermore, ¥; is decided according to the
so-called spatio-spectral concentrations of wavelet
¥n and of f. Wavelet expansions for functions
in L2(R™) are also possible,'4? which also makes
it possible to build wavelet nets for approximating
multivariate vector-valued functions.!®4 Presently,
the direction is rather new and more studies are
needed.

Restricted Coulomb Energy (RCE) nets.

The nets are used specifically for classification
purpose, i.e. in the case that given a training pair
{dp,xp} and d, = [dp1,...,dpm]*, we have dp; = 1
if x belongs to class i, otherwise, dp; = 0. In a
RCE net, the localized basis function used here
is very simple, given by ¢;(x) = u(R} — ||x —
¢j||?) where u(r) is a step function ie. u(r) =
Lr > 0,u(r) = 0,7 < 0. In other words,
each basis function specifies a hypersphere in the
pattern space which is centered at c¢; and has a
parameter of radius R;. If an input pattern x
falls into the sphere, the neuron corresponds to
the basis function outputs 1, otherwise, it outputs
0. In the output layer, there are m units each of
which corresponds to a class label, the ith unit is
activated if f;(x) > 0 where f;(x) is again given by
Eq. (55). The training strategy is rather simple. In
the beginning, there is no unit in the net. For the

276 L. Xu

first training pattern, a unit is added with ¢; being
equal to the pattern and R; with an arbitrary
value. In the same time, a unit weight is given
to connect the unit to the output-layer unit which
corresponds to the class label of the pattern, i.e.
suppose that the class label of the pattern is r, we
have w,; = 1 for the weights given in Eq. (55).
After a number of training patterns, assume that
there are k units in the net, then when a new
training pattern with label r comes, there are two
possible treatments:

(1) The pattern does not fall in any of the hy-
perspheres defined by these units, the k + 1th
unit is added with ¢x4; being equal to the pat-
tern and Rg41 being the minimum distance
between the pattern to one existing unit which
has unit weight connected to an output-layer-
unit not corresponding to the class label r. In
the same time, we set w,(z41) = 1 (i.e. con-
necting the new unit with unit weight to the
rth unit of the output layer.)

(2) When the pattern falls in the hyperspheres
defined by some units, for each of these units
we check whether it has an unit weight con-
nected to an output-layer unit corresponding
to class label different from r. If yes, the ra-
dius of the unit is reduced such that the hyper-
sphere is shrunken to not include the pattern;
otherwise, nothing is done. This simple learn-
ing algorithm has been described in details by
Refs. 175 and 176.

The RCE net has been studied by a number
of authors (Refs. 175, 176, 133 and 98). It
can be regarded as the modification of the hy-
perspherical classifiers developed in the 1960’s
by Refs. 42, 43, 14 and 15 where the center
vectors c¢;’s can be moved and R;’s can be
either reduced or increased. One main limi-
tation of RCE net is that it works well only
when the class regions are separable. How-
ever, when the class regions have some over-
laps and a pattern comes from such overlapped
regions. There will more than one unit in the
output layer will be activated and the result
conflicts. A remedy is given in Ref. 192, the
idea is to let the weights w,; being not simply
1 but the count of the patterns in the whole
training set which fall in the hypersphere de-
fined by the unit j. Recently, in Ref. 193,
the spherical function u(R? — ||x — ¢;||?) is
further replaced by exp(—||x — ¢;||?) and the

output-layer-units’ output is directly given by
Eq. (55). This new modification of RCE makes
it is quite similar to the RBF nets which will
be surveyed in the following. The only dif-
ference is that in Ref. 193, the training still
uses the simple learning algorithm given above
while in RBF nets other learning methods are
proposed. The recent experimental investiga-
tions on the RCE net by Refs. 133 and 98 also
deserve mention. They have compared the
performances of the RCE net, various back-
propagation nets and some conventional clasi-
fiers like nearest neighbour classifier.

¢ Radial Basis Function (RBF) nets and variants.

The original model of RBF net is obtained simply
by letting ¢;(x) = ¢(||x — x;]|), i.e. in Eq. (58),
let £; = I and ¢(.) be radial symmetric around
the locating center ¢; = x; where X; is a training
sample. Thus, Eq. (55) can be rewritten into

P
filx) = Zwijtﬁ(”)(—xj”),i: L...,m. (67)

j=1

(Note: Here all the samples in the training set have
been used.)

There are many possibilities for selecting ¢(.). The
most common one is Gaussian function G(r) =
exp(—r?) but a number of alternatives can also
be used (Refs. 171, 28, 169 and 39). All these
basis functions may give good results on a train-
ing set but may be different obviously on a
testing set. In other words, we need to select suit-
able basis function according to problems in order
to get good generalization ability.24 It has been
shown that the RBF expansion given in Eq. (67)
is equivalent to the solutions derived from regular-
1zation theory, i.e. least square fitting subjected to
a rotational and translational constraint term by a
different operator.19:253 It has also been shown®®
that this kind of RBF net has not only universal
approximation ability but also best approximation
ability.

However, the simple RBF net given by Eq. (67)
has the serious disadvantage that all the training
samples, which could be a great number, are used.
This will not only cause considerable costs both for
computing and storage but also makes the solution
W of the output layer weights obtained by Eq. (56)
ill-posed, unrobust and of poor generalization abil-
ity. The modification for remedying the problem
have been made along two roads. The first road

is to try to select a subset of the whole training
set Dy, by discarding those not so important sam-
ples so that the number P can be reduced to a
much smaller number K < P. One solution for
this task is the multiedit algorithm,!?! a method
earlier developed for nearest neighbor classifier.5!
The other method along the first road is to let the
space spanned by ® = (6], 615 = $(Ilxi—x;|I?) be
expressed by a set of orthonormal basis vectors and
then to select a subset of these orthonormal basis
vectors incrementally such that the total residu-
als, which result from the projections of the de-
sired outputs d,,p = 1,..., P onto the subspace
spanned by the subset of the orthonormal basis
vectors are as small as possible.3°

The second road is to modify Eq. (67) into

fx) =S wiilllx—el?), i=1,...,m,
] (68)

i.e. to use a few movable location vectors to replace
the direct use of training samples as the locations
of each basis functions. In this case, the key point
is how to determine those ¢;,j = 1,...,n, which
can be regarded as the weight vector of n; hidden
neurons. It is possible to use gradient descent up-
dating 6c; = —o;‘—"’—)’:z through a backpropagation-
like chain rule. 165 But Ref. 150 found that such
kind of learning is very slow. Instead, they use a
modified K-mean clustering algorithm to find n,
cluster centers as cj,j = 1,...,n, to speed up the
learning. In Ref. 158, another version of the K-
mean clustering algorithm is also used for training
these hidden weight vectors. However, one prob-
lem of the K-mean clustering algorithm is that the
number of clusters should be predefined externally.
If this number is not appropriately chosen, the
clustering results may be very poor and thus result
in the poor performance of RBF net. Recently, a
method called Rival Penalized competitive learning
is proposed,?4” which can automatically decide an
appropriate number of clusters for training data
and the experiments have shown that it improves
the performance of RBF considerably.?4” Another
alternative which can locate these movable vectors
c;j in an incremental way is proposed by Ref. 166.
In the beginning, c; is just the first sample, here-
after as a new sample comes, its distance to the
nearest existing movable vector is calculated and
the estimation error of the present RBF net is com-
puted, if both the distance and the error are larger

Advances on Supervised Learning Techniques 277

than the prespecified thresholds, a new movable
vector is added in the net by simply letting it be-
ing the same as the sample; otherwise, all the ex-
isting movable vectors as well as weight w;j’s are
modified to reduce the error in the gradient de-
scent way through backpropagation by the chain
rule.}®® This method will result in more movable
vectors being used than the above K-mean type
algorithm but the learning may become consider-
ably faster.

The RBF expansion given by Eq. (68) can be
further generalized into

fi(x) = iwijd’([x - ¢]'T; 1 x —¢5))
j=1
i=1,...,m, (69)

where ¥; is a n X n semi-positive matrix. The
simplest case is Tj = 07I,xn (Eq. (69) will reduce
to Eq. (68) when o7 = 1). The parameters o}
affect the influential radius ||x—c;||? of every basis
function located at ¢; and sometime are called the
width of the receptive field of the basis function.
The value of af can be either prespecified which
is actually equivalent to the case of Eq. (68) or
determined by gradient descent updating AO'J? =

—a-% through backpropagation-like chain rule!%°
or some heuristic way jointly used with K-mean
clustering algorithms 158 Recently, Ref. 144 has
also studied how a'] ’s affects RBF net’s learning
and proposed some heuristic design strategies for
adjusting these parameters as well as the number
of hidden neurons.

One more general case for matrix X; is that it is
a diagonal matrix X; = diag[o?,, . ,UJ?,,] i.e. the
width of each basis function is scaled differently
in every dimension. Similarly, ¥; can be also de-
termined by gradlent descent updating A

agf ,t=1,...,n through backpropagatlon-hke

chain rule.!®® But as noted in Ref. 233, the gradi-
ent descent way is easy to get trapped into local
minima, thus they suggested to combine the es-
timation of their parameters with the procedure
of using K-mean clustering algorithms for find-
ing location centers c;j,j = 1,...,n;. A heuristic
formula for estimating these parameters was re-
cently given in Ref. 24. It has also experimentally
revealed that the appropriate selection of these
scaling parameters do improve the generalization
performance of RBF net considerably. The most
general case for matrix X; is that it is a nondiago-

278 L. Xu

nal semipositive matrix. This case is equivalent to
the weighted norm case suggested in Ref. 169 and
includes that studied in Ref. 186 as a special case
when ¢; = 0,5 =1,...,n;.

There are also a number of other variants for RBF
nets. In Ref. 69, the RBF net given by Eq. (68) has
been extended to the cases that outlier and nega-
tive samples are also included in the given training
set, by modifying the total error E, to consider the
influences of outlier noises and negative samples
based on the formalism of maximum posterior es-
timation. One other example is to replace Eq. (69)
by

fi(x) =) wijb([x — ;]'S7 x — ¢5])/
j=1

x 3 8l — 5] x - o))
j=1
i=1,...,m, (70)

le. by normalizing the output of hidden neu-
rons. This normalization is usually made when
fi(x) is used for estimating probabilistic den-
sity function.!3%1%8 Moreover, for the special
basis function ¢(||x — ¢;]|?) = —=2

\/2_10_; exp(—-||x -

¢ill?/207) it is shown!®® that Eq. (70) can be
derived from a criterion which minimizes a least
square cost function with the soft constraint that
the mutual information between input and output
is maximized. In Ref. 105, Eq. (70) is further re-
placed by

fi(x) = Z[wu +(x - ¢;)* d;]¢([x — ;]

x 51— ¢;)) / SCER

xEjl[x—cj]), i=1,...,m,

(71)
where X; is a diagonal matrix
E - dlag[]1’ aj?n]

and d; is an additional parameter vector. This
variant is motivated by imposing the following
constraint on f;(x)

09 = 3 w6]

x 57 e - o) / > ool
xLilx—¢)), i=1,....m (72

and then expanding f;(x) by the first order of Tay-
lor series about c¢;. Reference 213 also proposed
a variant which is somewhat similar to Eq. (71),
given as

fi(x) = E[wu + V-Jx1]¢([x - cJ]t

‘55 ‘[x—c,])/ st([x—c,}‘

x)Jj'l[x—cj]), i=1,...,m.
(73)

One difference here is that d; is replaced by v;;
which may be different from the connections be-
tween a hidden neuron and an output neuron. A
quite good result on signal prediction has been
achieved by this variant.213

In Ref. 107, a more general signal prediction algo-
rithm is proposed for training RBF nets. In the
consideration that in real time signal prediction
the observations are presented sequentially and
only once, they estimate a RBF net’s parameters
© = {W,¢j,%j,j = 1,...,n,} by minimizing the
following modified error criterion instead of that
given by Eq. (56);

O(t) = arg mine /x IF(x,)
PO - D)Pdx, (74)

subjected to the constraint F(x;,®) = d; or
(I|IF(x¢,0) — d¢|]|* < ts and t; is a prespeci-
fied error limit) where {x:,d;} is a pair of train-
ing observation at the present time t, F(x¢,0) =
[fl(x’ @), f2(x) e)> ERE) fm(x: e)]t given by Eq. (67)
or Eq. (69) and D C R" is the input pattern space.
Before closing this subsection, we would also like to
note that RBF nets have close relations to Parzen
window estimator for probability density®® and
the probabilistic nets proposed in Refs. 209 and
210. For the classification tasks, let the training
samples x;’s be redenoted by x;;,j = 1,...,Pi,i =
1,...,m, where)_;~, P; = P and x;j represents
the jth sample of class ;. The Parzen window

estimator is given by

f(x)z_l__i(ﬁ(”_x;’f_'l_l_l) i=1 m
1 Piai j=1 a‘. b - PR |)
(75)

similarly where ¢(.) can be either Gaussian func-
tion G(r) = exp(—r?) or a number of alterna-
tives2%° and o is chosen as a function of P; such
that o; — 0, for P, — oo and Po; — oo, for
P, — oo. Here the differences from Eq. (67)
are:

(1) all the w;; =1 for any 1, j;

(2) the output f;’s are decoupled between the
samples of different classes;

(3) oy is a function of number P; of each class.

In fact, here each f;(x) is an estimation of the
probability density of class ¢. In the probabilistic
nets, 299210 4. is fixed and can be the same for all
the classes. When m = 1, the probabilistic net is
Just the special case of RBF net with fixed w;; = 1.
When m > 1, the probabilist nets can be regarded
as m such special RBF nets with each of which
having only one output variable.

4.2. Other supervised learning models

Let us further continue to look at the second and
third categories mentioned in the beginning of Sec. 4
the second category consists of several other interest-
ing supervised learning models. The third category
consists of some models of complex structures using
one or more the previously described learning models
as components.

For the second category, we briefly introduce
three interesting models as follows;

o Kohonen learning vector quantization algorithms.
The algorithms are proposed for training a one
layer net for classification or vector quantization.
The layer consists of a number of units with weight
vectors Wi,k = 1,...,n;. One or several such
weight vectors are used as the prototype vectors
of each of m pattern class. Initially, all the weight
vectors are set randomly or estimated by some
unsupervised learning algorithm (e.g. Kohonen
map!l®). Then they are modified by a training
set of samples. For each sample z, a winner unit
kx is found by k* = argg||x — wi||? and the weight
vector Wi, is modified according to the following
rule

Advances on Supervised Learning Techniques 279

Awp, = a(x — wg.), if label(wg,) = label(x)

— a(x — Wks), otherwise, (76)

where 0 < @ < 1 is a learning rate. Moreover,
label (x) denotes the class label of x and label
(Wk«) denotes the class that wy. represents for.
The algorithm is simply called LVQ.116

An improved version of this algorithm called LVQ2
(which is closer in effect to Bayes decision the-
ory when used as classifier) has also proposed by
Kohonen.!1® Let k+ again denotes winner unit
and let k' denote the second winner (ie. k' =
argrze«||x — xi||2). The LVQ2 learning rule is
given by

Awg, = —a(x — Wi, ()

Awk/ = a(x - W]cl) .
The rule is not implemented for every sample x
but only when label(x) # label(wg.), label(x) =
label(wi:) and that x falls in a small window
centered at the decision boundary (perpendicular
bisector plane) between wg, and wy.

It was found that there are two places which could
be further improved. First, because the updates
are proportional to the difference of x and wy.
or x and wys, the update on wy, (correct class)
is of larger magnitude than that on wy (wrong
class); this results in monotonically decreasing
distances ||Wg.—wp||. Second, the continuation of
learning from a good solution may lead to another
asymptotic equilibrium of suboptimum solution.

The two problems were solved by a new version
called LVQ3!17

Aw; = —a(x — w;) (18)
Awj = a(x —wj),
where w;, w; are two closest ones to x. The rule
is implemented when label(w;) # label(w;) and
label(x) = label(w;) as well as x falls in the above
small window. In addition, when label(w;) =
label(w;) = label(x), Eq. (78) is replaced by

Aw; = ay(x — w;),
(79)
Aw; = ay(x —w;j),

where a; is a learning rate different from a.
Feedforward Boltzmann Machine.

As mentioned in the introduction section, the
Boltzmann Machine learning algorithm? is one of
the two main driving forces which caused a new
boost of the study on supervised learning neural
nets. A Boltzmann machine consists of some fixed

280 L. Xu

number of two-valued units linked by symmetri-
cal connections w;;’s which forms a network some-
times called a Hopfield net. A set of specific values
taken by all the unit is called a state of the net. An
“energy” function over states is defined and it in
turn induces a Boltzmann distribution over states
in which low-energy states are more probable than
high-energy states. During learning, each sample
of the training set is a vector consisting of a num-
ber of binary values and each value clamps one
unit. All the clamped units called “visible” units
and the others called “hidden” units. The values
that “hidden” units take are free but obey Boltz-
mann distribution defined by the energy function.
The purpose of the learning algorithm given by
Ref. 2 is to estimate the connection weights w;;’s
to maximize the log-likelihood over all the sam-
ples of the training set. Practically, the maximiza-
tion is implemented by gradient-ascent method in
cooperation with simulated annealing technique.
Strictly speaking, Boltzmann machine is not a
feedforward net but a recurrent network. Thus,
we will not go into details about it. Here what we
want to mention is that a similar learning proce-
dure has been recently developed for feedforward
nets (e.g. multilayer perceptron) with the same
purpose as Boltzmann machine by replacing all the
symmetrical connections with forward connections
which resulted in what here we called feedforward
Boltzmann machine.!®® For Boltzmann machine,
the gradient of the log-likelihood function based on
the symmetrical structure contains both a positive
term and a negative term which makes Boltzmann
learning consists of two phases — positive phase
and negative phase respectively. The two phases
are both indispensable for the learning to reach
a stable balance. However, the negative phase
have the disadvantages of increasing computa-
tion considerably and being more sensitive to
statistical errors. Interestingly, for feedforward
Boltzmann machine, the negative term is auto-
matically eliminated in the gradient of the log-
likelihood function based on the forward structure.
This increases the learning speed of Boltzmann
machine which is painfully slow. It was also found
that these forward nets have close relation with
Belief networks'®” developed in the literature of
uncertainty reasoning in artificial intelligence.

Learning from examples and queries.
Up to now, all the learning algorithms which we
have discussed are based on a set of training data

Dy = {(xp,dp),p=1,...,Np}, where for each x,
there already exists a desired output d, and each
of such pair forms an example. In other words, all
these algorithms learn from examples. Recently,
several researchers attempt to introduce queries
into some learning algorithms too (Refs. 19, 99 and
249). For such an algorithm, first some examples
are used for learning and then the partially trained
algorithm generates one or a number of inputs
Xp,p = 1,...,m, and asks a supervisor to give
their corresponding desired outputs. That is, in
addition to using examples in a prespecified train-
ing set, many examples are deliberately generated,
in response to queries and used during the learn-
ing process. This policy may give several advan-
tages. First, for a real application of only a small
set of training samples, the query provides a plau-
sible way for collecting more examples. Second,
some examples (e.g. those near decision bound-
aries when a net is used for classification purpose)
are more critical than others and the query can
pay more attention on obtaining these examples
so that the required time and the number of ex-
amples can be reduced and the performance of the
net can be improved.

In Ref. 19, an algorithm is proposed to train, from
examples and queries, a classification network with
n input variables connected to k hidden threshold
units. The learning process consists of two steps.
First, k hyperplanes are searched for k hidden
units as their separating hyperplanes. Then, the
perceptron algorithm (or some other algorithm) is
used for training the output layer. The key idea
for finding a separating plane is as follows:

Let x4 be a positive example and x_ be a negative
example (e.g. x4 belongs to one class and z_ does
not belong to the class). Let x = (x4 +x_)/2 and
query whether x is a positive or negative example.
If positive, query the point halfway between x
and x_ and so on. Repeating this process ¢
times gives a point yo on a separating hyperplane
with ¢ bits of precision. Then let q = yo + €
for € a small random vector and query whether
q is a positive or negative example. If (say)
negative, query a point near q in the direction of
z4. A few queries again suffice to give a point
p on a separating hyperplane. We may establish
rapidly that y, and p lie on the same separating
hyperplane, since if they do, so do other points on
the line which connects them. By repeating the
process for several perturbations e, we may find

n points on the same hyperplane which determine
the hyperplane.

Based on this key idea, given a set of example pairs
Sp = {(xi, x'),i=1,..., N}, areasonable search
process is to randomly call a pair from S, without
replacement and for each pair find a separating
plane until either

(a) we have found k distinct separating planes,
in which case we know we are done, or
(b) we have exhausted all pairs in S.

In Refs. 99 and 249, the query techniques are
combined into the learning process of backprop-
agation for multilayer perceptron. First, a given
training set is used to train a network and the par-
tially trained net generates input samples which
are located near decision boundaries through
queries. Second, these queried examples are
used in the same manner as using examples of
those training sets to refine the network by back-
propagation again. The key point for generating
querying samples is inverse mapping, i.e. giving
an output vector, one tries to find the correspond-
ing input vector or vectors. In Ref. 99, an output
vector d which reflects a class boundary (e.g. a
vector has its gth component being 0.5 can reflect
the boundary of the ¢ class) is used as the desired
output and then the corresponding input vector
x is searched so that the least square errors Ej
is minimized. The search is implemented in such
a way that the error E, is backpropagated down
to the input level without changing weights of the
nets and then the input is changed according to

0FE,

(80)
As aresult, the trajectory of these changes forms a
set of input examples which roughly constitutes a
decision boundary. In sequence, for each point on
the boundary, a conjugate pair which is near the
boundary point and perpendicular to the bound-
ary is chosen as a pair of querying samples. In
this way, by inverting every vector which reflects
the boundary of its correspondent class we can
get a lot of querying samples near every decision
boundary. A different way of generating querying
samples is proposed in Ref. 249. There, a seed
input x from one class is presented to a trained
networks and a desired output d of another input
from a different class is used as the desire output
to form a pair (x,d). The error E; corresponding

Advances on Supervised Learning Techniques 281

to the pair is backpropagated down to the input
level without changing weights of the nets, and the
input is changed according to Eq. (80). Then the
points on the resulted trajectory of these changes
are used as querying samples.

The third category consists of models of various
complex structures, e.g. modular architecture, hier-
archy architecture and others. These complex struc-
tures take some of the previously reviewed models
as components so that the characteristics of differ-
ent learning models can be combined, the computa-
tion costs can be reduced and the performances can
be improved. In the following, we introduce several
examples of this category:

o Adaptive miztures of modules.

Given subnets (or called modules/experts) s;,i =
1,...,n.;,, with each having input x and output y;
and given another subnet called a gating network
which has n,, output variables g;,7 = 1,...,np,
with g; > 0 and) ;™ g;i = 1 (for a net with
outputs 0;,7 = 1,...,n,, which do not satisfy the
condition, one can just normalize these outputs
by g; = €%/ _7m e°), we mixture the outputs of
subnets by weighted sum

y= %gaya : (81)
i=1 ;

Then we use a training set Dy, = {(xp,dp),p =
1,...,N,} to modify the weights of each subnets as
well as the gating net so that the following function
is maximized by gradient ascent method

N _ L
In Lp =In Z gie i?'“y(x,) »ll ’ (82)
i=1

where o7 are scaling parameters associated with

the ith subnet and these parameters are also mod-
ified by gradient ascent. Either the gating net
or each of the subnets can be a multilayer feed-
forward net which is trained by chain rule to get
the gradients with weights in the lower levels. This
architecture was recently proposed by Refs. 103
and 159 and it has been reported that this archi-
tecture can decompose a task into several com-
ponents and each of them is distributed to a
subnet through competitive and associative learn-
ing which is naturally emerged by the maximiza-
tion of Eq. (82) in gradient ascent way. In Ref. 244,
a different version of the architecture was proposed
for combining the classification results of multiple

282 L. Xu

classifiers. It has three main differences from that
given in Refs. 103 and 159. First, each classifier
(corresponding to each module here) can be ei-
ther a neural net or any other conventional classi-
fier. Second, each classifier (or equivalently all the
weights of each subnet) have ‘already been trained
before considering combination and the purpose
here is just to combine a number of already de-
signed classifiers instead of training both the gat-
ing net and each subnet in the same time. Third,
the parameters of the gating net are adjusted not
by maximizing Eq. (82) but by a criterion based on
an induced vector which accounts the correctness
of each classifier for each input.

e Hierarchical structures.

For the pattern classification problems, the tree
classifier is quite useful when the number N, of
class is large and/or the dimension n of input x
is high. In a tree classifier, a classifier at the root
node divide a given training pattern set into at
most N subsets. FEach subset is assigned to a
child node. This process is repeated for each child
node in a recursive manner until each subset corre-
sponds to a single class. These single class subsets
correspond to the leaf nodes of the tree. The leaf
nodes are labeled according to the class they re-
present. To design such a tree, there are several
issues to be considered. First, at each node, given
m child nodes, there are many ways to partition
a subset into m smaller subsets. Moreover, m can
also take a number of values (at most N, values).
Second, a subset can be divided based on either all
of the component variables of x or just on a sub-
set of the set of n components. This again gives
a lot of possibilities. Third, for each node how
can we design a suitable classifier to partition its
subset? In the literature of conventional pattern
recognition and statistics decision analysis, there
have been a great number of studies on tree clas-
sifiers. The results of these studies can be directly
adopted to neural network literature. The simple
way is just let each node of a tree be a neural net-
work classifier as what was made in Refs. 214 and
187. Due to the tree structure, each classifier can
be very simple, e.g. in Ref. 187 each classifier is
just a one layer feedforward network.

Hierarchical structure can also be used for regres-
sion problem. The so-called Bumptree is proposed
for the purpose.'®® By this model, a training data
set is organized into a tree data structure with each
node covering a bump-like subset of input pattern

space. A bumplike subset is defined by a so-called
bump function which specifies the range of support
and the size of the bump. The size of the bump-like
subset gradually decreases from the root to a leaf.
At each leaf, an affine regression is made based
on the training samples falling within the corre-
sponding local bump region. When a test pattern
comes, a searching process is made to find those
leaf nodes that their bump regions over the input
pattern, then the results of every regression func-
tion of these leaf nodes are weightedly summed to
give the final regression value for the current in-
put x (where the related weights are determined
by the normalized values of the bump function at
each of these leaf nodes).
e Other structures.

There are also a number of other ways for com-
bining different learning model to form a complex
structure, e.g. in Ref. 23, a multilayer perceptron
trained by backpropagation is used as a module
at the first stage and then its output is further
inputed to a module based Kohonen’s LVQ1 learn-
ing algorithm. Some more examples are given in
Refs. 40, 16 and 25.

5. Summary

Recent advances on techniques of static feedforward
networks with supervised learning have been rather
systematically reviewed. The survey was made by
summarizing a great number of developments into
four aspects:

(1) various improvements and variants made on
the classical backpropagation techniques for
Multilayer (static) perceptron nets.

(2) anumber of other learning methods for train-
ing Multilayer (static) perceptron.

(3) various other feedforward models which are
also able to implement function approxima-
tion, probability density estimation and clas-
sification.

(4) models with complex structures, e.g. mod-
ular architecture, hierarchy architecture and
others.

These aspects basically cover the whole picture
of the present state of supervised learning techniques
for training static feedforward networks. We should
note that the theoretical aspects of supervised learn-
ing for static feedforward networks have also ex-
perienced a tremendous development with many
interesting theoretical results in the recent years.

However, due to space limitations, we have to leave
the survey on this aspect elsewhere.

6. Acknowledgements

S. Klasa and L. Xu would like to acknowledge

the

support from Concordia University, Faculty

Research Development Programme for Grant No.
RO-20-1333. A. Yuille and L. Xu would like to ac-
knowledge the support from DARPA with AFOSR-
89-0506.

References

1.

10.

11.

12.

S. Abe, “Learning by parallel forward propagation,”
in Proc. Int. Joint Conf. on Neural Networks (San
Diego, 1990) Vol. III, pp. 99-104.

. D. H. Ackely, G. E. Hinton and T. J. Sejnowski, “A

learning algorithm for Boltzman machine,” Cogni-
tive Sci. 9, 147-169 (1985).

. R. B. Allen and C. A. Kamm, “A recurrent neu-

ral networks for word identification from continuous
phoneme strings,” in Advances in Neural Informa-
tion Processing System 3, eds. R. P. Lippmann, J.
E. Moody and D. S. Touretzky (Morgan Kaufmann,
San Mateo, 1991) pp. 206-212.

. L. G. Allre and G. E. Kelly, “Supervised learning

techniques for backpropagation networks,” in Proc.
Int. Joint Conf. on Neural Networks (San Diego,
1990) Vol. I, pp. 721-728.

. A. Amari, “Mathematical foundations of neurocom-

puting,” Proc. of IEEE 78, 1443-1463 (1990).

. T. J. Anastasio, “A recurrent neural network model

of velocity storage in the vestibule-ocular reflex,” in
Advances in Neural Information Processing System
3, eds. R. P. Lippmann, J. E. Moody and D. S.
Touretzky (Morgan Kaufmann, San Mateo, 1991)
pp- 32-38.

. D. Andes, B. Widrow, M. Lehr and E. Wan,

“MRIII: A robust algorithm for training analog neu-
ral networks,” in Proc. Int. Joint Conf. on Neural
Networks (Washington D.C, 1990) Vol. I, pp. 533
536.

. G. K. Atkin, J. E. Bowcock and N. M. Queen,

“Solution of a distributed deterministic parallel net-
work using simulated annealing,” Pattern Recogni-
tion 22 461-466 (1989).

. N. Baba, “A new approach for finding the global

minimum of error function of neural networks,”
Neural Networks 2, 367-374 (1989).

P. Baldi, “Computing with arrays of Bell-shaped
and Sigmoid functions,” in Advances in Neural In-
formation Processing System 3, eds. R. P. Lipp-
mann, J. E. Moody and D. S. Touretzky (Morgan
Kaufmann, San Mateo, 1991) pp. 735-742.

E. Barnard, “Performance and generalization of
the classification figure of merit criterion function,”
IEEE Trans. Neural Networks 2, 322-318 (1991).
A. Barron and R. Barron, “Statistical learning
networks: A unifying view,” in Comput. Sci. and

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Advances on Supervised Learning Techniques 283

Statis. Proc. 20th Symp. Interface, ed. E. Weg-
man, Am. Statist. Assoc. (Washington D.C., 1988)
pp. 192-203.

A. Barron, “Statistical properties of artificial neural
networks,” in Proc. IEEE Decision and Control
(Tampa, Florida, 1989) pp. 280-285.

B. G. Batchelor and B. R. Wilkins, “Adaptive
discriminant functions,” IEE Conf. Publication,
Vol. 42 (1968) pp. 168-178.

B. G. Batchelor, Practical Approach to Pattern
Recognition (Plenum Press, New York, 1974).

R. Batruni, “A Multilayer neural network with
piece-wise-linear structure and backpropagation
learning,” IEEE Trans. Neural Networks 2, 395-
403 (1991).

E. B. Baum and F. Wilczek, “Supervised learning
of probability distributions by neural networks,” in
Neural Information Processing Systems, ed. D. Z.
Anderson (New York, 1988) pp. 53-61.

E. B. Baum and K. J. Lang, “Constructing hidden
units using examples and queries,” in Advances in
Neural Information Processing System 38, eds. R.
P. Lippmann, J. E. Moody and D. S. Touretzky
(Morgan Kaufmann, San Mateo, 1991) pp. 904-910.
E. B. Baum, “Neural net algorithms that learn in
polynomial time from examples and queries,” IEEE
Trans. Neural Networks 2, 5-19 (1991).

R. Beale and T. Jackson, Neural Computing (Adam
Hilger, 1990).

S. Becker and Y. Le Cun, “Improving the conver-
gence of backpropagation learning with second or-
der methods,” in Proc. 1988 Connectionist Models
Summer School, Pittsburg 1988, eds. D. Touretzky,
G. Hinton and T. Sejnowski (Morgan Kaufmann,
San Mateo, 1988) pp. 29-37.

U. Bodenhausen, “Learning internal representa-
tion of pattern sequences in a neural network with
adaptive time-delays,” in Proc. Int. Joint Conf.
on Neural Networks (San Diego, 1990) Vol. III,
pp. 113-118.

M. de Bollivier, P. Gallinari and S. Thiria, “Coop-
eration of neural nets for robust classification,” in
Proc. Int. Joint Conf. on Neural Networks (San
Diego, 1990) Vol. II, pp. 113-120.

S. M. Botros and C. G. Atkeson, “Generalization
properties of radial basis function,” in Advances in
Neural Information Processing System 3, eds. R.
P. Lippmann, J. E. Moody and D. S. Touretzky
(Morgan Kaufmann, San Mateo, 1991) pp. 707-713.
L. Bottou and P. Gallinari, “A framework for the
cooperation of learning algorithms,” in Advances in
Neural Information Processing System 3, eds. R.
P. Lippmann, J. E. Moody and D. S. Touretzky
(Morgan Kaufmann, San Mateo, 1991) pp. 781-788.
L Breman, J. H. Fredman, R. A. Olshen and
C. J. Stone, Classification and Regression Trees
(Wadsworth International, CA: Belmont, 1984).

R. P. Brentt, “Fast training algorithms for multi-
layer neural nets,” IEEE Trans. Neural Networks
2, 346-354 (1991).

284

28

29

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

L. Xu

. D.S. Broomhead and D. Lowe, “Multivariable func-
tional interpolation and adaptive networks,” Compl.
Syst 2, 321-323 (1988).

. A.E. Bryson and Y. C. Ho, Applied Optimal Control

(Blaisdell, New York, 1969).

P. Burrascano and P. Lucci, “Smoothing backpropa-

gation cost function by delta constraining,” in Proc.

Int. Joint Conf. on Neural Networks (San Diego,

1990) Vol. III, pp. 75-78.

P. Burrascano, “A norm selection criterion for the

generalized delta rule,” IEEE Trans. Neural Net-

works 2, 125-130 (1991).

G. A. Carpenter, “Neural network models for pat-

tern recognition and associative memory,” Neural

Networks 2, 243-257 (1989).

L. W. Chan and F. Fallside, “An adaptive training

algorithm for backpropagation networks,” Comput.

Speech and Language 2, 205-218 (1987).

Y. Chauvin, “Generalization performance of over-

trained backpropagation,” in Proc. Eurasip Work-

shop on Neural Networks, eds. L. B. Almedia and

C. J. Wellekens, (Springer-Verlag, 1990) pp. 46-55.

Y. Chauvin, “A backpropagation algorithm with

optimal use of hidden units,” in Advances in Neural

Information Processing Systems, ed. D. Touretzky,

(Morgan Kaufmann, 1989).

T. R. Chay, “Complex oscillations and chaos in

a simple neural model,” in Proc. Int. Joint Conf.

on Neural Networks (Seattle, 1991) Vol. II,

pp. 657-662.

M. Chen and M. T. Manry, “Backpropagation rep-

resentation theorem using power series,” in Proc.

Int. Joint Conf. on Neural Networks (San Diego,

1990) Vol. I, 643-648.

J. R. Chen and P. Mars, “Stepsize variation meth-

ods for accelerating the backpropagation algorithm,”

in Proc. Int. Joint Conf. on Neural Networks

(Washington D.C, 1990) Vol. I, pp. 601-604.

S. Chen, C. F. N. Cowan and P. M. Grant, “Or-

thogonal least squares learning algorithm for Ra-

dial basis function networks,” IEEE Trans. Neural

Networks 2, 302-309 (1991).

S. B. Cho and J. H. Kim, “Hierarchically structured

neural networks for printed hangu; character recog-

nition,” in Proc. Int. Joint Conf. on Neural Net-

works (San Diego, 1990) Vol. I, pp. 265-270.

D. Cohen and J. Shawe-Taylor, “Feedforward net-

works — a tutorial,” in New developments in Neural

Computing, eds. J. G. Taylor and C. L. T. Mannion

(Adam Hilger, 1990).

P. W. Cooper, “The hypersphere in pattern recog-

nition,” Information and Control 5 (1962).

P. W. Cooper, “A note on an adaptive hypersphere

decision boundary,” IEEE Trans. Elect. Comp. 984—

959 (1966).

T. Cover, “Geometrical and statistical properties of

systems of linear inequalities with applications in

pattern recognition,” IEEE Trans. Elect. Comput.

EC — 14, 326-334 (1965).

J. D. Cowan and D. H. Sharp, “Neural nets and

artificial intelligence,” in Proc. of the Am. Acad. of

Arts and Sci. 117, 85-121 (1988).

46

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64

. J.D. Cowan and D. H. Sharp, “Neural nets,” Quart.
Rev. of Biophys. 21, 365-427 (1988).

S. P. Day and D. S. Camporese, “Continuous-
time temporal backpropagation,” in Proc. Int. Joint
Conf. on Neural Networks (Seattle, 1991) Vol. II,
pp. 95-100.

J. Dayhoff, Neural Network Architectures: An Intro-
duction (Van Nostrand Reinhold, 1989).

S. P. Day and D. Camporese, “A stochastic training
technique for feedforward neural networks,” in Proc.
Int. Joint Conf. on Neural Networks (San Diego,
1990) Vol. I, pp. 607-612.

A. Dembo and T. Kailath, “Model free distributed
learning,” IEEE Trans. Neural Networks 1, 58-70
(1990).

P. A. Devijver and J. Kittler, Pattern Recognition:
A Statistical Approach (Prentice Hall, 1982).

B. W. Dickinson, “Group behavior models for
learning in neural networks,” in Proc. IEEE De-
cision and Control (Tampa, Florida, 1989) Vol. I,
pPpP. 249-251.

S. C. Douglas and T. H. Meng, “Linearized least
square training of multilayer feedforward neural
networks,” in Proc. Int. Joint Conf. on Neural Net-
works (Seattle, 1991) Vol. I, pp. 307-312.

H. Drucker and Y. LeCun, “Double backpropa-
gation increasing generalization performance,” in
Proc. Int. Joint Conf. on Neural Networks (Seat-
tle, 1991) Vol. II, pp. 145-150.

R. O. Duda and P. E. Hart, Pattern Classification
And Scene Analysis (Wiley, 1973, New York).

J. L. Elman, “Finding structure in time,” Cognitive
Sci 14, 79-211 (1990).

El-Jaroudi and J. Makhoul, “A new error crite-
rion for posterior probability estimation with neural
nets,” in Proc. Int. Joint Conf. on Neural Networks
(San Diego, 1990) Vol. I, pp. 185-192.

S. E. Fahlman, “Faster-learning variations on back-
propagation: An empirical study,” in Proc. 1988
Connectionist Models Summer School (Pittsburg,
1988), eds. D. Touretzky, G. Hinton and T. Se-
jnowski (Morgan Kaufmann, San Mateo, 1988).

S. E. Fahlman and C. Lebiiere, “The cascade-
correlation learning architecture,” Advances in
Neural Information Processing Systems II, Denver,
1989 ed. D. Touretzky (Morgan Kaufmann, 1990)
PP. 524-532.

W. Fakhr and M. I Elmasry, “A fast learning
technique for the multilayer perceptron,” in Proc.
Int. Joint Conf. on Neural Networks (San Diego,
1990) Vol. III, pp. 257-262.

D. Figueiredo, “An optimal matching-score net for
pattern classification,” in Proc. Int. Joint Conf.
on Neural Networks (San Diego, 1990) Vol. III,
pp. 906-909.

R. Franke, “Scattered data interpolation: Tests of
some methods,” Math. Comp. 38(5), 181-200.

M. Frean, “The upstart algorithm: A method for
constructing and training feedforward neural net-
works,” Neural Comput. 2, 198-209 (1990).

. J. H. Friedman and W. Stuetzle, “Projection Pur-

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

suit regression,” J. Am. Statis. Assoc. 76 : 367,
817-8243 (1981).

J. H. Friedman, “Adaptive spline networks,” in
Advances in Neural Information Processing System
3, eds. R. P. Lippmann, J. E. Moody and D. S.
Touretzky (Morgan Kaufmann, San Mateo, 1991).
Pp. 675-683.

S. Gallent, “A connectionist learning algorithm with
provable generalization and scaling bounds,” Neural
Networks 3, 191-201 (1990).

T. Geszti, Physical Models of Neural Networks,
(World Scientific, Singapore, 1990).

F. Girosi and T. Poggio, “Networks and the best ap-
proximation property,” M.L.T. AT Memo. No. 1164,
MIT (1989).

F. Girosi and T. Poggio, “Extensions of a theory
of networks for approximation and learning: Outlier
and negative examples,” M.I.T. AT Memo. No. 1220,
MIT, (1990); also in Advances in Neural Informa-
tion Processing System 3, eds. (R. P. Lippmann, J.
E. Moody and D. S. Touretzky (Morgan Kaufmann,
San Mateo, 1991) pp. 750-756.

C. L. Giles and T. Maxwell, “Learning, invariance
and generalization in high-order neural networks,”
Appl. Optics 26 : 23, 4985-4992 (1987).

H. Gish, “A probabilist approach to the under-
standing and training of neural network classi-
fiers,” in Proc. of IEEE Conf. on ASSP (1990)
pp. 1361-1364.

S. D. Goggin, K. E. Gustafson and K. M. John-
son, “An asymptotic singular value decomposition
analysis of nonlinear multilayer neural networks,” in
Proc. Int. Joint Conf. on Neural Networks (Seattle,
1991) Vol. 1, pp. 1785-789.

D. Goldberg, Genetic Algorithms in Search, Opti-
mization and Machine Learning (Addison-Wesley,
1989).

S. Grossberg, Adaptive Brain, 2 Vols (Elsevier
Amsterdam, 1987).

S. Grossberg, “Competitive learning: From inter-
active activation to adaptive resonance,” Cognitive
Sci. 11, 23-63 (1987).

M. Gutierrez 89, J. Wang and R. Grondin, “Esti-
mating hidden unit number for two-layer percep-
trons,” in Proc. Int. Joint Conf. on Neural Networks
(San Diego, 1990) Vol. I, pp. 677-681.

M. Hagiwara, “Accelerated backpropagation using
unlearning based on Hebb rule,” in Proc. Int. Joint
Conf. on Neural Networks (Washington D.C, 1990)
Vol. I, pp. 617-620.

M. Hagiwara, “Novel backpropagation algorithm
for reduction of hidden units and acceleration of
convergence using artificial selection” in Proc. Int.
Joint Conf. on Neural Networks (San Diego, 1990)
Vol. 1, pp. 625-630.

J. B. Hampshire and A. H. Waibel, “A novel ob-
Jective function for improved phoneme recognition
using time-delay neural networks,” IEEE Trans. on
Neural Networks 1, 216-228 (1990).

S. J. Hanson and L. Y. Pratt, “Some compar-
isons of constraints for minimal network construc-

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98

Advances on Supervised Learning Techniques 285

tion with backpropagation,” Advances in Neural
Information Processing Systems, ed. D. Touretzky
(Morgan Kaufmann, 1989).

S. J. Hanson and D. J. Burr, “Minkowski-r back-
propagation: Learning in connectionist models with
non-Euclidian error signals,” Neural Information
Processing Systems, ed. D. Z. Anderson (New York,
1988) pp. 349-357.

R. F. Harrison, S. J. Marshall and R. L. Kennedy,
“The early diagnosis of heart attacks: A neurocom-
putational approach,” in Proc. Int. Joint Conf. on
Neural Networks (Seattle, 1991) Vol. I, pp. 1-6.

R. Hecht-Nielsen, Neurocomputing (Addison-Wesley,
1991).

J. Hertz, J. Krogh and R. G. Palmer, Introduction
to the Theory of Neural Computation (Addison-
Wesley, 1991).

Y. Hirose, K. Yamashita and S. Hijiya, “Backpropa-
gation algorithm which varies the number of hidden
units,” Neural Networks 4, 61-66 (1991).

G. E. Hinton, “Learning translation invariant recog-
nition in a massively parallel networks,” Lect. Notes
in Comput. Sci. 258, 1-13, (1987).

G. E. Hinton, “Connectionist learning procedures,”
Artif. Intell 40, 185-234 (1989).

Y. C. Ho and R. L. Kashyap, “An algorithm for lin-
ear inequalities and its applications,” IEEE Trans.
on Elect. Comput. EC — 14, 683-688 (1965).

M. Holt and S. Semnani, “Convergence of backprop-
agation in neural networks using a log-likelihood
cost function,” Elec. Lett. 26, 1964-1965 (1990).
T. L. Holt and T. E. Baker, “Backpropagation
simulations using limited precision,” in Proc. Int.
Joint Conf. on Neural Networks (Seattle, 1991)
Vol. 11, pp. 121-126.

K. Hornik, “Approximation capabilities of multi-
layer feedforward networks,” Neural Networks 4,
251-257 (1991).

K. Hornik, S. Stinchocombe and H. White, “Mul-
tilayer feedforward networks are universal approx-
imators, derivatives using multilayer,” Neural
Networks 2, 359-366 (1989).

K. Hornik, S. Stinchocombe and H. White, “Univer-
sal approximation of an unknown mapping and its
derivatives using multilayer feedforward networks,”
Neural Networks 3, 551-560 (1990).

J. C. Hoskins, “Speeding up artificial neural net-
works in the real world,” in Proc. Int. Joint Conf. on
Neural Networks (Washington D.C., 1989) Vol. II,
pp. 626.

P. J. Huber, “Projection pursuit,” Annal. Statis.
13 : 2, 435-475 (1985).

W. Huang and R. Lippmann, “Comparisons be-
tween neural network and conventional classifiers,”
in Proc. IEEE Int. Conf. on Neural Networks, (San
Diego, CA. 1987) Vol. IV, pp. 485-493.

Q. Huang et al., “Identification of firing patterns
of neuronal signal,” in Proc. of IEEE Decision
and Control 1989. Tampa, Florida (1989) Vol. I,
PP. 266-271.

. M. J. Hudak, “RCE networks: An experimental

286

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

L. Xu

investigation,” in Proc. Int. Joint Conf. on Neural
Networks (Seattle, 1991) Vol. I, pp. 849-854.

J. H. Hwang, J. J. Choi, S. Oh and R. J. Marks
II, “Query-based learning applied to partially
trained multilayer perceptrons,” IEEE Trans. on
Neural Network 2, 131-136 (1991).

C. Ioss, “From lattices of phonemes to sentences:
A recurrent neural network approach,” in Proc.
Int. Joint Conf. on Neural Networks (Seattle, 1991)
Vol. 11, pp. 833-838.

M. Ishikawa, “A structural learning algorithm with
forgetting of weight link weights,” in Proc. Int. Joint
Conf. on Neural Networks (Washington D.C., 1989)
Vol. II.

R. A. Jacobs, “Increased rate of convergence
through learning rate adaptation,” Neural Networks
1, 295-307 (1989).

R. A. Jacobs and Michael I. Jordan, “A competitive
modular connectionist architecture,” in Advances in
Neural Information Processing System 3, eds. R.
P. Lippmann, J. E. Moody and D. S. Touretzky
(Morgan Kaufmann, San Mateo, 1991) pp. 767-773.
A. K. Jain, “Advances in statistical pattern
recognition,” in Pattern Recognition Theory and
Applications, eds. P. A. Devijver and J. Kittler
(Springer-Verlag, New York, 1989).

R. D. Jones et al., “Information theoretic derivation
of network architecture and learning algorithms,” in
Proc. Int. Joint Conf. on Neural Networks (Seattle,
1991) .Vol. II, pp. 473-478.

M. Jordan, “Generic constraints on underspecified
target trajectories,” in Proc. Int. Joint Conf. on
Neural Networks (Washington D.C., 1989) Vol. I,
pp. 217-225.

V. Kardirkamanathan, M. Niranjan and F. Fall-
side, “Sequential adaptation of radial basis function
neural networks and its application to time-series
prediction,” in Advances in Neural Information
Processing System 3, eds. R. P. Lippmann, J. E.
Moody and D. S. Touretzky (Morgan Kaufmann,
San Mateo, 1991) pp. 721-727.

B. L. Kalman and S. C. Kwasny, “A superior error
function for training neural networks,” in Proc.
Int. Joint Conf. on Neural Networks (Seattle, 1991)
Vol. 11, pp. 49-52.

F. Kanaya and S. Miyake, “Bayes statistical behav-
ior and valid generalization of pattern classifying
neural networks,” IEEE Trans. Neural Networks 2,
471-475 (1991).

E. D. Karnin, “A simple procedure for pruning
backpropagation trained neural networks,” IEEFE
Trans. Neural Networks 1, 239-242 (1990).

T. Khanna, Foundations of Neural Networks
(Addison-Wesley, 1990).

M. S. Kim and C. C. Guest, “Modification of
backpropagation network for complex-value signal
processing in frequency domain,” in Proc. Int.
Joint Conf. on Neural Networks (San Diego, 1990)
Vol. 111, pp. 27-32.

S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, “Op-
timization by simulated annealing,” Science 220,
671-680 (1983).

114

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

. S. Knerr, L. Personnaz and G. Dreyfus, “A new
approach to the design of neural network classifiers
and its application to the automatic recognition of
handwritten digits,” in Proc. Int. Joint Conf. on
Neural Networks (Seattle, 1991) Vol. I, pp. 91-96.
T. Kohonen, “An introduction to neural comput-
ing,” Neural Networks 1, 3-16 (1988).

T. Kohonen, Self-organization and Associative
Memory (31d ed.) (Springer-Verlag, Berlin, 1989).
T. Kohonen, “The self-organizing map,” Proc. of
IEEFE 78, 1464-1480 (1990).

S. Kollias and D. Anastassiou, “An adaptive least
square algorithms for efficient training of artificial
neural networks,” IEEE Trans. Circuits and Syst.
36, 1092-1101 (1989).

J. I. Kolen and J. B. Pollack, “Backpropagation
is sensitive to initial conditions,” in Advances in
Neural Information Processing System 3, eds. R.
P. Lippmann, J. E. Moody and D. S. Touretzky
(Morgan Kaufmann, San Mateo, 1991) pp. 860-867.
J. R. Koza and J. P. Rice, “Genetic generation
of both the weights and architecture for a neural
networks,” in Proc. Int. Joint Conf. on Neural Net-
works (Seattle, 1991) Vol. II, pp. 397-404.

M. A. Kraaijveld and R. P. W. Duin, “Generaliza-
tion capabilities of minimal kernel-based networks,”
in Proc. Int. Joint Conf. on Neural Networks (Seat-
tle, 1991) Vol. I, pp. 843-848. '

A. H. Kramer and A. Sangiovanni-Vincentelli,
“Efficient parallel learning algorithms for neural
networks,” in Advances in Neural Information Pro-
cessing Systems, ed. D. Touretzky (Morgan
Kaufmann, 1989) pp. 40-48.

V. Ya. Kreinovich, “Arbitrary nonlinearity is suffi-
cient to represent all function by neural networks:
A Theorem,” Neural Networks 4, 381-383 (1991).
J. K. Kruschke, “Improving generalization in back-
propagation networks with distributed bottlenecks,”
in Proc. Int. Joint Conf. on Neural Networks (San
Diego, 1990) Vol. I, pp. 443-447.

A. Krzyzak, W. Dai and C. Suen, “Classification of
large set of handwritten characters using modified
backpropagation model,” in Proc. Int. Joint Conf.
on Neural Networks (San Diego, 1990) Vol. III,
PP. 225-232.

S. Y. Kung and Y. H. Hu, “A Frobenius approxi-
mation reduction method (FARM) for determining
optimal number of hidden units,” in Proc. Int. Joint
Conf. on Neural Networks (Seattle, 1991) Vol. II,
pp. 163-168.

Y. Lacouture, “Mean-variance backpropagation: A
connectionist learning algorithm with a selective
attention mechanism,” in Proc. Int. Joint Conf.
on Neural Networks (Seattle, 1991) Vol. 1I,
pp. 31-36.

S. H. Lane et al, “Multilayer perceptrons with
B-spline receptive field functions,” in Advances in
Neural Information Processing System 3, eds. R.
P. Lippmann, J. E. Moody and D. S. Touretzky
(Morgan Kaufmann, San Mateo, 1991) pp. 684-692.
K. J. Lang, A. H. Waibel and G. E. Hinton, “A time-

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

delay neural network architecture for isolated word
recognition,” Neural Networks 3, 23-43 (1990).

Y. LeCun, “Generalization and network design
strategies,” Department of Computer Science, Uni-
versity of Toronto, TR CRG-TR-89-4 (1989).

Y. LeCun et al., “Backpropagation applied to hand-
written zip code recognition,” Neural Comput. 1,
541-551 (1990).

S. Lee and R. M. Kil, “Robot kinematic control
based on bidirectional mapping neural network,”
in Proc. Int. Joint Conf. on Neural Networks (San
Diego, 1990) Vol. III, pp. 327-335.

Y. Lee and R. P. Lippmann, “Practical charac-
teristics of neural network and conventional pat-
tern classifiers on artificial and speech problems,”
Advances in Neural Information Processing Sys-
tem II, Denver, 1989 (Morgan Kaufmann, 1990)
pp. 168-177.

S. Lee and R. M. Kil, “A Gaussian potential
function network with hierarchically self-organizing
learning,” Neural Networks 4, 207-224 (1991).

Y. Lee, S. Oh and M. W. Kim, “The effect of
initial weights on premature saturation in back
propagation learning,” in Proc. Int. Joint Conf.
on Neural Networks (Seattle, 1991) Vol. I,
pp. 765-770.

W. T. Lee, “On optimal adaptive classifier design
criterion,” in Proc. Int. Joint Conf. on Neural Net-
works (Seattle, 1991) Vol. II, pp. 385-390.

E. Levin, R. Gewirtzman and G. F. Inbar, “Neural
network architecture for adaptive system modeling
and control,” Neural Networks 4, 185-191 (1991).
S. Li, “An optimized backpropagation with min-
imium norm weights,” in Proc. Int. Joint Conf.
on Neural Networks (San Diego, 1990) Vol. I,
Pp. 697-702.

R. P. Lippmann, “An introduction to comput-
ing with neural sets,” IEEE ASSP Mag. (1987)
pPp. 4-22.

H. Van der Maas, P. Verschure and P. Molenaar, “A
note on chaotic behavior in simple neural networks,”
Neural Networks 3, 119-122 (1990).

S. Makram-Ebeid, J. -A. Sirat and J. -R. Viala, “A
rationalized backpropagation learning algorithm,”
in Proc. Int. Joint Conf. on Néural Networks
(Washington D.C., 1989) Vol. II, pp. 373-380.

S. G. Mallat, “Multifrequency channel decomposi-

tion of images and wavelet models,” IEEE Trans.
ASSP 37 : 12, 2091-2110 (1989).

J. M. Mcinerny, K. G. Haines, S. Biafore and R.
Hecht-Nielsen, “Backpropagation error surfaces can
have local minima” in Proc. Int. Joint Conf. on
Neural Networks (Washington D.C., 1989) Vol. II.

B. W. Mel and S. M. Omohundro, “How receptive
field parameters affect neural learning,” in Advances
in Neural Information Processing System 3, eds. R.
P. Lippmann, J. E. Moody and D. S. Touretzky
(Morgan Kaufmann, San Mateo, 1991) pp. 757-763.
M. Mezrd and J. -P. Nadal, “Learning in feedfor-
ward layered networks: The tiling algorithm,” J.
Phys. A22, 2191-2204 (1989).

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

Advances on Supervised Learning Techniques 287

G. Miller, P. Todd and S. Hedge, “Designing neural
networks using genetic algorithms,” in Conf. on
Genetic Algor. Proc. 8rd, (Arlington, 1989).

A. A. Minai and R. D. Williams, “Backpropagation
heuristics: A study of the extended delta-bar-delta
algorithm,” in Proc. Int. Joint Conf. on Neural
Networks (San Diego, 1990) Vol. I, pp. 595-600.
M. L. Minsky and S. A. Papert, Perceptrons (MIT
Press, Cambridge, 1988).

D. J. Montana and L. Davis, “Training feedforward
networks using genetic algorithms,” in Proc. of 11th
1JCAI (Detroit, 1989) pp. 762-767.

J. Moody and J. Darken, “Fast learning in networks
of locally-tuned processing units,” Neural Comput.
1 281-294 (1989).

F. Mosteller and J. Tukey, Robust Estimation Pro-
cedures (Addison Wesley, 1980).

J. Movellan, “Error functions to improve noise
resistance and generalization in backpropagation
networks,” in Proc. Int. Joint Conf. on Neural Net-
works (Washington D.C., 1990) Vol. I, pp. 557-560.
M. C. Mozer and P. Smolensky, “Skeletonization:
A technique for trimming the fat from a network
via relevance assessment,” in Advances in Neural
Information Processing Systems, ed. D. Touretzky,
(Morgan Kaufmann, 1989) pp. 349-357.

K. S. Narendra and K. Parthasarathy, “Identifica-
tion and control of dynamical systems using neural
networks,” IEEE Trans. Neural Networks 1, 3-27
(1990).

R. M. Neal, “Learning stochastic feedforward net-
works,” Technical Report, Connectionist research
group at the University of Toronto, Canada (1990).
M. Nelson and W. T. lllingworth, A Practical Guide
to Neural Nets (Addison-Wesley, 1991).

D. Nguyen and B. Widrow, “Improving the learn-
ing speed of 2-layer neural networks by choosing
initial values of the adaptive weights,” in Proc. Int.
Joint Conf. on Neural Networks (San Diego, 1990)
Vol. III, pp. 21-26.

S. J. Nowlan, “Max likelihood competition in RBF
networks,” Technical Report CRG-Tr-90-2, Depart-
ment of Computer Science University of Toronto
(1990).

S. J. Nowlan and G. E. Hinton, “Evaluation of adap-
tive mixtures of competing experts,” in Advances
in Neural Information Processing System 3, eds. R.
P. Lippmann, J. E. Moody and D. S. Touretzky
(Morgan Kaufmann, San Mateo, 1991) pp. 774-780.
S. M. Omohundro, “Bumptress for efficient func-
tion, constraint and classification learning,” in Ad-
vances in Neural Information Processing System 3,
eds. R. P. Lippmann, J. E. Moody and D. S. Touret-
zky (Morgan Kaufmann, San Mateo, 1991) pp. 693—
699.

Y. H. Pao, Adaptive Pattern Recognition and Neural
Networks (Addison-Wesley, 1989).

D. B. Parker, “Learning logic,” Technicial Report,
Center for Computational Search in Economics and
Management Science, MIT (1985).

288

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

L. Xu

P. B. Parker, “Optimal algorithm for adaptive net-
works: Second order direct back propagation and
second order hebbian learning,” in Proc. IEEFE Int.
Conf. on Neural Networks (San Diego, CA. 1987)
Vol. 11, pp. 593-600.

Y. C. Pati and P. S. Krishnaprasad, “Discrete
affine wavelet transforms for analysis and synthe-
sis of feedforward neural networks,” in Advances in
Neural Information Processing System 3, eds. R.
P. Lippmann, J. E. Moody and D. S. Touretzky
(Morgan Kaufmann, San Mateo, 1991) pp. 743-749.
A. Patrikar and J. Provence, “Learning by lo-
cal variations,” in Proc. Int. Joint Conf. on Neu-
ral Networks (Washington D.C., 1990) Vol. I,
pp. 700-703.

J. C. Platt, “Learning by combining memorization
and gradient descent,” in Advances in Neural In-
formation Processing System 3, eds. R. P. Lipp-
mann, J. E. Moody and D. S. Touretzky (Morgan
Kaufmann, San Mateo, 1991) pp. 714-720.

J. Pearl, Probabilistic Reasoning in Intelligent Sys-
tem: Networks of Plausible Inference (Morgan
Kaufmann, San Mateo, California, 1988).

B. A. Pearlmutter, “Learning state space trajecto-
ries in recurrent neural networks,” Neural Comput.
1, 263-269 (1989).

T. Poggio and F. Girosi, “A theory of networks
for approximation and learning,” M.I.T. Al Memo.
No. 1140, MIT (1989).

T. Poggio and F. Girosi, “Networks for approxima-
tion and learning,” in Proc. of IEEE 78, pp. 1481-
1497 (1990).

M. J. D. Powell, “Radial basis functions for multi-
variable interpolation: Review,” in Algorithms For
Approzimation, eds. J. C. Mason and M. G. Cox
(Clarendon Press, Oxford, 1987).

G. V. Puskorius and L. A. Feldkamp, “Decoupled
extended Kalman filter training of feedforward lay-
ered networks,” in Proc. Int. Joint Conf. on Neural
Networks (Seattle, 1991) Vol. I, pp. 771-777.

S. Qian et al., “Function approximation with an
orthogonal basis net,” in Proc. Int. Joint Conf.
on Neural Networks (San Diego, 1990) Vol. I,
pp. 605-619.

J. R. Quinlan, “Induction of decision trees,” Ma-
chine Learning 1, 81-106 (1986).

D. L. Reilly, L. N. Cooper and C. Elbaum, “A neural
model for category learning,” Biol. Cybn. 45, 35-41
(1982).

D. L. Reilly, C. Scofield, C. Elbaum and L. N.
Cooper, “Learning system architectures composed
of multiple learning modules,” in Proc. IEEE Int.
Conf. on Neural Networks (San Diego, CA. 1987)
Vol. 11, pp. 495-503.

S. Renals and R. Rohwer, “Phoneme classification
experiments using radial basis functions,” in Proc.
Int. Joint Conf. on Neural Networks (Washington
D.C., 1989) Vol. I, pp. 462-467.

A. Rezgui and N. Tepedelenlioglu, “The effect of
the slope of the activation function on the back
propagation algorithm,” in Proc. Int. Joint Conf.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193

on Neural Networks (Washington D.C., 1990) Vol. I,
pp. 707-780.

L. P. Ricotti, S. Ragazzini and G. Martinelli, “Learn-
ing word stress in a suboptimal second order back-
propagation neural network,” in Proc. IEEE Int.
Conf. on Neural Networks (San Diego, CA 1988)
Vol. 1, pp. 355-361.

A. K. Rigler, J. M. Irvine and T. P. Vogl, “Rescaling
of variables in backpropagation learning,” Neural
Networks 4, 225-229 (1991).

F. Ronsenblatt, “The perceptron: A probabilistic
model for information storage and organization in
the brain,” Psychol. Rev. 65, 386-408-(1958).

F. Ronsenblatt, Principles of Neurodynamics: Per-
ceptrons and the Theory of Brain Mechanisms
(Spartan Books, Washinton D.C., 1962).

D. E. Rumelhart, G. E. Hinton and R. J. Williams,
“Learning internal representations by error propa-
gation,” in Parallel Distributed Processing, Vol. 1°
(MIT Press, 1986).

D. W. Ruck et al, “The multilayer perceptron
as an approximation to a Bayes optimal discrim-
inant function,” IEEE Trans. Neural Networks 1,
296-299 (1990).

D. E. Rumelhart and J. L. McClelland, Parallel
Distributed Processing: Ezplorations in the Micro-
break structure of Cognitive Processing, Vol. I & II
(MIT Press, 1986).

A. Saha et al., “Oriented nonradial basis functions
for image coding and analysis,” Advances in Neu-
ral Information Processing System 3, eds. R. P.
Lippmann, J. E. Moody and D. S. Touretzky
(Morgan Kaufmann, San Mateo, 1991) pp. 728-734.
A. Sankar and R. J. Mammone, “Optimal prun-
ing of neural tree networks for improved generaliza-
tion,” in Proc. Int. Joint Conf. on Neural Networks
(Seattle, 1991) Vel. II, pp. 219-224.

T. Sanger, “Basis-function trees as a generaliza-
tion of local variable selection methods for function
approximation,” in Advances in Neural Information
Processing System 3, eds. R. P. Lippmann, J. E.
Moody and D. S. Touretzky (Morgan Kaufmann,
San Mateo, 1991) pp. 700-706.

T. Samad, “Backpropagation improvements based
on heuristic arguments,” in Proc. Int. Joint Conf.
on Neural Networks (Washington D.C., 1990) Vol. I,
pp. 565-568.

R. Scalero and N. Tepedelenlioglu, “A fast algo-
rithm for neural network,” in Proc. Int. Joint Conf.
on Neural Networks (Washington D.C., 1990) Vol. I,
T15-718.

D. V. Schriebman and E. M. Norris, “Speeding up
backpropagation by gradient correlations,” in Proc.
Int. Joint Conf. on Neural Networks (Washington
D.C., 1990) Vol. I, pp. 723-726.

C. L. Scofield, E. L. Reilly, C. Elbaum and L.
N. Cooper, “Pattern class degeneracy in an unre-
stricted storage density memory,” in Neural Infor-
mation Processing Systems, ed. D. Z. Anderson
(New York, 1988) pp. 674-682.

. C. L. Scofield and D. L. Reilly, “Into silicon: Real

)]

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

time learning in a high density RBF neural net-
work,” in Proc. Int. Joint Conf. on Neural Networks
(Seattle, 1991) Vol. I, pp. 551-556.

I Sethi, “Entropy nets: From decision trees to
neural networks,” in Proc. of IEEE 78 (1990)
pp. 1605-1613.

I. Sethi and M. Otten, “Comparison between en-
tropy net and decision tree classifiers,” in Proc. Int.
Joint Conf. on Neural Networks (San Diego, 1990)
Vol. I11, pp. 63-68.

S. Shah and F. Palmieri, “MEKA-a fast local al-
gorithm for training feedforward neural networks,”
in Proc. Int. Joint Conf. on Neural Networks (San
Diego, 1990) Vol. III, pp. 41-46.

J. F. Shepanski, “Fast learning in artificial neu-
ral systems: Multilayer perceptron training using
optimal estimation,” in Proc. IEEE Int. Conf. on
Neural Networks (San Diego, CA 1988) Vol. I,
pp. 465-472.

J. S. Shawe-Talor, “Linear programming algorithm
for neural networks,” Neural Networks 3, 575-582
(1990).

Y. Shin and J. Ghosh, “The Pi-Sigma network:
An efficient high order neural network for pattern
classification and function approximation,” in Proc.
Int. Joint Conf. on Neural Networks (Seattle, 1991)
Vol. I, pp. 13-18.

P. A. Shoemaker, M. J. Carlin and R. L.
Shimabukuro, “Backpropagation learning with
trinary quantization of weight updates,” Neural
Networks 4, 231-241 (1991).

P. A. Shoemaker, “A note on least-square learn-
ing procedures and classification by neural network
models,” IEEE Trans. Neural Networks 2, 158-160
(1991).

J. Sietsma and R. J. F. Dow, “Neural net prun-
ing — why and how,” in Proc. IEEE Int. Conf.
on Neural Networks (San Diego, CA 1988) Vol. I,
pp. 333-335.

J. Sietsma and R. J. F. Dow, “Creating artifical
neural networks that generalize,” Neural Networks
4, 67-79 (1991).

F. M. Silva and L. B. Almeida, “Acceleration
techniques for the backpropagation algorithm,”
in Lecture Notes In Computer Sci., 412 (1990)
pp. 110-119.

S. Singhal and L. Wu, “Training Feedforward
networks with the extended Kalman filter,” in
Advances in Neural Information Processing Sys-
tems, ed. D. Touretzky (Morgan Kaufmann, 1989)
pp- 133-140.

S. A. Solla, E. Levin and M. Fleisher, “Accelerated
learning in layered neural networks,” Compl. Syst.
2, 625-639 (1988).

F. J. Solis and J. B. Wets, “Minimization by random
search techniques,” Math. of Operations Res. 6, 19-
30 (1982).

J. Song and M. H. Hassoun, “Learning with hid-
den targets,” in Proc. Int. Joint Conf. on Neural
Networks (San Diego, 1990) Vol. 111, pp. 93-98.

D. F. Specht, “Probabilistic neural networks,” Neu-
ral Networks 3, 109-118 (1990).

210.

211.

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

Advances on Supervised Learning Techniques 289

D. F. Specht, “Probabilistic neural networks and
the polynomial Adaline as complementary tech-
niques for classification,” IEEE Trans. Neural Net-
works 1, 111-121 (1990).

M. Stinchcombe and H. White, “Universal approxi-
mation using feedforward networks with nonsigmoid
hidden layer activation functions,” in Proc. Int.
Joint Conf. on Neural Networks (Washington D.C.,
1989) Vol. I, pp. 613-617.

M. Stinchcombe and H. White, “Approximation
and learning unknown mappings using multilayer
feedforward networks with bound weights,” in Proc.
Int. Joint Conf. on Neural Networks (San Diego,
1990) Vol. III, pp. 7-15.

K. Stokbro, D. K. Umberger and J. A. Hertz,
“Exploiting neurons with localized receptive fields
to learn chaos,” preprint 90/28 S, Nordita,
Copenhagen, Denmark (1990).

G. Z, Sun, Y. C. Lee and H. H. Chen, “A novel
net that learns sequential decision process,” in
Neural Information Processing Systems, ed. D. Z.
Anderson. (New York, 1988) pp. 760-766.

N. Tishby, E. Levin and S. Solla, “Consistent
inference of probabilities in layered networks: Pre-
dictions and generalization,” in Proc. Int. Joint
Conf. on Neural Networks (San Diego, 1989) Vol. II,
pp. 403-409.

T. Tollenaere, “SuperSAB: Fast adaptive back
propagation with good scaling properties,” Neural
Networks 3, 561-573 (1990).

F. S. Tsung, G. W. Cottrell and A. I. Selver-
ston, “Some experiments on learning stable network
oscillations,” in Proc. Int. Joint Conf. on Neural
Networks (San Diego, 1990) Vol. I, pp. 169-174.

P. E. Utgoff, “Perceptron trees: A case study in
hybrid concept representations,” Connect. Sci. 1,
377-391 (1989).

T. P. Vogl et al., “Accelerating the convergence
of the backpropagation method,” Biol. Cybern. 59,
257-263 (1988).

A. Von Lehman et al., “Factors influencing learn-
ing by backpropagation,” in Proc. IEEE Int. Conf.
on Neural Networks (San Diego, CA 1988) Vol. I,
pp. 335-341.

Y. Wada and M. Kawato, “Estimation of generaliza-
tion capability by combination of new information
criterion and cross validation,” in Proc. Int. Joint
Conf. on Neural Networks (Seattle, 1991) Vol. II,
pp. 1-6.

E. A. Wan, “Temporal back for FIR neural nets,”
in Proc. Int. Joint Conf. on Neural Networks (San
Diego, 1990) Vol. I, pp. 575-580.

E. A. Wan, “Neural Network classification: A
Bayesian interpretation,” IEEE Trans. Neural Net-
works 1, 303-305 (1990).

X. Wang, “Period-doublings to chaos in a simple
neural networks,” in Proc. Int. Joint Conf. on Neu-
ral Networks (Seattle, 1991) Vol. II, pp. 333-339.
R. L. Watrous, “Learning algorithms for con-
nectionist networks: Applied gradient methods of

290

226.

227.

228.
. 229.
230.
231.

232.

233.
234.

235.

236.

237.

238.

239.

L. Xu

nonlinear optimization,” in Proc. IEEE Int. Conf.
on Neural Networks (San Diego, CA. 1987) Vol. II,
pp. 619-627.

P. D. Wasserman, Neural Computing: Theory and
Practice (Van Nostrand Reinhold, 1989).

A. S. Weigend, D. E. Rumelhart and B. A.
Huberman, “Generalization by weight-elimination
applied to currency exchange rate prediction,” in
Proc. Int. Joint Conf. on Neural Networks
(Seattle, 1991) Vol. I, pp. 837-841; Advances in
Neural Information Processing System 8, eds. R.
P. Lippmann, J. E. Moody and D. S. Touretzky
(Morgan Kaufmann, San Mateo, 1991) pp. 875-882.
M. K. Weir, “A method for self-determination of
adaptive learning rates in back propagation,” Neu-
ral Networks 4, 371-379 (1991).

P. J. Werbos, “Beyond regression: New tools for
prediction and analysis in the behavioral science,”
Ph. D. Thesis, Harvard University (1974).

P. J. Werbos, “Generalization of backpropagation
with application to a recurrent gas market model,”
Neural Networks 1, 339-356 (1988).

P. J. Werbos, “Neural Networks for control and
system identification,” in Proc. of the 28th Conf.
on Decision and Control (1989) pp. 260-265.

P. J. Werbos, “Backpropagation and neural con-
trol: A review and prospectus,” in Proc. Int. Joint
Conf. on Neural Networks (San Diego, 1990) Vol. I,
PP. 209-216.

N. Weymaere and J. Martens, “A fast robust learn-
ing algorithm for feedforward neural networks,”
Neural Networks 4, 361-369 (1991).

H. White, “Learning in artificial neural networks: A
statistical perspective,” Neural Comput. 1, 425-464
(1989).

H. White, “An additional hidden unit test for
neglected nonlinearity in multilayer feedforward
networks,” in Proc. Int. Joint Conf. on Neural Net-
works (San Diego, 1990) Vol. II, pp. 451-455.

D. Whitley and G. Hanson, “Optimizing neural net-
works using faster, more accurate genetic search,”
in Proc. 3rd Conf. on Genetic Algor. (Arlington,
1989) pp. 391-396.

D. Whitely and C. Bogart, “The evolution of
connectivity: Pruning neural networks using genetic
algorithm” in Proc. Int. Joint Conf. on Neural Net-
works (Washington D.C, 1990) Vol. I, pp. 134-137.

A. P. Wieland, “Evolving neural network control-

lers for unstable system,” in Proc. Int. Joint
Conf. on Neural Networks (Seattle, 1991) Vol. II,
pp. 667-673.

B. Widrow, “Generalization and information
storage in networks of Adaline ‘neuron’,” in Self-
Organizing Systems 1962, eds. M. Yovitz, G. Jacobi
and G. Goldstein (Spartan Books, Washington D.
C., 1962).

240.

241.

242.

243.

244.

245.

246.

247.

248.

249.

. 250.

251.

252.

253.

. 254,

B. Widrow, “30 years of adaptive neural networks:
Perceptron, madaline and backpropagation,” in
Proc. of IEEE 78 (1990) pp. 1415-1442.

R. J. Williams and D. Zipser, “A learning algorithm
for continuously running fully recurrent neural net-
works,” Neural Comput. 1, 270-280 (1989).

L. Xu, “Adding learned expectation into the learn-
ing procedure of self-organizing maps,” Int. J. Neu-
ral Syst. 1, 269-283 (1990).

L. Xu and K. Gao, “A single neural unit can beat
XOR problem: A neural net consisting of units with
a new type of activation function,” in Proc. Int.
Joint. Conf. on Neural Networks (Beijing, 1992).
L. Xu, A. Krzyzak and C. Suen, “Associative switch
for combining multiple classifers,” in Proc. Int.
Joint Conf. on Neural Networks (Seattle, 1991).
Vol. I, pp. 43-48.

L. Xu, A. Krzyzak and E. Oja, “A neural net for
dual subspace pattern recognition methods,” Int.
J. of Neural Syst. 2, 169-184 (1991).

L. Xu, E. Oja and C. Y. Suen, “Modified Hebbian
learning for curve and surface fitting,” Neural Net-
works 5, 441-457 (1992).

L. Xu, Adam Krzyzak and E. Oja, “Rival penalized
competitive learning for clustering analysis, RBF
net and curve detection,” to appear in IEEE Trans.
Neural Networks (1991).

K. Yamada et al., “Handwritten numeral recog-
nition by multilayered neural network with im-
proved learning algorithm,” in Proc. Int. Joint
Conf. on Neural Networks (San Diego, 1990) Vol. II,
PP. 259-266. :

K. Yamada, “Multifont alpha-numeric recognition
using multilayer neural networks with a rejection
function,” in Proc. of Vision Interface’91 (1991).
K. Yamada, “Learning of category boundaries based
on inverse recall by multilayer neural network,” in
Proc. Int. Joint Conf. on Neural Networks (Seattle,
1991) Vol. II, pp. 7-12.

Y. Yao and W. J. Freeman,, “Model of biological
pattern recognition with spatially chaotic dynam-
ics,” Neural Networks 3, 153-170 (1990).

Y. H. Yu, “Descending epsilon in backpropagation:
A technique for better generalization,” in Proc. Int.

“Joint Conf. on Neural Networks (San Diego, 1990).

Vol. 111, pp. 167-172.

A. L. Yuille and N. M. Grzywacz, “A mathematical
analysis of the motion coherence theory,” Int. J. of
Computer Vision 3, 155-175 (1989).

Y. Zhao, “Projection pursuit learning,” in Proc.
Int. Joint Conf. on Neural Networks (Seattle, 1991).
Vol. I, pp. 869-874.

