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Abstract—The Expectation-Maximization (EM) algorithm is an iterative approach to maximum likelihood
parameter estimation. Jordan and Jacobs recently proposed an EM algorithm for the mixture of experts architecture
of Jacobs, Jordan, Nowlan and Hinton (1991) and the hierarchical mixture of experts architecture of Jordan and
Jacobs (1992). They showed empirically that the EM algorithm for these architectures yields significantly faster
convergence than gradient ascent. In the current paper we provide a theoretical analysis of this algorithm. We show
that the algorithm can be regarded as a variable metric algorithm with its searching direction having a positive
projection on the gradient of the log likelihood. We also analyze the convergence of the algorithm and provide an
explicit expression for the convergence rate. In addition, we describe an acceleration technique that yields a

significant speedup in simulation experiments.

Keywords—Supervised learning, Statistical models, Maximum likelihood, EM algorithm, Convergence rate,

Mixture models, Hierarchical models, Optimization.

1. INTRODUCTION

Although neural networks are capable in principle of
representing complex nonlinear functions, the time
required to train a complex network does not always
scale well with problem size and the solution obtained
does not always reveal the structure in the problem.
Moreover, it is often difficult to express prior
knowledge in the language of fully connected neural
networks. Achieving better scaling behavior, better
interpretability of solutions, and better ways of
incorporating prior knowledge may require a more
modular approach in which the learning problem is
decomposed into subproblems. Such an approach has
been used with success in the statistics literature and
the machine learning literature, where decision tree
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algorithms such as CART and ID3 and multivariate
spline algorithms such as MARS have running times
that can be orders of magnitude faster than neural
network algorithms and often yield simple, inter-
pretable solutions (Breiman et al., 1984; Friedman,
1991).

A general strategy for designing modular learning
systems is to treat the problem as one of combining
multiple models, each of which is defined over a local
region of the input space. Jacobs et al. (1991)
introduced such a strategy with their “mixture of
experts” (ME) architecture for supervised learning.
The architecture involves a set of function approx-
imators (“expert networks’”) that are combined by a
classifier (“‘gating network™). These networks are
trained simultaneously so as to split the input space
into regions where particular experts can specialize.
Jordan and Jacobs (1992) extended this approach to a
recursively defined architecture in which a tree of
gating networks combines the expert networks into
successively larger groupings that are defined over
nested regions of the input space. This “hierarchical
mixture of experts” (HME) architecture is closely
related to the decision tree and multivariate spline
algorithms.

The problem of training a mixture of experts
architecture can be treated as a maximum likelihood
estimation problem. Both Jacobs et al. (1991) and
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Jordan and Jacobs (1992) derived learning algorithms
by computing the gradient of the log likelihood for
their respective architectures. Empirical tests revealed
that although the gradient approach succeeded in
finding reasonable parameter values in particular
problems, the convergence rate was not significantly
better than that obtained by using gradient methods
in multilayered neural network architectures. The
gradient approach did not appear to take advantage
of the modularity of the architecture. An alternative
to the gradient approach was proposed by Jordan
and Jacobs (1994), who introduced an Expectation-
Maximization (EM) algorithm for mixture of experts
architectures. EM is a general technique for
maximum likelihood estimation that can often yield
simple and elegant algorithms (Baum et al., 1970;
Dempster, Laird & Rubin, 1977). For mixture of
experts architectures, the EM algorithm decouples
the estimation process in a manner that fits well with
the modular structure of the architecture. Moreover,
Jordan and Jacobs (1994) ob:erved a significant
speedup over gradient techniques.

In this paper, we provide further insight into the
EM approach to mixtures of experts architectures via
a set of convergence theorems.! We study a particular
variant of the EM algorithm proposed by Jordan and
Jacobs (1994) and demonstrate a relationship
between this algorithm and gradient ascent. We also
provide theorems on the convergence rate of the
algorithm and provide explicit formulas for the
constants.

The remainder of the paper is organized as
follows. Section 2 introduces the ME model. The
EM algorithm for this architecture is derived and two
convergence theorems are presented. Section 3
presents an analogous derivation and a set of
convergence results for the HME model. Section 4
introduces two acceleration techniques for improving
convergence and presents the results of numerical
experiments. Section 5 presents our conclusions.

2. THEORETICAL ANALYSIS OF AN EM
ALGORITHM FOR THE MIXTURE OF
EXPERTS ARCHITECTURE

2.1. Network Learning Based on Maximum
Likelihood Estimation

We begin by studying the nonhierarchical case. As
shown in Figure 1, the mixture of experts (ME)

! Our focus in this paper is the convergence of the EM
algorithm to (local) maxima of the likelihood function for a fixed
data set. We do not address the asymptotic convergence of these
local maxima to “true” parameter values as the number of data
points goes to infinity. For results on asymptotic convergence that
are relevant to ME architectures, see Redner and Walker (1984).
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FIGURE 1. The mixture of experts architecture. The total output
p Is the weighted sum of the expert network outputs:
1= g1t + G2r2, Where the weights are the gating network
outputs g, and g,.

architecture is comprised of K expert networks, each
of which solves a function approximation problem
over a local region of the input space. To each expert
network we associate a probabilistic model that
relates input vectors x € R" to output vectors
y € R”. We denote these probabilistic models as
follows

P(y|x,0;), j=1,2,...,K,

where the ©; are parameter vectors. Each of these
probability densities can be generally assumed to
belong to the exponential family of densities (Jordan
& Jacobs, 1994); in the current paper, however, we
restrict our analysis to Gaussian models for
simplicity. The jth expert network produces as
output a parameter vector w;

“jzfi(xaaj)7 j=]721"'7K1

which is the location parameter for the jth probability
density. In the current paper, as in Jordan and Jacobs
(1994), we treat the case in which the functions f; are
linear in the parameters. We extend our results to the
case of experts that are nonlinear in the parameters in
the Appendix.

For Gaussian probability densities P(y|x, 0;) the
location parameter m; is simply the mean. We also
associate a nonsingular covariance matrix X; with
each expert network, yielding the following probabil-
istic model for expert j

1
@m)" 5|12
x exp{—1 [y - f;(x, 8,)]"=; [y - £;(x, 6;)]}.
(1)

P(y'xv 0]) =

The ME architecture also utilizes an auxiliary
network known as a gating network, whose job it is to
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partition the input space into regions corresponding
to the various expert networks. This is done by
assigning a probability vector [g), g2,... ,gK]T to
each point in the input space. In particular, the gating
net implements a parameterized function s(x, 8) and
a normalizing function g(s). The function s is a map
from R” to RX, for each value of the parameter
vector @p, and g is a map from RX to RX. The
particular form of g used here is the softmax function

e-‘i(xx 8)

K k)
Z e’ (x, 8p)

i=1

8 =g (x, 8) = i=1L.. K (2

Note that this definition implies that the g; are
positive and sum to one.

In the current paper we focus on the case in which
the functions s is linear (cf. Jordan & Jacobs, 1994).
In this case the boundaries in the input space where
g = giv are planar and the function g can be viewed
as a smoothed piecewise-planar partitioning of the
input space.

Training data are assumed to be generated
according to the following probability model. We
assume that for a given x, a label j is selected with
probability P(j|x) = g;(x, 6p). An output y is then
chosen with probability P(y|x, 6,). Thus, the total
probability of observing y from x is given by the
following finite mixture density

(ylx, ;)

ZP_]IX

J=1

K
Z (x, 8) P(y|x, 8)). 3)

Il

A training set ¥ ={(x),y") r=1,...,N} is
assumed to be generated as an independent set of
draws from this mixture density. Thus, the total
probability of the tralmng set, for a specified set of
input vectors {x(" }, 1» 18 given by the following
likelihood function

L= PO = [[ PO (@)

t=1

N K
ab | DIFACND

t= 1

1 j=
x P(y"x", 6)). (5)

The learning algorithms that we discuss are all
maximum likelihood estimators. That is, we treat
learning as the problem of finding parameters @y, 6;,
and ¥; to maximize L, or, more conveniently, to
maximize the log likelihood / =In L
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N X
1(97 @/) = Z In Z gj(x('), OO)P(Y(‘) |X('), 0}'):
= =
where O = [00, 01,...,01(, E], Ez,...,EK]T.

Given the probability model in eqn (3), the
expected value of the output is given as follows

p=Ely|x] =) g(x, 0,
j=1

This motivates using the weighted output of the
expert networks as the total output of the ME
architecture (cf. Figure 1).

The model in eqns (3) and (1) is a finite Gaussian
mixture model. It is interesting to compare this model
to a related Gaussian mixture model that is widely
studied in statistics; that is, the model

X
P(x)=3_ o;P;(x|9), Za,—l (6)

The difference between these models is clear: the a;’s
in eqn (6) are independent of the input vectors, where
the g;’s in eqn (3) are conditional on x (they represent
the probabilities P(j|x)). Thus, model (6) represents
an unconditional probability, appropriate for un-
supervised learning, whereas model (3) represents a
conditional probability, appropriate for supervised
learning.

There is another model studied in statistics, the
switching regression model (Quandt & Ramsey, 1972,
1978; De Veaux, 1986), that is intermediate between
model (6) and model (3). The switching regression
model is given as

P(y[x) =AP(y|x, 8)+ (1 - ) P(y|x, 8), (7)
where the P(y|x, 0;) are univariate Gaussians and
the mean of each Gaussian is assumed to be linear in
x. This model assumes that the data pair {y, x} is
generated from a pair of linear regression models
through a random switch that turns to one side with
probability A and to the other side with probability
1 — A. This model can be generalized to allow for a
multinomial switch

PO = 3 aPylx, 0) ®)

where o; > 0, Z -1 a;=1, and P(y|x, 8;) is given
by eqn (1). The dnﬁerence between switching
regression and the ME model is that the switching
regression model assumes that the setting of the
switch is independent of the input vector. This
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assumption does not allow for piecewise variation in
the form of the regression surface; all of the
regression components contribute throughout the
input space. Switching regression can be viewed as
one end of a continuum in which the overlap in the
regression components is total; decision tree models
(e.g., Breiman et al., 1984) are the other end of the
continuum in which the overlap is zero. The ME
model interpolates smoothly between these extremes.

2.2. An EM Algorithm for Training the Mixture of
Experts

In many estimation problems the likelihood is a
complicated nonlinear function of the parameters.
Parameter estimation in such cases usually involves
some sort of numerical optimization technique,
typically gradient ascent. An alternative to gradient
techniques, applicable in many situations, is the EM
algorithm (Baum et al., 1970; Dempster et al., 1977).
EM is based on the idea of solving a succession of
simplified problems that are obtained by augmenting
the original observed variables with a set of
additional “hidden” variables. Unconditional mix-
ture models are particularly amenable to the EM
approach (Redner & Walker, 1984) and, as observed
by Jordan and Jacobs (1994), the conditional mixture
of experts model is also amenable to an EM
approach.

Given an observed data set %, we augment % with
a set of additional variables %, called “missing” or
“hidden” variables, and consider a maximum like-
lihood problem for a ‘“complete-data” set
¥ ={%, Umis} (cf. Little & Rubin, 1987). We
choose the missing variables in such a way that the
resulting “complete-data log likelihood,” given by
1.(©,Z)=InP(¥, ¥uis|O), is easy to maximize
with respect to ©. The probability model
P(%, ¥ mis|©) must be chosen so that its marginal
distribution across ¥, referred to in this context as
the “incomplete-data™ likelihood, is the original
likelihood

P(¥|0) = j P(¥, ¥ ris |O)dY . (9)

In deriving an update tc the parameters based on the
complete data log likelihood, we first note that we
cannot work directly with the complete data log
likelihood, because this likelihood is a random
function of the missing random variables #;;. The
idea is to average out %, that is, to maximize the
expected  complete  data log  likelihood
Eg_[In P(¥, ¥mis|O)). This idea motivates the EM
algorithm.

The EM algorithm is an iterative algorithm
consisting of two steps:

M. I. Jordan and L. Xu

o The Expectation (E) step, which computes the
following conditional expectation of the log
likelihood

0(0]|06%) = Ey_{In P(2]0)|%, 6%}
= J P(¥is|%, 00 In P(Z|O)d s (10)

where O is the value of the parameter vector at
iteration k.
e The Maximization (M) step, which computes

0%t — arg max o©|e%). (11)

The M step chooses a parameter value that
increases the Q function; the expected value of the
complete data log likelihood. Dempster et al. (1977)
proved that an iteration of EM also increases the
original log likelihood /. That is,

1%V @) > 1(6%); @).

Thus, the likelihood / increases monotonically along
the sequence of parameter estimates generated by an
EM algorithm.

Although in many cases the solution to the M step
can be obtained analytically, in other cases an
iterative inner loop is required to optimize Q.
Another possibility is to simply increase the value
of Q during the M step

g©“"eY) > g 6" (12)

by some means, for example, by gradient ascent or by
Newton’s method. An algorithm with an M-step
given by eqn (12) is referred to as a generalized EM
(GEM) algorithm (Dempster et al., 1977).

For the ME architecture we choose the missing
data to be a set of indicator random varables
Uois = {1, j=1,...,K, t=1,...,N} with

model given by eqn (1), (13)

1 ify®is generated from the j*

) _

I =
0 otherwise

and

K
Z I}') =1, for each t.
=

We assume that the distribution of the complete data
1s given as
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N

PZ10) =T I [x". 00)P(y1x?, 0)))"".
j=1

It is easy to verify that this distribution satisfies eqn
®.

From eqn (10), we also obtain

0(816%) = Ey_{n P(2]0)|®, 0W)
N K %
=3 > K9 g (x, 8) P(y? |x0, @))]
t=1 j=1
N X "
=3 ST HP() g (x)
=1 j=1
Z RO (1) In Py |x, 0))
Het Z K1) In P(y? |x®, 0),  (14)
=1
where

K1) = E[1|®, 0®] = P(j|x, y)

& (x", 8) Py |x, g®)
S o w5 (19)
2.‘=1 £i(x, 0,7) P(y? |x(, 6;")

where P(j|x1), y() denotes the probability that the
pair {x(), y} comes from the jth probability model.
Note that we always have h ) (t) > 0.

With the Q function in hand we now investigate
the implementation of the M step. From eqns (14),
(1) and (2), we have

g (x® 0)
k) & » Yo
b (1) T/Ej(x('), 6)

3|3
Il
M=

(=]
~
[}
.
]

W
S~
I

i
M=
M~
\}f.\

x
=
| r—— |
e
|
M=
)

%
E
3|
| S |

N K * Bs;
=2 2 W0 - g, 00) ok, (16)

...
I

~.
Il

YIS
I

(=
&

il

Py ix® @
*® ,)3 (¥ alox ,OJJ/P(Y(:)“(:)Y 0)
J

17 (x, 8,)
(k) 7

I
M=
=

- f;’(x(l)v 01)17 (17)

W

and
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90 N, OP(YP|x1, 8;) () [x(0)
a):,—;hj (I)T— P(y"|x » 6))

1 & _
=5 2 KOz - [y?
=1

x [y — £,(x@, 6,)]7};". (18)

—f;(x, 6;))

By letting

aQ _
550 =0

’ E’_=E}(hﬂ)

we obtain the update for the covariance matrices

Z;lwl)

=z

Z P SL AU 1LY
AP 1=

x [y~ £ (x?, 9))". (19)

Assuming that the training set # is generated by a
mixture model, we note that when the sample number
N is sufficiently large (relative to the dimension of y),
the space spanned by the N vectors [y — f;(x(), 6, ;)]
will be of full dlmcnswn with probablllty one.
Recalling that h (t) > 0 we observe that when the
sample number N is sufficiently large the matrices
E(k D are therefore positive definite with probability
one
Next, by letting

we obtain

3fT(x(” s Oj )

o m j
(1) -2
; ! 99,

x () 'y - £,(x, 8,)] =0, (20)

which we can solve explicitly given our assumption
that the expert networks are linear

0’(‘k+| (R(k)) 1 (k) (21)
where
k a k k
¢’ =Y K1 x,=P)yo, (22)
t=1
RY = Z HP () X, (2) X7, (23)
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and
M 0 0 (10 - - 0
T 0 x» 0 -~ 0 01 0 -0
1: . . . . .
0 0 M0 - - 0 1
(24)

Note that Rj(.k) is invertible with probability one when
the sample size N is sufficiently large.

Finally, let us consider the update for 8,. Jordan
and Jacobs (1994) observed that the gating network is
a specific form of a generalized linear model, in
particular a multinomial logit model (cf. McCullagh &
Nelder, 1984). Multinomial logit models can be fit
efficiently with a variant of Newton’s method known
as iteratively reweighted least squares (IRLS). For the
purposes of the current paper, we simply write the
generic form of a Newton update and refer the reader
to Jordan and Jacobs (1994) for further details on
IRLS. Note also that Jordan and Jacobs (1994)
assume that the inner loop of IRLS fitting runs to
completion. In the current paper we address only the
case in which a single IRLS step is taken in the inner
loop. The form of this IRLS step is also generalized
to allow a learning rate parameter.?

The update for the gating network parameters is
obtained as follows. Denote the gradient vector at
iteration k as

—ZN: ih‘”(t) Jx, 00) 22 (s
t=1 j=1 aﬂf)k),

and the Hessian matrix at iteration k as

®) EN: ZK ) 0 aky 95 05
Rg = - X 0 )[1 gj(x s 00 )] _600 —-—aog.
=1 j=1

(26)
Then the generalized IRLS update is given as follows
05" = 0 + 7, (RY) ™' e, (27)

where ~, is a learning rate.
In summary, the parameter update for the model
eqn (3) is given as follows.

Algorithm 1

1. (The E step): Compute the h(k)( ) s by eqn (15).
2. (The M step): Compute EJ( +h by eqn (19),

2 Thus, the algorithm that we analyze in this paper is, strictly
speaking, a GEM algorithm.

M. I. Jordan and L. Xu

compute 0("“) by eqn (27), and also compute
o ),j—l ., K by eqn (21).

Before closing this section, let us return to the
switching regression model [eqn (8)]. Following the
same procedure as above, we obtain the following
EM algorithm for switching regression.

Algorithm 2
1. (The E step): Compute the h](.k)(t)’s by

(k)P( ’|x’) e(k))
X, o Py X0, 81).

A1) = (28)

2. (The M step): Compute E](-k“) by eqn (19), and let
N
ot = Z : (29)

Obtain 91(.’”1), j=1,...,K in the same manner as
for model eqn (3).

We see that the EM algorithm for switching
regression is simpler, because the ajk)’s are not
constrained through a common parameter @p as in

the ME model.

2.3. Theoretical Convergence Results

In this section we provide a number of convergence
results for the algorithm presented in the previous
section. We study both the convergence and the
convergence rate of the algorithm. In the Appendix
we extend these results to a number of related
algorithms.

We begin with a convergence theorem that
establishes a relationship between the EM algorithm
and gradient ascent.

THEOREM 1. For the model given by eqn (3) and the
learning algorithm given by Algorithm 1, we have:

(k41 k ol
00+),9(())=P§k)_

(e
al
k) _ gk _ pty 9 J=1...,K,
’ ! ' 08, 8,-0%
ol " ol
vec[Ej(- + )] [2( )] E 5 vec[E] ,J=1...,K,
i) 5=t

(30)

where | = In L is given by eqns (5), (3) and (1), and
“vec[A]” denotes the vector obtained by stacking the
column vectors of the matrix A.
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Moreover, assuming that the training set ¥ is
generated by the mixture model of eqns (3) and (1)
and assuming that the number N is sufficiently lar e
we have that Pg Y isa positive definite matrix, and P; ]
PE J=1,....K are positive definite matrices wzth
probability one. Specifically, they take the following
values:

(i) P,(; —'yg(R(k) w1th R %zven by egn (26)

(ii) For j=1,... K, P with R
given by eqn (23)

(iii) Forj=1,...,K

2

N *
IO
t=1

k k k
Py = = @ 5 (31)

where “® " denotes the Kronecker product. Foram x n
matrix A and g x m matrix B, the Kronecker product
A ® B is defined as

aB apB - a,B

ayB  an - ayB
A®B= . .

amB anB - am,B

Proof. From eqns (5), (3), and (1), for / =1n L, we
obtain the following derivatives:

I >
600 ero{,‘” =1 j=1
s, 80) Py x, 6)
=L 2 (x0, 00) Py x0, 6P)
9g; (x, 89)/00, lgy=g
X
g (x(r), ogk))
N X
Os;
= KO (1) — g, (x0, 8Py 25
2 Z[ ()=, (x, )] 5L 1, g
(32)
ﬂ = z g) (x“)’ oék))P(y(l) |x(')1 ojk))
0 loge =1 LE 20, 89) Py [x00, 0"

APy |x®, 0,)/08;|, g
x )
P{y0[x®, o)
T ) .
_ 30 o A )
4 aej 6,="

) —f(x, 8%y, (33)
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i{ x(t) o(k))P(y(t)Ix(l) e(k)) }

g=gb =l | &i(xW, o(k))P (¥ | x®, o(k))
&
AP (y® |x®, 9](_ ) )/3%;| 5=5t
Py |x0, 8

Z h(k) E(k)
x {z}*’ -9 - £;(x0, 8%
x [y — £;(x, 8T} (34)

al
E5)

We now prove points (i), (ii) and (iii).

(1) Companng eqn (32) with eqn (27? it follows
that P( ) = 'yg(R(k)) . To show that Pg‘ is positive
deﬁmte, we show that ng) is positive definite.> For
an arbitrary vector u, from eqn (26) we have

T pk)
uRgu

= i Z gj(xm k))[l
IDWLIR I

r s 3sj

0 a®
(X 0 )] 60 60T

“~.
Il

- g (x®, ng))vTv >0,

because g;(x), 8Y)[1 — g;(x, 8%)] > 0. Equality
holds in the above equation only when
v = [05;,/00]lu =0 for any u, which is impossible.
Thus, we have established that Rg) [and thus also
(R( )) ] is positive deﬁmte

(ii) Let c!(- and R ¢ ) be given by eqns (22) and (23).
From eqgn (33), we obtain

ol
- R |
7 lg,—g®

Furthermore, it follows from eqn (21) that

(k+1) __ alk) (k)y-1 (k) (k)
9; =0" +(R}") ¢ — 6

=08 + (R) e — (RM)eM].  (39)
That 1s, we have

01

(k+1} (k) (k) —
6" =0 + (R{)™
7 lg=g®

and P = (RW)~.

4 A matrix 4 is positive definite iff A~! is positive definite.
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We now prove that R}k) is positive definite. For an
arbitrary vector u, from eqn (21) we have

N

=3 B’ x, (=)
t=1
N

=S e (EP)y v 0
r=1

T p k)
uRj u

where v = X Tu. From the note immediately following
eqn (15), we know that E (k) given by eqn (19) is
positive definite and mvertlble for each k with
probability one. Thus, with probability one, the
equality of the above equation holds only when
v =0 for any u, whlch is impossible. Thus, we have
established that R ) [and thus also R ) 1 is
positive definite w1th probability one.

(iii) We consider egn (19) for updating 2( This
equation can be expanded as

1 N
2(_k+l] _ 2(lc) + (k)(,)[y(t) (x(') 9)]
’ T ) Z ’
x [y - 6,6, )7 - £
)Y
_ 2(}:) E("), 36
IS AVATIS )
where
1 & -
EPILA BOOENEY - Y - 5, o))
x [y - £, )"} (2) !
It follows from eqn (34); that
ol
Vg, = o
i3 "
That is, we have
k
Bk — 2( ) ol nik)
’ Y "m() 0 Vel |y, g }

Utilizing the identity vec[ABC] = (C” ® 4) vec|[B], we
obtain

2
S al0) ’

vec[Z‘(k“ ]=

M. I Jordan and L. Xu
Thus,

2

[L3] (k) (k)

5, = (& ®%)
PN eI ’

Moreover, for an arbitrary matrix U, we have

vec[U]T(E® & £M) vec|U] = tr(EP UEPUT)

= u(EPU)(EP V) = vec[EP U] vec=F U] > 0

where the equality holds only when 2(") U = 0, which
is impossible w1th probability one because U is
arbitrary, and 2 is, as indicated above, positive
definite with probablllty one. Thus, we have
established that P2 is positive definite with
probability one. W

Theorem 1 can be used to establish a relationship
between the step taken by the EM algorithm and the
direction of steepest ascent. Recall that for a positive
matrix B, we have

aiT
'56‘B56>0

This implies the following corollary.

COROLLARY ). Assume that the training set
{(x, y), t=1,...,N} comes from the mixture
model of eqns (3) and (1) and that N is sufficiently
large. With probability one, the search direction of the
EM algorithm has a positive projection on the gradient
ascent searching direction of | = In L.

That is, the EM algorithm can be viewed as a
modified gradient ascent algorithm for maximizing
!=InL. From Theorem 1, B changes with the
iteration step k, thus, the EM algorithm can also be
regarded as a variable metric gradient ascent
algorithm. This algorithm searches in an uphill
direction, so if the learning rate is appropriate, the
searching process will converge to a local maximum
or a saddle point of the likelihood /=In L.

Similar results have been obtained for unsuper-
vised mixture models by Xu and Jordan (1993) and
for Hidden Markov models by Baum and Sell (1968).
See Xu and Jordan (1993) for further discussion of
the relationships between these theorems.

We now establish the convergence of the para-

meters ©*%). We also provide convergence rates for
both /(%)) and ©® .

THEOREM 2. Assume that the training set % is
generated by the mixture model of eqns (3) and (1)
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and that N is sufficiently large. Assume further that
Xy,..., Xk are diagonal and let vy, be a vector
consisting of the diagonal elements of %;.

Let us denote

9: [03-, B,T,...,O;, Vgl,...,Vgl]T
P =diag[P®, P\,... P, Ps,,..., Pg],

and

H(©) = ;’(gg),.

Assume that on a given domain Dg

(i) 8g;(0,)/08,00], 8, (8;)/00;00], j=1,. ...
K, i=1,...,m exist and are continuous;
(ii) the Hessian matrix H(©) is negative definite;
(iii) O* is a local maximum of I{©), and ©* € Dg.

Then with probability one,

(1) Letting —M, —m (here M > m > 0) be the
minimum and maximum eigenvalues of the negative
definite matrix (PV/)TH(©)(P'?) (or equivalently
the minimum and maximum eigenvalues of PH(©),

because ~we have PHe=)Xe from (PV/%)7
HPV%e = )e), we have
1©%) — 1(8%) < r*K©") - 1(6)), (37)

1P-72(@% — 0| < |r [ \/51(6') ~ (Gl 69

where

M\ m?
—1-(1=-=)5 <1
r (l 2) <1

We also have 0 < |r| < 1 when M < 2.
(2) For any initial point
limg_.,,0* =O* when M < 2.

O € Dg,

Proof. As indicated earlier, when the training set
{x®, y), t=1,...,N} is generated from the
mixture model of eq)ns (3) and (1) and N is
sufficiently large, E](.k remains positive definite
during the learning process. Thus, under the
condition (i), it follows from eqns (5), (3) and (1)
that H(O) exists and remains continuous on Dg.
Expanding the log likelihood in a Taylor expansion,
we have
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r 01(©)
(7,% ]
o-o’

+1(0@-0)H(O +£(0-0)0-0)

1(8) - [(8") = (0 - ©)

with 0 < £ < 1. Because

21(®)

00

we have

1(0) - 1(0") =1 (0 -6)HO +£(0-6"))0 -6,
(39)

From Theorem 1 we know that P is positive
definite. Furthermore, from condition (ii), H(©) is
negative definite on Dg. This implies that P!/2 exists
and (PY2)TH(O)(P'7) is negative definite on De.
Utilizing the Rayleigh quotient we obtain that for
any u

~Milul? <u"(PY)TH(@)(P)u < —m|u|?.  (40)
Substituting eqn (40) into eqn (39), we obtain

1(8)-1(87) =1 (0 - ©)7(P~1)T(P1/2)T

x HO +£(©0—-07)P/2Pp 2@ -0%) (41)
» M -1/2 (12
HO) - 1(07) 2 ——|[PF/HOe-en.  (42)

Moreover, we have

~m||PT'© -0’

e _ae)
: (O_e) |:69 B 06 9=0']
> -||p 252 1m0 - 001

Thus,
B 1 91(©)
2 OF RISV
1P 00 < | p 2)

Together with eqn (42), we obtain

2 2
| BR <% ey - ney. )

On the other hand, we also have
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- 01(0)
1(©) - 1(0%) = (6 — ™))" 26

o-e%
+i@-0"THOY + ¢ (6 -0%) e -e®)

with 0 < ¢’ < 1. By Theorem 1, we know that for the
EM algorithm,

ok _g® _p 91(8)

o=e"

Utilizing this result in the above equation, we obtain

81O |
kY _ r@®y = || pii2
1(©O%)) — 1(e™) HP %6

o=

T

1 81(©) )

+ = Pl/z____ (PI/Z)T
2 ( o0 o=0%

x HO® +¢'(0 — 0%)) p'/2

81(0)
12
x ( P )
=0

(Bl

2

44)

o—o®

Combining eqn (44) and eqn (43), we obtain
2
1(O% ) - [(@%) > — (1 - -”21) -2—1‘”;* (@) — 1(©")]

and furthermore

0+ - 110 2 [1 - (1-5) %] ue®) - )
21k

> [1 _ (1 -%) 2—}’;_} 1(80) - 1(©")].

(45)

Let r=[1-(1-M/2)2m*/M]. Multiplying

both sides of the above equation by negative one,
we obtain eqn (37). In addition, it is easy to verify
that 0 < |r| <1 when M <2 (recall that M > m).
Furthermore, it follows from eqn (40) and eqn (41)
that we have

1(O%) - 1(e") < ~ T | PO — 07|

which, by eqn (45), becomes

- Z 1P7HOW —07) | > H[1(8) - 1(67)

||P“/2(9(") _ 0:)” < lrlk/2 % [I(O‘) _ 1(90)]

M. I Jordan and L. Xu

which is just eqn (38). In addition, when M < 2,
|r| <1, we have limy_.,0% =0O* because P is
positive definite. [l

We see from this theorem that the EM algorithm
converges linearly. Moreover, the speed of conver-
gence depends on the difference between M and m:
the smaller the difference, the faster the convergence.

3. THEORETICAL ANALYSIS OF AN EM
ALGORITHM FOR THE HIERARCHICAL
MIXTURE OF EXPERTS ARCHITECTURE

3.1. An EM Algorithm for Training the Hierarchical
Architecture

The ME architecture can be viewed as an architecture
for splitting the input space into regions in which
different local functions are fit. The hierarchical
mixture of experts (HME) architecture generalizes
this idea to a nested model in which regions in the
input space are split recursively into subregions
(Jordan & Jacobs, 1992). The resulting tree-
structured architecture can be viewed as a multi-
resolution function approximator in which smoothed
piecewise functions are fit at a variety of levels of
resolution.

As shown in Figure 2, the HME architecture is a
tree. In this tree, each terminal node is an expert
network, and each nonterminal node is a root of a
subtree that itself corresponds to an HME architec-
ture. At every nonterminal node in the tree there is a
gating network that is responsible for the topmost
split of the HME architecture rooted at that node. All
of the expert networks and the gating networks in the
architecture have the same input vector x € R". In
the remainder of this section, as in Jordan and Jacobs
(1994), we consider the case in which the expert

FIGURE 2. A two-level hierarchical mixture of experts. To form a
deeper tree, sach expert is expanded recursively into a gating
network and a set of subexperts.
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networks and the gating networks are generalized
linear models. Furthermore, for simplicity, we
consider only the case in which the probability
model for the experts is Gaussian.

Let us denote a node at depth r by v, ;. This
node is the i, th daughter of the node v;; i _,. The
root node of the tree is v;. The number of branches
emitted from v, ; is denoted by K . ,. For
simplicity, we can omit i and write v; ; and
K, ;. In addition, the output of the subtree rooted
at v; ; is denoted

Ky 4

Yo i = Z g i (% 05 )i i,

b y1=1

where g;, ..., is the gating coefficient generated by
the gating network attached at v; ;. This coefficient
satisfies

K

W i
d

8. i (% 6 =1,
> .

i p1=1

for any x, where 0%
gating network.

Given a training set % = {(x®, y), t=1,...,
N}, we want to maximize the likelihood function [cf.
eqn (5)], that is,

, 1s the parameter vector of the

N
L= Py} 1) = [T P12,
=1
Expanding the probability model, we have
Ky
PO 1x7) =" g (x¥, 85) P(y"x, w)
i=1

where

(K,
> £ (x?, 85)P(yV XY, i),

=l
if v;, is a nonterminal node,

P(y(‘)lx('), Vi.) = j )

@mym2 |5, |2

x e{Al/z[y(:),f’I (xu)v °l| )]T):'.ll [ylt)_fll (xil). 0,, N} ’

if v; is a terminal node,
(46)

and recursively
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PO IXY, vy )

( Kiy. .4

Z g (%, 8 PO, v i)

i, 1=1

ifv; _, is a nonterminal node,

@m;)m2 | Zy. 4|12

xe {(-126"-1, (x, 9, .‘r)]rzal e o1, (x, 8,5}

if v; _;isa terminal node

where f;, () is the parameterized function
implemented by the expert network at terminal node
vi,..i,and 0, ;, ¥, ; are the parameters of this
expert network; P(y(') |x(’), vi,..i,) is the probability
that y® is generated from the probability model
rooted at v;, . ; when x is the input.

To derive an EM algorithm for the HME
architecture, we attach a set of indicator random
variables to each nonterminal node v;, _;

JO 1, if y"isgenerated by thesubtreerootedatv; ;,
i &7 ] 0, otherwise.

The missing data %, consists of all of the
indicator variables attached to the nonterminal
nodes throughout the tree. In addition, we denote
by @:’l“s ; the set consisting of the indicator variables
attached to the nonterminal nodes in the subtree
rooted at v;, .

We define the distribution of the complete data
F =¥, Ymis} as

P<f|e>=1£[ T g, (¥, 05) P(Z; [x9, ,)]"% (48)
i

=1 /=

where

(K, Ju
I £0in (X, 05)P (25, X9, vi5)} 2,
=1

if v;, is a nonterminal node,

x(D oy} =
P(gh'x 7vll)_ 1
@mym2|z; |2

e {172ty (x, 8, E [y -6, (<9, 8]},

\ if v; is a terminal node

(49)

and recursively
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P(Z i IxY, v )
( Ky &
) H] [gih..i,u(x, ofll,)
1=
0]
xp(gih..i,iml |x(’)7 Vi -l'rl'ru)]l'l' !

if v, , is a nonterminal node,

1
Q@m)m2|5; |2

e lT120 x0T O, (x9,0 )]),

{ if v, ; isaterminal node.

It is not difficult to verify that this distribution
satisfies eqn (9) as required.

‘We now compute the Q function as required by the
E step of the EM algorithm. From eqn (10), we
obtain

o(e|6®) i Z" h"‘>(t){1n[g x®, 8%)] + In F,,}
=1

t=1
where

h(k) E[I(l) |® e(k)]
= gil (X(‘)’ ei(k)) P(k) (y(') lx(l)’ Vi, )

(51)

oty B (0 {in[g,, (x9, 05)] +1n F,},

if v;, is a nonterminal node,
In F; =

In P(y(’) |X('), vi|)7
if v; is a terminal node

K@) = E[19 |9, 0%, 1 = 1)

iy
2un (9, 05D) PO X0, )
— i s Vi ) 52
5, £ (80, 00 POGOIND, 1)

and recursively

1!1 Fil___j,
Kl‘ -
E s Ih(k ,'i”,(t){ln g ii.. (X, 0.‘1”..',)]

+In F ik

= if v;, _; isanonterminal node,

In P(y?|x®, v, ),

\ if v, ; is a terminal node

M. 1. Jordan and L. Xu

h-(f.)A iy, (D)

=E[1Y .. 19,0% 19 =1, 1% =1,..,1P . =1

ek g1 Y T hig

.....

T e ».*.(X"’ 0‘(” ) PE(y “’IX"’ T

.....

(53)
where 03 ® . is the estimate o . at iteration k.
P(y®|x® v, ) is given by eqns (46) and (47) and

P (y) |x(' : v,-,__,,-,) means that the probability is
determined with all the parameters in the subtree
rooted at v;__; being fixed at the estimates obtained
in iteration k.

Proceeding now to the M step of the EM
algorithm, we obtain parameter updates by optimiz-
ing the Q function. If the node v, ; is a terminal
node, by setting the partial derivative of Q with
respect to ¥; . ; equal to zero, we obtain an update
for the covariance matrices

2(k+l)

Boody

Zh""(z)h,‘fg(z). LB (nx

1=1

54
YO — £, 4 &9

(x(l), oi.‘ . .i,)]x
[y(') —fi. (x('), 0;. . .i,)]T
A L ORE 0

hi

To obtain an update for the parameters of the expert
networks we differentiate Q with respect to 0;,  ; and
find that we must solve the following equation

T
i KO (OR® (1), . AP (1) of; ,(x, 8 ;)
po lllz 6.0y 39,-,4,,,-,
x T Y -6 (x9, 0, ;)] =0. (55)

In the case of linear expert networks, this equation is
a weighted least squares equation, which can be
solved as

0(k+l} _ (R ) 1 (k)

iy

where

N

8 (4% (
E KE ()n® (1)

AP (X(ER )7y,

and
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R (") Z h(") 0) h(k)

'llz

K x(EP )X
(56)

Finally, for any nonterminal node v, _,, setting
the partial derivative of Q with respect to 0 4, €qual
to zero, we have that 0% k‘:’l) is the solutlon of the
following nonlinear system

>~ HIOH

k
x B8 (=~ gi 0, (0, 05 )]

i

K L) Z

=l

as‘l lr+|
20r =0

(57)
As in the case of the one-level ME architecture [cf.
eqn (25) and eqn (27)], we obtain the following

Newton step for updating the gating network
parameters

05" = 0%, oy LRIV, (sB)

iy

where
REW, = Z KORE (0). . K (1)

|

<Y £

i =1

x(1) ﬂx(f) )

X [1 —g,-l__,,»,(x('), a-‘.(k)x)] 6:;‘(;)“) a?:lx(k) )
(59)
and
et® Z KO ORE (1. . K (1)
K .
x 3P0 - g ., x, 050, )]
b=l
253;;.@%;;- “

As in the case of the one-level architecture [cf. eqn
(27)] the algorithm in eqn (58) is essentially the same
as the IRLS algorithm suggested by Jordan and
Jacobs (1994), although we have introduced a
learning rate parameter and we restrict the update
to a single step.

In summary, the EM algorithm for the HME
architecture is given as follows.

Algorithm 3

1. (k E step): Compute the k) (0,
K@), ..., K" (1) by eqns (51), (52) and (53).
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These computations can be performed via a single
recursive pass upward in the tree.
2. (The M step): Compute the )3("“) by eqn (54),
Pute the 0 ®+1) by eqn (58) and compute the
0 k+ by eqn (56)

We can think of the E step as assigning credit
(posterior probability) to various branches of the tree
for each data point and the M step as solving
weighted least squares problems in which the weights
are given by the posterior probabilities assigned in the
E step. The updates for the gating networks simply
cache away the posteriors.

3.2. Theoretical Convergence Results

Much of the analysis developed in Section 2.2 can be
extended to cover the EM algorithm for the HME
architecture. In this subsection we extend Theorem 1
and Theorem 2 to cover the hierarchical case. The
results are given as Theorems 3 and 4, respectively.
We first compute the derivatives of the Q function

N

Zj KO (R (1) . A2 (1)

X Z [h(k) |+,(1) _gil<<-ir+l(x(‘)7 eil,)]

LS

(61)

f"Q_ - i KO ORE 1), .h2 (1)

L]

.y

aoi,. g
x Tl 0 -1 (x9, 0, L)L (62)

o ,(x", 8, ;)
x —_—

Z OV ON TN () s

X {Zi 4 -9 - . (x9,0, )]

X [y(') - fi|~ <y (X('), en .i,)]r}zi_,,l,,i, (63)
and the derivatives of the log likelihood
—61 - A (k) (k)
P, : LI Z )(t h'l'Z 'hi,‘ . g (1)
.. 4 ofl I’_':I(l) Y
Ky
x D0 Y, 0 —gi i, (x0050, )]
i =1
Osi. .,
X oot (64)
heod |gr  _gh

LT A TR



AR @) B (1)

_3‘:»
L Qo
u[\/]z

af: iy (x(l), oix. . .i,)
W e
aol]. A

8 ,i,'—'.g” i
x Ei.l. 4 9 -1, (x2, 0,(:). 4)1(65)
a9
0%, By W=t

1 k -

=2 HORI. A )
t=1
X {Ex('.k.). G0 VO -, . (x9, ongk). i)l
k

X [y(') £, (Y, 051-) -L)]T}
x () )

(66)

Based on these two sets of derivatives, we follow
the same line of thought as in the proof of Theorem 1
to establish the following theorem for the HME
architecture.

THEOREM 3. For the HME architecture of eqns (46)
and (47), with the parameter updates given by
Algorithm 3, we have that for every node v,

(k 1 (k) w ol
sl _ gt _ pr. 50

L]

S |gr _gr®
b,
(k+1) (k w Ol
e, _oil,)‘.i,:Pf,‘..i, 50, ’
0. . 8 w:",(.)
(k+1) *) *) ol
vec[X; vec[X =P - -

[ . ] [ t....l,] Eu " OVCC[E,'I_ .i] " y
e, ,,:E,l ~ir

(67)

where | = In L is defined by eqns (5), (46), and (47).
Moreover, assuming that the training set % is

generated by the HME model of eqns (46) and (47 ;

and that the number N is sufficiently large, then Pg

is a positive definite matrix, and P, % P(z) . are

positive definite matrices with probabtltly one. Specz—

fically, they take the following values:

(i) P§Y, =8 (REW,)™ with REY | given by
eqn (58).

(ii) Pg k) = (R )~l with R,(f)_ , given by eqn
(56)

(iii) For Pg) _, we have
'I dy

M. I. Jordan and L. Xu

2
P(’f) _ (’C) ® E(k)
By e ZN A® (0 a® .. h(k) ( )

t=1"% iy i

(68)

where “® " denotes the Kronecker product as defined in
Theorem 3.

From Theorem 5, we can again reach Corollary 1.
Again, we see that the EM algorithm for training the
HME architecture is a type of variable metric
gradient ascent algorithm for maximizing / = In L.

Finally, we can also generalize Theorem 2 as
follows.

THEOREM 4. Assume that the training set % is
generated by the HME model of eqns (46) and (47)
and that the number N is sufficiently large. Assume that
Yi. .4 is diagonal and vs,  is a vector consisting of
the diagonal elements of ¥;, ;.

Let © be a vector produced by cascadzng every
vector vi, ;= (05 )7, o7 ., vz i] of every
node v, ; in the HME archltecture ‘Let P be a
diagonal block matrix with each diagonal item bezng a
positive diagonal block matrix Db. P = diag[P
Py . Ps, ] The items of © and P are arranged m
such a way that D _i, in P corresponds to v;,__; in©.

Furthermore, assume that on a given domain Dg

(i) The parameterized functions of all the expert
networks and the gating networks have second-
order continuous derivatives.

(ii) The Hessian matrix

FIO)

H(O) = 20067

is negative definite;
(iii) ©* is a local maximum of 1(©), and ©* € Dg.

Then we have the same conclusion as given in
Theorem 2. That is,

(1) Letting —M, —m (here M >m > 0) be the
minimum and maximum eigenvalues of the negatively
definite matrix (P'2)TH(©)(P'?) for equivalently
the minimum and maximum eigenvalues of PH(©),
because we have PHe=Xe from (PYV%)T
HP'/2¢ = )e], we have

1(0%) - 1(0%) < r*[1(©") — 1(80)],

IP2(@Y — 07)| < |r|*? \/% UCHREC R

where r=1—(1-M/2)m?/M < 1.
0<|rl <1 when M <2,

We also have
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(2) For any initial point O € Dg,
limg_.oo OF = O when M < 2.

We should point out that the similarity in the
conclusions of Theorem 2 and Theorem 4 does not
mean that the EM algorithm for the hierarchical
architecture has the same convergence rate as that for
the one-level architecture. In the two cases the matrix
P is different, and thus M, m, r are also different. This
results in different convergence rates. Indeed, in
practice, the hierarchical architecture is usually
faster. The similarity in the conclusions of the two
theorems does mean, however, that the convergence
rates for both the algorithms are of the same (linear)
order.

4. VARIANTS OF THE EM ALGORITHM AND
SIMULATIONS

4.1. Variants of the EM Algorithm

For convenience, we denote an EM update of the
parameter vector as follows

o) = p, (6%). (69)

From Theorems 1 and 2 and Theorems 3 and 4, we
see that this update is actually a line search method
along an ascent direction of /=In L

a1
oD —g® 4 p | (70)

0=p™

with Pf,k) being a positive definite matrix evaluated at
0% Moreover this update has a linear convergence
rate. This link between the EM algorithm and
conventional gradient-based optimization techni-
ques suggests the possibility of using acceleration
techniques for improving the convergence. In the
sequel we suggest two such acceleration techniques.

4.1.1. Modified Line Search
Equation (70) can be replaced by a modified line
search

0+l = @) 4 ) dy,

ol
de =P o0l = M,(0%) 0%, (7])
=0

where A is a stepsize that is optimized by maximizing
! (0(") + Axdx) with respect to A\ via a one-dimen-
sional search (e.g., Fibonacci search).

The implementation of a one-dimensional optimi-
zation method at every parameter update is typically
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expensive. One often uses an inaccurate line search by
decreasing (e.g., Ax — rAx) or increasing (e.g.,
M — 1/r ;) the stepsize heuristically according to a
stopping rule. One frequently used stopping rule is
the so-called Goldstein test (Luenberger, 1984). The
Goldstein test is implemented as

l(/\k) < [(0) + E[’ (0))\/‘,
1) > 1(0) + (1 — &) I (0) e,

ro =g )

9=p"

where 0 < £ < 1 is a specified error bound.
Interestingly, if we rewrite the update as

o+l — g Ak [Mp (e(k)) _ o(k)]
= (1 — X)W + X\ M, (09),

we find that eqn (71) is identical to the speedup
technique for the EM algorithm studied by Peters and
Walker (1978a, b), Meilijson (1989), and Redner and
Walker (1984). These authors reported a significant
speedup for an appropriately selected ) even without
the Goldstein test.

4.1.2. A Speed-up Formula Based on Local
Linearization

Using a first-order Taylor expansion of M, (0%))
around %1 we have, approximately,

M, (8%) = M, (6%7V) + B(8® — 0*~V)
o+ — g B(ﬂ(k) _ 0(“—‘))

or
AO = BAO, _y, (73)
where

5 OM;

0=0"

and AQ; = 0%+D — g,
For the matrix B, we have the following
characteristic equation

det AT —B) = XN+ A 4o g A+

=X+ A =0

n
j=1

where

= (-1) >

1<ii<ih<-i<n

/\i,/\i,~ . .A,‘

j
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and ); are the eigenvalues of B. It follows from the
Cayley-Hamilton theorem that

B"+Y 4B" =0

j=1

Multiplying by A8, _, (k > n), we have

B"AQ,_, + Z ujBn‘jAok—n =0, (74)

j=1
From eqn (73), we obtain

Aﬂk_j = BAﬂk_j-l =-.. = B""A()k,,.,j =0,1,...,n

Substituting into eqn (74), we have

AO + ) A8, =0. (75)
j=1

Assuming that in comparison with the first /
eigenvalues, the remaining eigenvalues can be
neglected, we have approximately

N+ X =0, B"+) wB"/=0
j=t j=1

and correspondingly

!
A05+ZﬂjA0i~j:07 i=k k+1,... (76)

j=1

The approximation becomes exact when the last n — /
eigenvalues are zero.
By minimizing

2

]
HAO,, + 3 A,

j=1

we obtain the following linear equation for
T
wo=[u,. )

S =150, 8= [5ij]1ep S0 = [~S01, —S02,.., — 50",
S,'j = Sj,‘ = (AOk_,')T(Aek_j). (77)
We make use of the following identity
00 1 { o
p.jAO,-_j = Z u}AOk_j + Z A0;
i=k j=0 =0 i=k+1
00 !
+ Y0 Y wAe
ikl j=1

M. I Jordan and L. Xu

where uo = 1. From eqn (76), the left-hand side of
this expression is the sum of zeros and thus zero. The
first term on the right-hand side is also zero. We also
have

el
> A =-0*" 1o

i=k+1

(where 0* = limy_o, %), Using this identity to-
gether with eqn (76), we have

[
—06 D 407+ y " (0% +07) =0, (78)
]

On the other hand, we can also show

i ! i-1 I
PINTLAEE e IITED Y [ > #j] A£Gy,
j=0 j=0 J

i=0 j=i+1

(79)

This can be easily shown by exchanging the order of
summation in

S

i=0 | j=i+1

yielding

! Jj-1 I
Z i) [Z Aok_‘-] = Z uj(o(h-l—j) — o(k+l))_
j=t i=0 j=!

Letting 0} | replace 0" in eqn (78) and utilizing
eqn (79), we finally obtain

Zf;(]) [2}"=i+l 1|20 _;
Z],'=0 By

6;,, =04 (80)

This formula can be used for speeding up the EM
algorithm in two ways.

e Given an initial %), we compute (V) ..., 00+ via
the EM update and then from 8U), j =1,...,/, we
solve for yy, ...,y utilizing eqn (77). This yields a
new 0}, , via eqn (80). We then let 6 =6; | and
repeat the cycle.

e Instead of starting a new cycle after obtaining 67, |,
we simply let 8¢*D =07, and use the EM update
feqn (69)] to obtain a new 0+2) then we use 6,
o), .. 04D to obtain O], , Similarly, after
obtaining 63, k >/, we let o =0} and use the
EM update to get a new 0%*!) and then use
0%-D .., 0%+ 10 obtain 0} ,.
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Specifically, when / = 1, we have

A, _(88)7(A8,_))

s _g® _
P =0T M e, ey OV

l+ﬂ.1’

In this case, the extra computation required by the
acceleration technique is quite small.

4.2. Simulations

We conducted two sets of computer simulations to
compare the performance of the EM algorithm with
the two variants described in the previous section.
The training data for each simulation consisted of
1000 data points generated from the piecewise linear
function y=aix+a+n, x€[x,,xy] and
y=ajx+as+n, x¢€[x},xy], where n, is a
Gaussian random variable with zero mean and
variance o? = 0.3. Training data were sampled from
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the first function with probability 0.4 and from the
second function with probability 0.6.

We studied a modular architecture with K =2
expert networks. The experts were linear; that is,
£;(x\, 8;) were linear functions [x, 1]7@;. For the
gating net, we have

Sj = [x, ]]TO(),

where g; is given by eqn (2). For simplicity, we
updated 0y; by gradient ascent

k o9
ok =0l +r, 0. (82)

The learning rate parameter was set to r, = 0.05 for

the first data set and r, = 0.002 for the second data

set. We used e(})n (19) and eqn (21) to update the
(k (k+1) .

parameters 6; , respectively.

and o,
The initial values of 8, 8 and o'” were picked
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FIGURE 3. The data sets for the simuiation experiments.
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randomly. To compare the performance of the
algorithms, we let each algorithm start from the
same set of initial values.

The first data set (Figure 3a) was generated using
the following parameter values: al = 0.8, a2 = 0.4,
xp=-10, xy =10, a) = -1.0, g} = 3.6, x| =2.0,
xy; = 4.0. The performance of the original algorithm,

M. I. Jordan and L. Xu

the modified line search variant with A\; = 1.1, the
modified line search variant with Az = 0.5, and the
algorithm based on local linearization are shown in
Figures 4-7, respectively. As seen in Figures 4a and
5a, the log likelihood converged after 19 steps using
both the original algorithm and the modified line
search variant with Ay = 1.1. When a smaller value
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FIGURE 4. The performance of the original EM algorithm: (a) the evolution of the log likelihood; (b) the evolution of the parameters for
expert network 1; (c) the evolution of the parameters for expert network 2; (d) the evolution of the variances.
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FIGURE 5. The performance of the linesearch variant with A, = 1.1.

was used (Ax = 0.5), the algorithm converged after 24
steps (Figure 6a). Trying other values of ), we
verified that Az <1 slows down the convergence,
whereas A¢ > 1 may speed up the convergence (cf.
Redner & Walker, 1984). We found, however, that
the outcome was quite sensitive to the selection of the
value of M. For example, setting A\ = 1.2 led the
algorithm to diverge. Allowing \; to be determined

by the Goldstein test [eqn (72)] yielded results similar
to the original algorithm, but required more
computer time. Finally, Figure 7a shows that the
algorithm based on local linearization yielded
substantially improved convergence—the log like-
lihood converged after only eight steps.

Figure 4b and c¢ shows the evolution of the
parameters for the first expert net and the second
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FIGURE 6. The performance of the linesearch variant with A, = 0.5.

expert net, respectively. Comparison of these figures
to Figure 5b and c shows that the original algorithm
and the modified line search variant with Ay = 1.1
behaved almost identically: 6, converged to the
correct solution after about 18 steps in either case.
Figure 6b and ¢ shows the slowdown obtained by
using Ax = 0.5. Figure 7b and c shows the improved
performance obtained using the local linearization

algorithm. In this case, the weight vectors converged
to the correct values within seven steps.

Panel d in each of the figures shows the evolution
of the estimated variances o3 and o3. The results were
similar to those for the expert net parameters. Again,
the algorithm based on local linearization yielded
significantly faster convergence than the other
algorithms.
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FIGURE 7. The performance of the algorithm based on local linearization.

A second simulation was run using the following
parameter values (Figure 3b): al = 0.8, a2 =04,
xp=-10, xy =20, a} =-12, a}, =24 x|, = 1.0,
x'y; = 4.0. The results obtained in this simulation were
similar to those obtained in the first simulation. The
EM algorithm converged in 11 steps and the local
linearization algorithm converged in six steps.

The results from a number of other simulation

experiments confirmed the results reported here. In
general the algorithm based on local linearization
provided significantly faster convergence than the
original EM algorithm. The modified line search
variant did not appear to converge faster (if the
parameter )\, was fixed). We also tested gradient
ascent in these experiments and found that conver-
gence was generally one to two orders of magnitude
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slower than convergence of the EM algorithm and its
variants. Moreover, convergence of gradient ascent
was rather sensitive to the learning rate and the initial
values of the parameters.

5. CONCLUDING REMARKS

Finite mixture models have become increasingly
popular as models for unsupervised learning, partly
because they occupy an interesting niche between
parametric and nonparametric approaches to statis-
tical estimation. Mixture-based approaches are
parametric in that particular parametric forms must
be chosen for the component densities, but they can
also be regarded as nonparametric by allowing the
number of components of the mixture to grow. The
advantage of this niche in statistical theory is that
these models have much of the flexibility of
nonparametric approaches, but retain some of the
analytical advantages of parametric approaches
(McLachlan & Basford, 1988). Similar remarks can
be made in the case of supervised learning: the ME
architecture and the HME architecture provide
flexible models for general nonlinear regression while
retaining a strong flavor of parametric statistics. The
latter model, in particular, compares favorably to
decision tree models in this regard (Jordan & Jacobs,
1994).

In the current paper we have contributed to the
theory of mixture-based supervised learning. We have
analyzed an EM algorithm for ME and HME
architectures and provided theorems on the conver-
gence of this algorithm. In particular, we have shown
that a learning algorithm can be regarded as a variable
metric algorithm with its metric matrix P being
positive definite, so that the searching direction of the
algorithm always has a positive projection on the
gradient of the log likelihood. We have shown that the
algorithm converges linearly, with a rate determined
by the difference between the minimal and maximal
eigenvalues of a negative definite matrix.

Similar results to those obtained here can also be
obtained for the case of the unsupervised learning of
finite mixtures (Xu & Jordan, 1994).
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APPENDIX

The theoretical results presented in the main text show that the EM
algorithm for the ME and HME architectures converges linearly
with a rate determined by the condition number of a particular
matrix. These results were obtained for a special case in which the
expert networks are linear with a Gaussian probability model and
the gating networks are multinomial logit models. In this section
we discuss extensions of these results to other architectures.

We first note that Theorems 2 and 4 make no specific reference
to the particular probability models utilized in specifying the
architecture. The results on convergence rate in these theorems
require only that the matrix P be positive definite. These theorems
apply directly to other architectures if the corresponding P matrices
can be shown to be positive definite. We therefore need only
consider generalizations of Theorem 1, the theorem that established
the positive definiteness of P for the generalized linear ME
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architectures. An analogous generalization of Theorem 3 for the
HME architectures can also be obtained.

Let us consider the case in which the function implemented by
each expert network (f;(x, 8;)} is nonlinear in the parameters. We
consider two possible updates for the parameters: (1) a gradient
algorithm

0! = o) 4 ye®, (A1)
where

(k)
: 97) (Z(k) Ty - (x, 0(“))] (A.2)

T
Z h(k)
30(")

and (2) a Newton algorithm:

0 0 =0+, (RY) e, (A3)
where
BT (x0 9"") o (x, g
RY = W O 67) w0 Y, 87)
HP () (zt , A4
Z m](k) i ) a(ej(k))T ( )

where «; > 0 is a learning rate.
These updates are covered by the following extension of Theorem
1.

THEOREM 1A. For the model given by eqn (3) and the updates given
by eqn (84) or eqn (86), we have:

w-l) ) _ pty 91
o) — o = p!

7 s, o“’
where P( is positive definite.

Proof. For the gradient descent algorithm, we have P,‘-"’ = lx,
which is obviously positive definite because v, > 0. For the Newton

1431

algorithm, we have that P! = ~,(R™)™'. We now show that this
matrix is positive definite. For an arbitrary vector u, we have

T (k) (k)
wRu —XN:h‘*’(:)uTa'f (00 (gpoy 280,97
j 2 m}(_k) ' 3(01(1;))1
N
z k)(t)vf(z(k)) v
=1
>0.

Equality holds only when

T () a*)
_“ra'}'(" ), 8 )_
oe"
J

becausc £® is positive definite with probability one. This is

Fossnble for any u. So with probability one, R* [and thus
also] is positive definite.

Note that the Newton update [eqn (86)] is particularly appropriate

for the case in which the experts are generalized linear models

(McCullagh & Nelder, 1983); that is, the case in which

£(x?,0)=[£1(x", 0),....f4(x, )] (4 is the dimension of

y) with

£i(x9, 8,) = Fu([8;1,- . 8,m] X1 + 8, 1),

where F;;(-) is a continuous univariate nonlinear function known as
the fink function. In this case the Newton algorithm reduces to the
IRLS algorithm. The extension to generalized linear models also
allows probability models for the generalized exponential family
(cf. Jordan & Jacobs, 1994) and Theorem 1A is applicable to this
case as well.

We can also consider the case in which the gating network is
nonlinear in the parameters. Both the Newton update (IRLS
update) and the gradient update are applicable in this case.
Theorem 1 already established that the Newton update for the
gating network involves a positive definite P, matrix. As in
Theorem 1A, the result for the gradient update is immediate.



