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Abstract

An alternative model 1s proposed for mixtures-of-experts, by utiliz-
ing a different parametric form for the gating network. The mod-
ified model is trained by an EM algorithm. In comparison with
earlier models—trained by either EM or gradient ascent—there is
no need to select a learning stepsize to guarantee the convergence of
the learning procedure. We report simulation experiments which
show that the new architecture yields significantly faster conver-
gence. We also apply the new model to two problems domains:
piecewise nonlinear function approximation and combining multi-
ple previously trained classifiers.

1 INTRODUCTION

For the mixtures of experts architecture (Jacobs, Jordan, Nowlan & Hinton, 1991),
the EM algorithm decouples the learning process in a maner that fits well with the
moudular structure and yields a considerably improved rate of convergence (Jordan
& Jacobs, 1994). The favorable properties of EM have also been shown through the
results of theoretical analyses (Jordan & Xu, In press; Xu & Jordan 1994).

One inconvenience of using EM on the muztures of experts architecture is the non-
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linearity of softmaz gating network, which makes the maximization with respect
to the parameters in gating network become nonlinear and unsolvable analytically
even for the simplest generalized linear case. Jordan & Jacobs (1994) suggested a
double-loop EM to attack the problem. An inner-loop iteration IRLS is used to solve
the nonlinear optimization with considerably extra computational costs. Moreover,
in order to guarantee the convergence of the inner loop, safeguard measures (e.g.,
appropriate choice of a step size) are required.

We propose here an alternative model for mixtures-of-experts by using a different
parametric form for the gating network. This model overcomes the disadvantage of
the original model, and make the maximization with respect to the gating network
solvable analytically. Thus, a single-loop EM can be used, and no learning stepsize
is required to guarantee learning convergence. We report simulation experiments
which show that the new architecture yields significantly faster convergence. We
also apply the model to two problem domains. One is piecewise nonlinear function
approximation with soft joints of pieces specified by polynomial, trigonometric, or
other prespecified basis functions. The other is to combine classifiers developed
previously—a general problem with a variety of applications (Xu et al, 1991, 1992).
Xu & Jordan (1993) proposed to solve the problem by using the mixtures-of-experts
architecture and suggested an EM algorithm for bypassing the difficulty caused by
the softmar gating networks. Here, we show that the algorithm of Xu & Jordan
(1993) can be regarded as a special case of the single-loop EM given in this paper
and that the single-loop EM also provides a further improvment.

2 MIXTURES-OF-EXPERTS AND EM LEARNING

The muztures of experts model is based on the following conditional mixture:
K
P(ylz,0) = Zgj(l‘, v)P(ylz, 6;),
j=1

Pl 6;) = (2rderTy)Fexp{—sly— fi(e, wp)'T7 v — S wpl} (1)

where © consists of v, {0; 1, and 6; consists of {w; }X {T;}<. The vector f;(z,w;)
is the output of the j-th expert net. The scalar g;(z,v),j =1, -+, K is given by

the softmax function:
gj(x’ 1/) — eﬁj(l‘,l/)/ Z eﬁ,(x,u). (2)

In this equation, §;(x,v),j = 1,---, K are the outputs of gating network.

The parameter © is estimated by Maximum Likelihood (ML) L =
> 1n P(y®]z® ©), which can be made by the EM algorithm. Tt is an iterative
procedure. Given the current estimate ©%) it consists of two steps.

(1) E-step. For each pair {z(®) y()}, compute h;k)(y(t”x(t)) = P(j|le®, y®), and
then form a set of of objective functions:

Q50) = S A0y Py, 0)), j =1, K;
t



(2). M-step. Find a new estimate @+ = {{H;k-l_l) le, v+ with:

pk+1)

; = argmax Q5(0;),5=1,---, K; v+ = arg max Q7 (v). (4)

In certain cases, maxp, Q5(0;) can be solved by solving 0Q5/90; = 0, eg.,
file,w;) = w]T[x,l]. When f;(z,w;) is nonlinear with respect to w;, however,

the maximization can not be performed analytically.

Moreover, due to the nonlinearity of softmazr eq.(2), max, Q?(v) cannot be solved
analytically in any case. There are two possibilities for attacking these nonlinear
optimization problems. One is to make use of a conventional iterative optimization
technique (e.g., gradient ascent) to form an inner-loop iteration. The other is to
simply find a new estimate such that Q;(G;kﬂ)) > Q;(G;k))’ QI+ > QI (v,
Usually, the algorithms that perform a full maximization during the M step are
referred as “EM” algorithms, and algorithms that simply increase the ¢ function
during the M step as “GEM” algorithms. In this paper we will further distinguish
between EM algorithms requiring and not requiring an iterative inner loop by the
single-loop EM and double-loop EM respectively.

Jordan and Jacobs (1994) considered the case of linear §;(z,v) = VjT[J:, 1] with
v = [v1, -, vk] and semi-linear fj(ij [, 1]) with nonlinear f;(.). They proposed
a double-loop EM algorithm by using the [terative Recursive Least Square (IRLS)
method to implement the inner-loop iteration. For more general nonlinear 3;(x, v)
and f;(x,6;), Jordan & Xu (in press) showed that an extended IRLS can be used
for this inner loop. It can be shown that TRLS and the extension are equivalent to
solving eq.(3) by the so-called Fisher Scoring method.

3 A NEW GATING NET AND A SINGLE-LOOP EM

For the original model, the nonlinearity of softmar makes the analytical solu-
tion of max, Q9(v) impossible even for the cases that g;(z,v) = VjT[J:, 1] and
fj(x(t),wj) = ij[x, 1]. That is, we do not have a single-loop EM algorithm for
training this model. We need to use either double-loop EM or GEM. For single-
loop EM, convergence is guaranteed automatically without setting any parameters
or restricting the initial conditions. For double-loop EM, the inner-loop iteration
can increase the computational costs considerably (e.g., the TRLS loop of Jordan &
Jacobs,1994). Moreover, in order to guarantee the convergence of the inner loop,
safeguard measures (e.g., appropriate choice of a step size) are required. This can
also increase computing costs. For a GEM algorithm, a new estimate that reduces
“()” functions actually needs an ascent nonlinear optimization technique itself.

To overcome this disadvantage of the softmax-based gating net, we propose the
following modified gating network:

gi(@,v) = o P(alv;)/ 32 i Palvi), 3o 05 = 1,05 >0,



P(xlvy) = aj(v5) = b () exple; (vy) ()} (5)
where v = {aj,v;,j = 1,---, K}, the P(z|v;)’s are density functions from the

exponential family. The most common example is the Gaussian:

Plaly) = (2 det 5)~3 expl— (= my) "5} (o — my)), (6

In eq.(5), g;(x, v) is actually the posteriori probability P(j|¢) that z is assigned to
the partition corresponding to the j-th expert net, obtained from Bayes’ rule:

9j(x,v) = P(jlz) = a; P(e|v;)/ P(z,v) Za P (x]vi). (7)
Inserting this g;(x, v) into the model eq.(1), we get
a; Px|v;)
ohe:0) = 35 25 P ) )

If we directly do ML estimate on this P(y|z,©) and derive an EM algorithm, we
again find that the maximization max, @?(v) cannot be solved analytically. To
avoid this difficulty, we rewrite eq. (8) into:

Ply,x) = P(ylz,0)P Z% @|vi) P(yle, 05). (9)

This suggests an asymmetrical representatlon for joint density. We accordingly
perform ML estimate based on L' = >, In Py, 21) to determine the parameters
a;,v;,0; of the gatting net and expert nets. This can be made by the following the
EM algorithm:

(1) E-step. Compute

1,0 — % PEV PO 0"
S ol POy Py, 6()

Then let Q5(0;),j = 1,---, K to be the same as given in eq.(3), and Q?(v) can be
further decomposed into

Q) = Zh N P(Olvy), j=1,, K;
Q° = ZZh lnoz], witho‘:{ala"',OZK}. (11)

(2). M-step. Find a new estimate for j =1,--- K

H;k-l'l) = argmaxg; Q5(0;), y}kH) = argmax,, Q?(Vj),

ot = arg max, Q°, s.t. Z]’ a; = 1. (12)

The maximization for the expert nets is the same as in eq.(4). However, for the
gating net the maximizations now become analytically solvable as long as P(z|v;)
is from the exponential family. That is, we have:

(k)
V(k+1) . Zt hj (y(t)|l‘(t))tj(l’(t)) k+1 Zh

- bl

’ S b (O] )

(13)



In particular, when P(z|v;) is a Gaussian density, the update becomes:

(k+1)  _ 1 () (0 [, (O, ()

T T zthg.’“)(y(mx(t))zt:hf ),

(k+1) 1 (k), (¢ t t (k) t (k)T

= B zth@)(y(t)u(t))zt:hj 1 =y e =1 (1
J

Two issues deserve to be further emphasized:

(1) The gatting nets eq.(2) and eq.(5) become identical when 3;(x,v) = lna; +
Inb;(z) + ¢;(v;)Tt;(z) —Inaj(r;)}. In other words, the he gatting net eq.(5) uses
explicitly such function family instead of implicitly the one given by a multilayer
farward networks.

(2) Tt follows from eq.(9) that max In P(y,#/0©) = max [In P(y|z, ©) 4+ In P(z|v)].
So, the solution given by eqs.(10) (11)(12)(13)(14) is actually different from the one
given by the original eqs.(3)(4). The fomer one tries to model both the mapping
from z to y and the input z, while the latter only model the mapping from « and
y. In fact, here we learn the paramters of the gatting net and the experts nets via
an asymmetrical representation eq.(9) of the joint density P(y,#) which includes
P(y|z) implicitly. However, in the testing phase, the total output still follows eq.(8).

4 PIECEWISE NONLINEAR APPROXIMATION

The simple form f;(x, w;) = ij[x, 1] is not the only case that single-loop EM
applies. Whenever f;(z,w;) can be written in the following form

i (@, w;) sz,ﬂj’m +wo,; = wj [¢]( x), 1], (15)

where ¢; j(x) are prespecified basis functions, maxg; Q5(6;),j = 1,---, K in eq.(3)
are still weighted least squares problems that can be solved analytically. One useful
special case is that ¢; ;(x) are canonical polynomial terms «7*---27*, r; > 0. In
this case, the mixture-of-experts model implements piecewise polynomial approxi-
mations. Another case is that ¢; ;(z) is H sin (jmey) cost (jme1),r; > 0, in which
case the mixture-of-experts implements piecewise trlgeometrlc approx1mat10ns

5 MULTI-CLASSIFIERS COMBINATION

Given pattern classes Cj, ¢ =1, ---, M, we consider classifiers e¢; that for each input
x e; produces an output P;(y|z)
Pi(ylz) = [p; (1), - - pj(Mla)], p;(ilz) >0, ij(ill‘) =1 (16)

The problem of Combining Multiple Classifiers (CMC) is to combine these P;(y|z)’s

to give a summay P(y|z). This is general problem with many apphcatlons in pat-
tern recognition (Xu et al, 1991, 1992). Xu & Jordan (1993) proposed to solve CMC
problem by regarding the problem as a special example of the mixture density prob-
lem eq.(1) with P;(y|#)’s known and only the gating net g;(,v) to be learned. In



Xu & Jordan (1993), one problem encountered was also the nonlinearity of softmax
gating networks, and an algorithm was proposed to avoid the difficulty.

Actually, the single-loop EM given by eq.(10) and eq.(13) can be directly
used to solve the CMC problem. In particular, when P(z|v;) is Gaussian,
eq.(13) becomes eq.(14). Assume that a1 = = aK in eq.(7), eq.(10) be-
F1e) = PEOW)PEORO)) 3 PO PO ©). 1t we
divide both the numerator and denominator by ZZ»P(x(t)h/i(k)), which gives
h;k)(y(t”x(t)) = gi(z,v)P(yD|z®)/ 3, g5 (x,v)P(yD|z®)). By comparing this
equation with eq.(7a) in Xu & Jordan (1993), we will find that the two equa-
tions are actually the same by noticing that «;(x) and Pj(;&(t”x(t)) there are the
same as g;(z,v) and P(y®|x®) in ones given in Sec.3 in spite of different notation.
Therefore, we see that the algorithm of Xu & Jordan (1993) is a special case of the
single-loop EM given in Sec.3.

comes h

6 SIMULATION RESULTS

We compare the performance of the EM algorithm presented earlier with the orig-
inal model of mixtures-of-experts (Jordan & Jacobs, 1994). As shown in Fig.1(a),
we consider a mixture-of-experts model with K = 2. For the expert nets, each
P(ylz,0;) is Gaussian given by eq.(1) with linear fj(z,w;) = w; Tz, 1]. For the
new gating net, each P(x,v;) in eq.(5) is Gaussian given by eq. (6) For the old
gating net eq.(2), Bi(z,v) = 0 and Bo(z,v) = vT[z,1]. The learning speeds of the
two are considerably different. The new algorithm takes k=15 iterations for the
log-likelihood to converge to the value of —1271.8. These iterations require about
1,351,383 MATLAB flops. For the old algorithm, we use the IRLS algorithm given
in Jordan & Jacobs (1994) for the inner loop iteration. In experiments, we found
that it usually took a large number of iterations for the inner loop to converge.
To save computations, we limit the maximum number of iterations by 7,4, = 10.
We found that this did not obviously influence the overall performance, but can
save computation. From Fig.1(b), we see that the outer-loop converges in about
16 iterations. Each inner-loop takes 290498 flops and the entire process requires
5,312,695 flops. So, we see that the new algorithm yields a speedup of about
4,648,608/1,441,475 = 3.9. Moreover, no external adjustment is needed to ensure
the convergence of the new algorithm. But for the old one the direct use of IRLS
will make the inner- loop diverge and we need appropriately to rescale (it can be
costly) the updating stepsize of IRLS.

Figs.2(a)&(b) show the results of a simulation of a piecewise polynomial approxi-
mation problem by the approach given in Sec.4. We consider a mixture-of-experts
model with K = 2. For expert nets, each P(y|z,§;) is Gaussian given by eq.(1)
with f;(x,w;) = ws ;& + ws ja? + w1 ;& + wg ;. In the new gating net eq.(5), each
P(x,v;) is again Gaussian given by eq.(6). We see that the higher order nonlinear
regression has been fit quite well.

For multi-classifier combination, the problem and data are the same as in Xu &
Jordan (1993). Table 1 shows the classification results. Com-old and Com-new
denote the method given in in Xu & Jordan (1993) and in Sec.5 respectively. We



see that both improve the classification rate of each individual considerably and
that C'om — new improves C'om — old.

Classifer e; Classifer ey Com—old Com — new
Training sel 89.9% 93.3% 98.6% 99.4%
Testing sel 89.2% 92.7% 98.0% 99.0%

Table 1 An Comparison on the correct classification rates

7 REMARKS

Recently, Ghahramani & Jordan (1994) propose to solve function approximation
via estimating joint density based on the mixture Gaussians. In the special case of

linear f;(x, w;) = ij [, 1] and Gaussian P(z|v;)

with equal priors, the method given in sec.3 provides the same result as Ghahramani
& Jordan (1994) although the parameterizations of the two methods are different.
However, the method of this paper also applies to nonlinear f;(z, w;) = ij [¢;(2),1]
for piecewise nonlinear approximation or more generally f;(z, w;) that is nonlinear
with respect to w;, and applies to the case that P(y, z|v;,0;) 1s not Gaussian, as
well as the case for combining multi-classifiers. Furthermore, we like to point out
that the methods proposed in secs.3 & 4 can also be extended to the hierarchical
architecture (Jacobs&Jordan, 1993) so that single-loop EM can be used to facilitate
its training.
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Figure 1: (a) 1000 samples from y = ajx + a2 +,a1 = 0.8,a3 = 0.4, 2 € [—1, 1.5]
with prior oy = 0.25 and y = ajx + al, +,a} = 0.8,a2 =’ 2.4, 2 € [1, 4] with prior
ay = 0.75, where # is uniform random variable and z is from Gaussian N(0,0.3).
The two lines through the clouds are the estimated models of two expert nets. The
fits obtained by the two learning algorithms are almost the same. (b) The evolution
of the log-likelihood. The solid line is for the modified learning algorithm. The
dotted line is for the original learning algorithm (the outer-loop iteration)
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Figure 2: Piecewise 3rd polynomial approximation. (a) 1000 samples from y =
arr®+azr+as+e, @ € [—1,1.5] with prior a1 = 0.4 and y = ahe?+ajz?+a+e,x €
[1,4] with prior s = 0.6, where « is uniform random variable and z is from Gaussian
N(0,0.15). The two curves through the clouds are the estimated models of two
expert nets. (b) The evolution of the log-likelihood.





