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Abstract. We develop a new randomized method, random separation,
for solving fixed-cardinality optimization problems on graphs, i.e., prob-
lems concerning solutions with exactly a fixed number k of elements (e.g.,
k vertices V ′) that optimize solution values (e.g., the number of edges
covered by V ′). The key idea of the method is to partition the vertex set
of a graph randomly into two disjoint sets to separate a solution from the
rest of the graph into connected components, and then select appropriate
components to form a solution. We can use universal sets to derandomize
algorithms obtained from this method.

This new method is versatile and powerful as it can be used to solve a
wide range of fixed-cardinality optimization problems for degree-bounded
graphs, graphs of bounded degeneracy (a large family of graphs that
contains degree-bounded graphs, planar graphs, graphs of bounded tree-
width, and nontrivial minor-closed families of graphs), and even general
graphs.

1 Introduction

1.1 Motivations and Related Work

Many NP-hard problems, when some part of input I is taken as a fixed pa-
rameter k to form fixed-parameter problems, can be solved by algorithms that
run in uniformly polynomial time, i.e., f(k)|I|O(1) time for some function f(k).
Prominent and influential examples of such algorithms include O(n3) algorithms
of Robertson and Seymour [12] for solving the subgraph homomorphism and mi-
nor containment problems, an O(n) algorithm of Bodlaender [3] for finding tree-
decompositions of tree-width k, O(n) algorithms of Courcelle [7] and Arnborg et
al. [2] for solving problems expressible in monadic second-order logic on graphs
of tree-width k, and an O(kn + 1.286k) algorithm of Chen, Kanj and Jia [6] for
finding a vertex cover of k vertices. Downey and Fellows [8] have established a
general framework for studying the complexity of fixed-parameter problems.

In this paper, we develop a new randomized method, called random separation,
for designing uniformly polynomial-time algorithms to solve fixed-parameter
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problems on graphs, especially fixed-cardinality optimization problems. A fixed-
cardinality optimization problem is a problem that asks for a solution with exactly
a fixed number k of elements (e.g., k vertices V ′) to optimize the solution value
(e.g., the number of edges covered by V ′), and recently Cai [4] has initiated a
systematic study of fixed-cardinality optimization problems from the parameter-
ized complexity point of view. The key idea in our random separation method
is to partition the vertex set of a graph randomly into two disjoint sets to sepa-
rate a solution from the rest of the graph into connected components, and then
select appropriate components to form a solution. We can use universal sets to
derandomize algorithms obtained from this method.

Our initial inspiration for developing the random separation method came
from the colour-coding method of Alon, Yuster and Zwick [1] for solving fixed-
parameter problems on graphs. The basic idea of their method is to colour ver-
tices randomly in k colours and then try to find a colourful k-solution, i.e., a
solution consisting of k vertices in distinct colours. To derandomize the algo-
rithm, they use perfect hash functions. They have used colour-coding to find, for
each fixed k, a k-path in O(n) expected time and O(n log n) worst-case time, a k-
cycle in O(nα) expected time and O(nα log n) worst-cast time, where α < 2.376,
and a subgraph isomorphic to a k-vertex graph H of tree-width w in O(nw+1)
expected time and O(nw+1 log n) worst-case time. Unfortunately, for most fixed-
parameter problems, it seems very difficult to find colourful k-solutions, which
greatly limits the applicability of colour-coding.

On the other hand, it is much easier to deal with connected components, which
enables us to use random separation to solve a wide range of fixed-parameter
problems, especially when the input graph has bounded degree or degeneracy.
In fact, it is rather surprising that we can use random separation to obtain
uniformly polynomial-time algorithms for classes of fixed-parameter problems,
especially fixed-cardinality optimization problems, on graphs of bounded degree.

For derandomization, our main tools are universal sets and perfect hash func-
tions. A collection of binary vectors of length n is (n, t)-universal if for every
subset of size t of the indices, all 2t configurations appear. Naor, Schulman and
Srinivasan [11] have a deterministic construction for (n, t)-universal sets of size
2ttO(log t) log n that can be listed in linear time. A family F of functions map-
ping a domain of size n into a range of size k is an (n, k)-family of perfect hash
functions if for every subset S of size k from the domain there is a function in F
that is 1-to-1 on S. Based on work of Schmidt and Siegel [13] and pointed out
by Moni Naor [1], an (n, k)-family of perfect hash functions of size 2O(k) log n
can be deterministically constructed in linear time.

Following the framework of Downey and Fellows [8], we say that a fixed-
parameter problem is fixed-parameter tractable if it has a uniformly polynomial-
time algorithm, and fixed-parameter intractable if it is W[i]-hard for some W[i]
in the W -hierarchy. We note that a W[i]-hard problem cannot be solved in
uniformly polynomial time unless all problems in W[i] can be solved in uniformly
polynomial time.
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1.2 Main Results

We focus on graphs of bounded degree or degeneracy as many fixed-parameter
problems are fixed-parameter intractable for general graphs. A degree-bounded
graph is a graph whose maximum degree is bounded by a constant d. A graph G
is d-degenerate if every induced subgraph of G has a vertex of degree at most d.
It is easy to see that every d-degenerate graph admits an acyclic orientation such
that the outdegree of each vertex is at most d. Many interesting families of graphs
are d-degenerate for some fixed constant d. For example, graphs embeddable on
some fixed surface (planar graphs are 5-degenerate), degree-bounded graphs,
graphs of bounded tree-width, and nontrivial minor-closed families of graphs.

In this paper we will demonstrate the power of our random separation method
by the following results:

1. For degree bounded graphs G, we obtain uniformly polynomial-time algo-
rithms for a wide range of fixed-parameter problems that ask us to find k
vertices (edges) S to optimize a value φ(S) defined by an objective function
φ that is computable in uniformly polynomial time (Section 3.2).

2. For every degree bounded graph G and every k-vertex graph H , we can
find a maximum (minimum) weight induced (partial) H-subgraph in G in
O(n log n) time for each fixed k (Section 2.2).

3. For each fixed k, we can find a subset of vertices in a general graph to cover
exactly k edges in O(m + n log n) time (Section 2.4).

4. For every k-vertex tree (forest) H and fixed k and d, we can find an induced
H-subgraph in a d-degenerate graph that contains one in O(n) expected
time and O(n log2 n) worst-case time (Section 4).

5. For fixed k and d, we can find an induced k-cycle in a d-degenerate graph
that contains one in O(n2) expected time and O(n2 log2 n) worst-case time
(Section 4).

Furthermore, we can also use random separation to solve fixed-parameter
problems on satisfiability, integer programming, set packing and covering, and
many others when the input obeys some “degree” constraints, which will be
discussed in the full paper.

1.3 Notation and Organization

We use G = (V, E) to denote the input graph (or digraph) with n vertices and
m edges. For a graph H , its vertex (edge) set is denoted by V (H) (respectively,
E(H)). For a subset V ′ of vertices, NG(V ′) denotes the neighbourhood of V ′,
i.e., the set of vertices not in V ′ that are adjacent to some vertices in V ′, and
N+

G (V ′) the out-neighbourhood of V ′, i.e., vertices not in V ′ that are heads of
edges connected with some vertices in V ′. For a subgraph H , we use NG(H) as
a shorthand for NG(V (H)) and N+

G (H) for N+
G (V (H)). We use dG(v) to denote

the degree of vertex v in G.
A subgraph in G that is isomorphic to a given graph H is an H-subgraph. For

two vertices u and v, dG(u, v) denotes their distance in G; and for two subgraphs
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H1 and H2 of G, dG(H1, H2) denotes their distance in G, i.e., dG(H1, H2) =
min{dG(u, v) | u ∈ V (H1), v ∈ V (H2)}.

In Section 2, we introduce our basic random separation method together with
several working examples. In Section 3, we extend the method to solve a wide
range of fixed-cardinality optimization problems for degree-bounded graphs, and
in Section 4 we combine random separation with colour-coding to find induced k-
vertex trees (forests) and induced k-cycles for d-degenerate graphs. We conclude
the paper with a brief summary and some open problems in Section 5.

2 Random Separation

The basic idea of our random separation method is to use a random partition of
the vertex set V of a graph G = (V, E) to separate a solution from the rest of
G into connected components and then select appropriate components to form
a solution. To be precise, we colour each vertex randomly and independently
by either green or red to define a random partition of V into green vertices Vg

and red vertices Vr, which forms the green subgraph Gg = G[Vg ] and the red
subgraph Gr = G[Vr]. For a solution S with k vertices, there is 2−(k+|NG(S)|)

chance that a random partition has the property that S is entirely in the green
subgraph Gg and its neighbourhood NG(S) is entirely in the red subgraph Gr,
i.e., S consists of a collection of connected components of Gg, referred to as green
components. For such a partition, we can usually find an appropriate collection of
green components to form a required k-solution by using the standard dynamic
programming algorithm for the 0-1 knapsack problem (see, for instance, the text-
book of Kleinberg and Tardos [10]). Therefore, with probability 2−(k+|NG(S)|),
we can find a required k-solution from a random partition. To derandomize the
algorithm, we use (n, t)-universal sets for t = k + |NG(S)|. The total time of the
whole algorithm is uniformly polynomial when t is bounded by a function of k.
We give several examples to illustrate this method in the rest of this section.

2.1 Dense k-Vertex Subgraphs in Degree-Bounded Graphs

Let us start with the problem of finding an induced subgraph on k vertices
that contains the maximum number of edges. Let d be a fixed constant and
G = (V, E) a graph of maximum degree d. First we randomly colour each vertex
of G by either green or red to form a random partition (Vg , Vr) of V . Let G′ be a
maximum k-vertex induced subgraph of G. A partition of V is a “good partition”
for G′ if all vertices in G′ are green and all vertices in its neighbourhood NG(G′)
are red. Note that NG(G′) has at most dk vertices as dG(v) ≤ d for each vertex
v. Therefore the probability that a random partition is a good partition for G′

is at least 2−(d+1)k and thus, with at least such a probability, G′ is the union of
some green components.

To find a maximum k-vertex induced subgraph for a good partition of G′, we
need only find a collection H′ of green components such that the total number
of vertices in H′ is k and the total number of edges in H′ is maximized. For
this purpose, we first compute in O(dn) time the number ni of vertices and the
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number mi of edges inside each green component Hi. Then we find a collection
H′ of green components that maximizes

∑

Hi∈H′

mi

subject to
∑

Hi∈H′ ni = k. This can be solved in O(kn) time by using the stan-
dard dynamic programming algorithm for the 0-1 knapsack problem (see [10]).
Therefore, with probability at least 2−(d+1)k, we can find a maximum k-vertex
induced subgraph of G in O((d + k)n) time.

To derandomize the algorithm, we need a family of partitions such that for
every partition Π of any (d + 1)k vertices into k vertices and dk vertices, there
is a partition in the family that is consistent with Π . Clearly, any family of
(n, (d + 1)k)-universal sets can be used as the required family of partitions.
Using a construction of Naor, Schulman and Srinivasan [11], we obtain a re-
quired family of partitions of size 2(d+1)k(dk + k)O(log(dk+k)) log n that can be
listed in linear time. Therefore we obtain a deterministic algorithm that runs in
O(f(k, d)n log n) time where

f(k, d) = 2(d+1)k(dk + k)O(log(dk+k))(d + k),

which is O(n log n) for fixed k and d, and uniformly polynomial for parameter k
and fixed d.

2.2 Subgraph Isomorphism for Degree-Bounded Graphs

Although subgraph isomorphism problems are W[1]-hard for general graphs [8],
we can use random separation to solve them easily for degree-bounded graphs,
even for the weighted case. We note that the following theorem for the un-
weighted case also follows from a result of Seese [14] and a more general result
of Frick and Grohe [9].

Theorem 1. Let G = (V, E; w), where w : V
⋃

E → R, be a weighted graph
(digraph) whose maximum degree is d, and H an arbitrary k-vertex graph (di-
graph). If G contains an induced (a partial) H-subgraph, then for fixed k and d,
it takes O(n log n) time to find a maximum (minimum) weight induced (partial)
H-subgraph in G.

Proof. We consider induced subgraph first. Let H ′ be a maximum (minimum)
weight induced H-subgraph in G. Generate a random partition (Vg, Vr) of V .
With probability at least 2−(d+1)k, each connected component of H ′ is a green
component. For each connected component Hi of H , we find a maximum (min-
imum) weight Hi-subgraph H∗

i in Gg, which takes O(k!kdn) time. Then with
probability at least 2−(d+1)k, ∪Hi∈HH∗

i is a maximum (minimum) weight in-
duced H-subgraph in G, and therefore we can solve the problem in O(n) expected
time for fixed k and d. We derandomize the algorithm by using (n, (d + 1)k)-
universal sets to obtain a deterministic algorithm that runs in O(n log n) time
for fixed k and d.
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For the partial subgraph case, we use a random partition to partition edges
E into green and red edges (Eg, Er). Let H ′ be a maximum (minimum) weight
partial H-subgraph in G. With probability at least 2−kd (note that k vertices
are incident with at most kd edges), edges in H ′ are green and all other edges
adjacent to edges in H ′ are red, i.e., each connected component of H ′ is a green
component in G[Eg]. The rest of the arguments is the same as the induced
subgraph case and is omitted. ��

2.3 Weighted Independent k-Sets in d-Degenerate Graphs

Let d be a fixed constant, and G = (V, E; w) a weighted d-degenerate graph with
w : V → R. Consider the problem of finding a maximum weight independent k-
set in G, i.e., a set of k mutually nonadjacent vertices of maximum total weight.
Although the problem is W[1]-hard for general graphs [8], it is trivially solvable
for d-degenerate graphs by using random separation.

First we orient edges of G so that the outdegree of each vertex is at most d,
which is easily done in O(dn) time. Then we generate a random partition (Vg, Vr)
of V . The probability that a maximum weight independent k-set V ′ is entirely
inside Gg and the out-neighbourhood of each vertex of V ′ is entirely in Gr is at
least 2−(d+1)k. Therefore, with probability at least 2−(d+1)k, V ′ consists of sinks
of Gg and thus k sinks of largest weights in Gg. We can easily find such a V ′ in
O(kn) time, and thus, with probability at least 2−(d+1)k, we can find a maximum
weight independent k-set in O((d + k)n) time. Again, we can derandomize the
algorithm by using (n, (d+1)k)-universal sets to obtain a deterministic algorithm
that runs in O(n log n) time for fixed k and d.

Remark 2. For fixed constants k and d, we can also use random separation to
find a maximum weight induced k-matching in d-degenerate graphs in O(n log n)
time, and in Section 4 we will combine with colour coding to solve several other
induced subgraph isomorphism problems for d-degenerate graphs.

2.4 Covering Exactly k Edges in General Graphs

We now consider the problem of finding a set of vertices to cover exactly k edges
in a general graph G. W.l.o.g., we may assume that G has no isolated vertices.
Let V ′ be a set of vertices that cover exactly k edges. Clearly |V ′| ≤ k and thus
every vertex in V ′ has degree at most k. Let Vk be the set of vertices of degree
at most k in G and F = G[Vk].

A random partition of Vk is a “good partition” for V ′ if all vertices in V ′ are
green and all vertices in NF (V ′) are red. Since NF (V ′) has at most k vertices,
the probability that a random partition is a good partition for V ′ is at least
2−2k. Given a good partition for V ′, the problem of finding a subset of vertices
to cover exactly k edges is equivalent to the problem of finding a collection
H′ of green components such that the total number of edges in G covered by
vertices in H′ is exactly k. To find such an H′, we compute, for each green
component Hi, the number ei of edges in G covered by vertices in Hi. Since
for any two green components Hi and Hj , the number of edges covered by
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vertices in Hi ∪ Hj equals ei + ej, we can obtain such a collection H′ in O(kn)
time by using the standard dynamic programming algorithm for the subset sum
problem (see [10]). Therefore we can solve the problem in O(m+4kkn) expected
time when G contains such a vertex cover and, using (n, 2k)-universal sets for
derandomization, O(m+4k(2k)O(log k)kn log n) worst-case time, which is O(m+
n log n) for each fixed k.

Remark 3. This example illustrates that random separation is also useful for
finding a solution in a general graph if there is a required solution such that
the total number of elements in the solution and its neighbourhood is bounded
by a function of k. In the full paper, we will solve several problems with such
a property, in particular, some fixed-cardinality optimization problems studied
in [4].

3 Extended Random Separation

We have seen in the previous section that random separation is quite useful
for solving fixed-parameter problems. In this section, we will extend our ba-
sic method to solve a large class of fixed-cardinality optimization problems on
degree-bounded graphs.

A random partition (Vg, Vr) is i-separating, i ≥ 1, if there is a solution S such
that all vertices in S are green and all other vertices at most distance i away
from S are red. We note that our basic idea in random separation is to use a
1-separating partition to separate a solution.

3.1 Maximum Dominating k-Sets for Degree-Bounded Graphs

Let us consider the problem of finding k vertices V ′ in a graph G of maximum de-
gree d to dominate the maximum number of vertices, i.e., to maximize |NG(V ′)|.
First we note that the dynamic programming approach based on a 1-separating
partition does not work as a red vertex can be simultaneously dominated by ver-
tices in several green components. In fact, it seems that no i-separating partition,
i ≥ 1, enables us to use dynamic programming directly based on the information
of each green component.

To solve the problem, we use 2-separating partitions together with the new
idea of merging green components into clusters. Let (Vg, Vr) be a 2-separating
partition of G, and V ′ a maximum dominating k-set such that all vertices in V ′

are green and all other vertices that are at most distance 2 away from V ′ are
red. Observe that for any two green components H1 and H2, if dG(H1, H2) ≤ 2
then V (H1) ⊆ V ′ iff V (H2) ⊆ V ′. Therefore we can merge green components
into clusters so that all vertices in a cluster are either all or none in V ′.

Let GH be the graph whose vertices are green components and whose edges
correspond to pairs of green components with distance at most 2 in G. Then each
connected component of GH corresponds to a cluster of green components, called
2-cgc, whose vertices must be either all or none in V ′. Furthermore, the distance
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in G between any two 2-cgcs is at least 3 and thus a red vertex is dominated by
at most one 2-cgc. Therefore V ′ consists of a collection of 2-cgcs.

We can find all 2-cgcs in O(dn) time by using breadth-first search. For each
2-cgc C, we compute the number φ(C) of vertices dominated by C. Then φ(C1 ∪
C2) = φ(C1) + φ(C2) hold for any two 2-cgcs C1 and C2 as no vertex is simulta-
neously dominated by both C1 and C2. Therefore, given a 2-separating partition,
we can use the standard dynamic programming algorithm for the (0,1)-knapsack
problem based on 2-cgcs to find a maximum dominating k-set in O(kn) time.

Since the probability that a random partition is 2-separating is at least
2−k(1+d2), our algorithm finds, with at least this probability, a maximum dom-
inating k-set in O((d + k)n) time. We can use (n, k(1 + d2))-universal sets to
derandomize the algorithm so that it runs in O(n log n) time for fixed k and d.

3.2 Fixed-Cardinality Optimization Problems on Degree-Bounded
Graphs

The idea for solving the maximum dominating k-set problem can be generalized
to form the base of our extended random separation method. We use a random
partition (Vg , Vr) of V to obtain, with some probability p, an i-separating par-
tition for some i ≥ 1 that separates a solution S from the rest of the graph by i
layers of red vertices.

Let GH be the graph whose vertices are green components and whose edges
correspond to pairs of green components with distance at most i in G. Then
each connected component of GH corresponds to a cluster of green components,
called i-cgc, whose vertices must be either all or none in S. Furthermore, the
distance in G between any two i-cgcs is at least i + 1.

We merge green components into i-cgcs. Then solution S consists of a collec-
tion of i-cgcs. We use dynamic programming based on information of i-cgcs to
find an appropriate collection of i-cgcs to produce a solution and derandomize
the algorithm by using (n, t(k, d))-universal sets for some integer t(k, d).

The extended random separation method is quite powerful and can be used
to solve classes of fixed-cardinality optimization problems on degree-bounded
graphs that require us to find k vertices (edges) to optimize a value φ defined
on vertices (edges).1

Theorem 4. Let k, d ∈ N be fixed constants and G = (V, E) a graph of max-
imum degree d. Let φ : 2V → R ∪ {−∞, +∞} be an objective function to be
optimized. Then it takes O(nmax{c′,c+1} log n) time to find k vertices V ′ in G
that optimizes φ(V ′) if the following conditions are satisfied:

1. For all V ′ ⊆ V with |V ′| ≤ k, φ(V ′) can be computed in O(g(k, d)nc) time
for some function g(k, d) and constant c > 0.

2. There is a positive integer i computable in O(h(k, d)nc′
) time for some

function h(k, d) and constant c′ > 0 such that for all V1, V2 ⊆ V with
|V1| + |V2| ≤ k, if dG(V1, V2) > i then φ(V1 ∪ V2) = φ(V1) + φ(V2).

1 We use φ(S) = −∞ for maximization problems and φ(S) = +∞ for minimization
problems to indicate that S is not a feasible solution.
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Proof. (sketch) First we generate a random partition (Vg, Vr) of V . Let V ′ be an
optimal k-solution. Then the probability that (Vg, Vr) is an i-separating partition
for V ′ is at least 2−t(k,d) for t(k, d) = k + kd

∑i
j=1(d − 1)j−1.

It takes O(h(k, d)nc′
) time to compute i, and O(dn) time to find all i-cgcs of

an i-separating partition. For each i-cgc C, we delete it if it contains more than
k vertices. Otherwise we determine the number of vertices in C and compute
φ(V (C)) in O(g(k, d)nc) time. For any two i-cgcs C1 and C2, their distance
in G is at least i + 1 and thus φ(V (C1 ∪ C2)) = φ(V (C1)) + φ(V (C2)) when
|V (C1)|+|V (C2)| ≤ k. This enables us to use the standard dynamic programming
algorithm for 0-1 knapsack problem to find an optimal k-solution in O(kn) time.
We can derandomize the algorithm by (n, t(k, d))-universal sets to make it run
in O(nmax{c′,c+1} log n) time. ��

Remark 5. Theorem 4 is easily adapted for φ being a property of V ′. Further-
more, the theorem can be generalized to problems of selecting k disjoint (induced
or partial) subgraphs S1, S2, . . . , Sk from a degree-bounded graph (digraph) to
optimize the value of an objective function defined on them, provided that the
total number of vertices in all Si’s is bounded by a function of k and Si’s are
homogeneous, for instance, all Si’s are edges, triangles, trees, or planar graphs.
Further generalizations to hypergraphs are also possible, and we will discuss
these issues in the full paper.

4 Combining with Colour-Coding

As demonstrated in the previous two sections, random separation is very effec-
tive in solving fixed-parameter problems on degree-bounded graphs. However, it
is much more difficult to solve fixed-parameter problems on graphs of bounded
degeneracy. In fact, we can show that several problems that are fixed-parameter
tractable for degree-bounded graphs, including the (induced) subgraph isomor-
phism problem, are W[1]-hard even for 2-degenerate graphs [5].

In this section, we will combine random separation with colour-coding to solve
some induced subgraph isomorphism problems for d-degenerate graphs. Let G
be a d-degenerate graph whose edges have been oriented so that the outdegree
of each vertex is at most d. To solve a fixed-parameter problem for G, we use
random separation first to separate a k-solution from its out-neighbours and then
use colour-coding for the green subgraph to locate a solution. In other words,
we use k + 1 colours, instead of k colours in colour coding, to form a base of our
randomized algorithm, where the role of the extra colour is the same as red in
random separation. Surprisingly, this extra colour allows us to solve problems
that seem not manageable by colour-coding or random separation alone. We
can use universal sets and perfect hash functions together to derandomize the
algorithm.

The following simple observation is one of the main reasons that our combined
approach works for finding certain isomorphic induced subgraphs in d-degenerate
graphs.
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Lemma 1. Let �G be an arbitrary orientation of a graph G and H a subgraph
of G. If N+

�G
(v) ∩ V (H) ⊆ NH(v) for every vertex v in H, then H is an induced

subgraph of G.

Proof. Let �uv be an edge in �G between two arbitrary vertices u and v in H .
Then v ∈ N+

�G
(u)∩V (H) and thus v ∈ NH(u). Therefore uv is an edge of H and

hence H is an induced subgraph of G. ��
We start with the isomorphic induced subtree problem.

Theorem 6. Let k and d be fixed constants, T a tree on k vertices, and G =
(V, E) a d-degenerate graph that contains an induced T -subgraph. Then we can
find an induced T -subgraph in G in O(n) expected time and O(n log2 n) worst-
case time.

Proof. Arbitrarily choose a leaf of T as the root and define a post-order traversal
of T . For convenience, we assume that vertices of T are 1, 2, · · · , k following the
post-order traversal. For each vertex i, let Ti denote the subtree of T rooted at
i, and p(i) the parent of i in T . Then i < p(i) and k is the root of T .

We orient edges of G so that the outdegree of each vertex is at most d, which is
easily done in O(dn) time. For a (k+1)-colouring c : V → {0, 1, 2, . . . , k} of G, an
induced T -subgraph T ′ in G is “well-coloured” if the vertex in T ′ corresponding
to vertex i in T has colour i and every vertex in the out-neighbourhood N+

G (T ′)
of T ′ has colour 0.

Given a (k +1)-colouring c of V , the following algorithm finds a well-coloured
induced T -subgraph T ′ in G if such a T ′ exists. To do so, we process vertices v
of colour i for each i from 1 to k: roughly speaking, when there is a Ti-subgraph
rooted at v, we mark v and add appropriate edges to E′.

Algorithm Iso-Tree
Step 1. Generate a (k + 1)-colouring c : V → {0, 1, 2, . . . , k} of G as follows:

produce a random partition (Vg, Vr) of V , colour all red vertices Vr by colour
0 and then randomly colour all green vertices Vg by colours in {1, 2, . . . , k}.

Step 2. For each vertex v of colour 1, mark it if at most one vertex in N+
G (v)

has colour p(1), and all other vertices in N+
G (v) have colour 0.

Step 3. For each i from 2 to k, process vertices of colour i as follows. For each
vertex v of colour i, mark it if the following conditions are satisfied:
1. For each child j of vertex i in T , there is a marked vertex uj ∈ NG(v) of

colour j.
2. If i �= k then at most one vertex in N+

G (v) has colour p(i).
3. All other vertices in N+

G (v) have colour 0.
Add edge vuj to E′ when v is marked.

Step 4. If there is a marked vertex v of colour k, then E′ contains the edges of
an induced T -subgraph.

The correctness of the algorithm can be established by Lemma 1 and induction
on i. For the running time, it is easy to see that the algorithm takes O(dn)
time for a given k + 1 colouring. The probability that an induced T -subgraph
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in G is well-coloured is at least 2−k(d+1)k−k, and thus the expected time of the
algorithm is O(2k(d+1)kkdn). To derandomize the algorithm, we use (n, k(d+1))-
universal sets and then (n, k)-perfect hash functions. Therefore the derandomized
algorithm runs in O(n log2 n) time for fixed k and d. ��
A slight modification to Iso-Tree enables us to extend the above theorem to T
being an arbitrary k-vertex forest. We can also use the ideas in Iso-Tree to find
induced k-cycles in graphs of bounded degeneracy.

Theorem 7. For fixed constants k and d, we can find an induced k-cycle, if
it exists, in a d-degenerate graph G in O(n2) expected time and O(n2 log2 n)
worst-case time.

Proof. (sketch) Basically, we use algorithm Iso-Tree. The idea is to use it
to find well-coloured induced k-paths with the following modification: mark a
vertex v of colour 1 if there are at most two vertices x, y ∈ N+

G (v) with c(x) = 2
and c(y) = k and all other vertices in N+

G (v) have colour 0.
Then for each marked vertex v of colour 1, independently do a round of the

marking process to find marked vertices Mk(v) of colour k. If there is an edge
between v and some vertex in Mk(v), then we find an induced k-cycle in G.

Since we need to do O(n) rounds of independent marking, the algorithm takes
O(n2) expected time and thus O(n2 log2 n) worst-case time after derandomiza-
tion. ��
Note that it is W[1]-hard to find an induced k-path (k-cycle) in a general
graph [5].

Remark 8. We can easily extend Theorem 6 and Theorem 7 to deal with
weighted graphs. We can also use the idea in Iso-Tree to find in O(n log2 n) time
an induced k-vertex tree (forest) in a d-degenerate graph, which is W[1]-hard
for general graphs [5]. Furthermore, it seems possible that we can generalize the
idea to find, for any k-vertex graph H of tree-width w, an induced H-subgraph
in a d-degenerate graph in O(nw log2 n) time.

5 Concluding Remarks

We have introduced the innovative random separation method for solving fixed-
parameter problems and have demonstrated its power through a wide range of
such problems. It is quite surprising that this new method is much more powerful
and versatile than expected, and we believe that it is a promising and effective
tool for solving fixed-parameter problems. For further development, we list a few
open problems for the reader to ponder.

1. We feel that the power of random separation has not been fully explored for
graphs of bounded degeneracy. What kind of fixed-cardinality optimization
problems can be solved for such graphs? Is it possible to obtain some general
results, such as those for degree-bounded graphs, for planar graphs?
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2. For degree-bounded graphs G, is random separation useful for problems that
do not have the properties in Theorem 4? For instance, the problem of delet-
ing k vertices from G to create as many components as possible.

3. For the complexity of our deterministic algorithms, is it possible to remove
the log n factor? For the combined method, is there a direct way to deran-
domize the algorithms to reduce log2 n to log n?

4. Unless P = NP, it is unavoidable that functions f(k, d) in the running times
of most of our uniformly polynomial-time algorithms are exponential in both
k and d. However, is it possible to reduce f(k, d) to ck

1 +cd
2 for some constants

c1 and c2 independent of k and d?
5. Is there an O(n) expected time algorithm for finding an induced k-cycle in

a d-degenerate graph?
6. Finally, it will be interesting to see how fast our algorithms can run in

practice. For implementation purpose, it is useful to fine tune the probability
that a vertex is coloured green, and a preliminary test of our randomized
algorithm for the exact vertex cover problem shows very encouraging results.
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