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Finding small clusters

Given 1-regular graph with edge weightsw

(Edge) expansion φ(S) ,
w(S, V \ S)

|S|

Task: compute φδ(G) , min
|S|6δn

φ(S)
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Algorithm 1: Randomwalk

For finding small clusters [Spielman–Teng’04, Andersen–Chung–Lang’06, …]

Theorem ([Kwok–Lau’12])
Randomwalk returns S with

φ(S) = O(
√

φ(S∗)/ε) and |S| = O(|S∗|1+ε)

in poly time, when start from nice vertices in S∗

When ε = 1/ log|S∗|
φ(S) = O(

√
φ(S∗) log|S∗|) and |S| = O(|S∗|)
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Analysis: Lovász–Simonovits [’90]

Measure progress of lazy randomwalk mixing with a curve
Large φ(G) implies fast mixing

(lazy = self-loop of weight> 1/2 at every vertex)

More on this later



5/23

Evolving Set Process [Morris’02]

Yields strong bounds onmixing times [Morris–Peres’05]

Evolving Set Process is Markov Chain {St} on subsets of V

Given St, choose U uniformly from [0, 1]

St+1 , {v ∈ V | w(St, v) > U}

St

St+1

small U

large U
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Algorithm 2: Evolving Set Process

Can find small clusters [Andersen–Peres’09, Oveis Gharan–Trevisan’12]

Theorem ([Oveis Gharan–Trevisan’12, AOPT’16])
Evolving Set Process returns S with

φ(S) = O(
√

φ(S∗)/ε) and |S| = O(|S∗|1+ε)

in poly time, when start from nice vertices in S∗

Conjecture [Oveis Gharan’13, AOPT’16]

With non-trivial probability, in fact |S| = O(|S∗|)

If true, will refute Small-Set-Expansion Hypothesis
that φδ(G) is hard to approximate [Raghavendra–Steurer’10]

(cousin of Unique-Games Conjecture)
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Our results: Generalized Lovász–Simonovits analysis

Also measure randomwalk mixing with LS curve

1. Large combinatorial gap ϕ(G) implies fast mixing
2. Large robust vertex expansion φV (G) + laziness imply fast

mixing
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Our results: Combinatorial gap

Large combinatorial gap ϕ(G) implies fast mixing

ϕ(G) , min
|S|=|T|6n/2

1− w(S, T)
|S|

1. Similar definition as φ(G) (which only allows T = S)
2. ϕ(G) = φ(G) for lazy graphs
3. ϕ(G) small if G has near-bipartite component

Corollary (Expansion of graph powers)
φδ/4(Gt) = min{Ω(

√
tφδ(G)), 1/20}

without laziness assumption of [Kwok–Lau’14]
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Our results: Vertex expansion

Robust vertex expansion φV defined by [Kannan–Lovász–Montenegro’06]

Theorem
Evolving Set Process returns S with

φ(S) = O(φ(S∗)/(εφV (S))) and |S| = O(|S∗|1+ε)

in poly time, when start from nice vertices in S∗

Compare: φ(S) = O(
√

φ(S∗)/ε) in [APOT’16]

Implies constant factor approximation when

φV (G) , min
|S|6n/2

φV (S) is Ω(1)

Evolving Set Process analog of spectral partitioning result in
[Kwok–Lau–Lee’16]
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Our results: Hard instances

Theorem
For arbitrarily small δ, some graphs have a hidden small cluster S∗

φ(S∗) 6 ε and |S∗| = δn

but Evolving Set Process never returns S with

φ(S) 6 1− ε and |S| 6 δεn

Refute the conjecture in [Oveis Gharan’13, AOPT’16]
Also limitation of randomwalk, PageRank, etc
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Details:
Generalized Lovász–Simonovits Analysis
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Lovász–Simonovits
Let p be probability vector

Measure randomwalk mixing with curve C(p, x)
C(p, x) , sum of first x largest elements in p for integer x

C(p, x)

xx(1 − φ(G)) x(1 + φ(G))

C(Ap, x)

When lazy C(Ap, x) 6
1

2
(C(p, x(1− φ(G))) + C(p, x(1 + φ(G))))

By induction: C(Atp, x) 6
x
n
+
√
x
(
1− φ(G)2

8

)t
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Generalizing Lovász–Simonovits

xx(1 − ϕ(G)) x(1 + ϕ(G))

C(Ap, x) 6
1

2
(C(p, x(1− ϕ(G))) + C(p, x(1 + ϕ(G))))

ϕ(G) in place of φ(G) laziness not required

ϕ(G) = φ(G) for lazy graphs ⇒ generalizing LS to non-lazy

More intuitive analysis



14/23

Sketch of main ideas

C(Ap, |S|) 6 1

2
(C(p, |S|(1− ϕ(G))) + C(p, |S|(1 + ϕ(G))))

Sort vertices by decreasing dS(i) , w(i, S)

(Ap)(S) =
∑
06i6n

dS(i)p(i)

=
∑
06i6n

(dS(i)− dS(i + 1))
∑
16j6i

p(j)

︸ ︷︷ ︸
6C(p,i)

1

dS(i)− dS(i + 1)

dS(i)
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Sketch of main ideas

C(Ap, |S|) 6 1

2
(C(p, |S|(1− ϕ(G))) + C(p, |S|(1 + ϕ(G))))

From earlier (Ap)(S) 6
∑
06i6n

(dS(i)− dS(i + 1))C(p, i)

1

1
2

dS(i) , w(i, S)

Upper Area 6

1

2

∑
16i6|T|

dS(i) 6

1

2
|S|(1− ϕ(G))
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Details:
Hard instances for Evolving Set Process
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Hard instances: Noisy hypercube

Noisy k-ary hypercube (k = 1/δ)

I kd vertices, each represented by a string of length d over [k]
I Transition probability from x to y:

When x = x1x2 . . . xd, yi =

{
xi prob ε

uniformly from [k] prob 1− ε

Coordinate cut S = {x | x1 = 0} satisfies
φ(S) 6 ε and |S| = δn
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Why local algorithms fail

Lets start from S0 = {~0}

Evolving Set Process treats all vertices with the same Hamming
weight equally

The process only explores sets St that are symmetric under
coordinate permutations (in fact, Hamming balls)

Small Hamming balls on noisy k-ary hypercube are expanding
[Chan–Mossel–Neeman’14]
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Hamming balls B expand

B = {x ∈ [k]d | |x| 6 r}

φ(B) =
Prx∼y [x, y ∈ B]
Prx [x ∈ B]

≈
Prg,h[g, h 6 r′]
Prg[g 6 r′]

Pr
x
[x ∈ B] = Ex [1x1 6=0 + · · ·+ 1xd 6=0 6 r]

≈ Pr[g 6 r′] Gaussian g

Pr
x∼y

[x, y ∈ B] = Ex,y

 ∑
16i6d

1xi 6=0 6 r and
∑
16i6d

1yi 6=0 6 r


≈ Pr[g 6 r′ and h 6 r′] Gaussians g, h
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Expansion in Gaussian space

B = {x ∈ [k]d | |x| 6 r}

φ(B) =
Prx∼y [x, y ∈ B]
Prx [x ∈ B]

≈
Prg,h[g, h 6 r′]
Prg[g 6 r′]

r′→0→ 1

r′ 0
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Symmetry

Obstacles to all local clustering algorithms
Evolving Set Process, randomwalk, PageRank, etc

All fall for the symmetry

Folded noisy hypercubes are hard instances for SDP
Folding necessary to rule out sparse cuts in those instances

In our situation, we cannot fold

Our instances are easy for Lasserre/sum-of-squares
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Summary

New analysis of Lovász–Simonovits curve
Faster convergence with large combinatorial gap ϕ(G) or robust

vertex expansion φV (G)

xx(1 − ϕ(G)) x(1 + ϕ(G))

Limitations of all local clustering algorithms:
Coordinate cuts vs Hamming balls under symmetry
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Open problems

Ω(
√

φ(S∗) log|S∗|) lower bound for Evolving Set Process and
randomwalk?

Thank you


