SSSP on DAGs and Negative Cycle Detection

Jianwen Zhao

Department of Computer Science and Engineering The Chinese University of Hong Kong

[SSSP on DAGs and Negative Cycle Detection](#page-18-0)

œ. Ω

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A}$

SSSP on DAG

Let $G = (V, E)$ be a weighted directed acyclic graph (DAG). Let $w(u, v)$ be the weight of an edge (u, v) in E, which can be positive, 0 or negative.

Given a source vertex $s \in V$, our mission is to design an algorithm which can terminate in $O(|V| + |E|)$ time to find the shortest path distances from s to the vertices in V.

[SSSP on DAGs and Negative Cycle Detection](#page-0-0)

画

 Ω

イロト イ母ト イヨト イヨト

Recall:

- Let $G = (V, E)$ be a DAG, a topological order of G is an ordering of the vertices on V such that, for any edge (u, v) , it must hold that u precedes v in the ordering.
- Every DAG has a topological order, and it be obtained by simply running DFS.

Ξ

 Ω

イロト イ母 トイラト イラト

An Important Lemma

Recall that the shortest-path distances spdist(s, v) from s to $v \in V$ satisfy:

Lemma.

$$
spdist(s, v) = \min_{u \in IN(v)} spdist(s, u) + w(u, v)
$$

where $w(u, v)$ denotes the weight of the edge (u, v) , and $IN(v)$ is the set of in-neighbors of v .

This lemma implies that SSSP is a dynamic programming problem. What is nontrival is how we should fill in the "matrix". Namely, what is the order of v by which we should compute $spdist(s, v)$?

```
For a DAG, the answer is "topological order"!
```
画

 Ω

イロト イ母 トイラト イラト

We are now ready to introduce the algorithm. Our algorithm runs as follows.

- Run DFS on G to obtain a topological order of V.
- Initialize $dist(s) = 0$ and $dist(v) = \infty$ for all $v \in V \{s\}.$
- Process vertices of V according to the topological order. Specifically, when processing a vertex u , relax all the out-going edges (u, v) of u.

After every vertex has been processed, the final $dist(v)$ is the shortest path distance from s to v, for every $v \in V$.

DE 11 Ω

イロト イ押ト イラト イラトー

Example

Soppose that the source vertex is a. We first initialize $dist(v)$ for all $v \in V$.

A topological order of V is: a, b, c, d, g, e, f, h .

э

 QQ

4 0 8

 \overline{AB} -4 B

Example

Following the topological order, we first process a, namely, relax all the out-going edges of a: $(a, b), (a, c)$.

A topological order of V is: a, b, c, d, g, e, f, h .

э

 QQ

in the

4 0 8

Example

Following the topological order, we then process b , namely, relax all the out-going edges of b: $(b, c), (b, d), (b, e)$.

A topological order of V is: a, b, c, d, g, e, f, h .

Ξ

 Ω

-4 B

4 0 8

Example

Following the topological order, we then process c , namely, relax all the out-going edges of c: $(c, d), (c, g)$.

A topological order of V is: a, b, c, d, g, e, f, h .

Ξ

 QQ

4 0 8

Example

Following the topological order, we then process d , namely, relax all the out-going edges of d: $(d, e), (d, f), (d, g)$.

A topological order of V is: a, b, c, d, g, e, f, h .

10/19

Example

Following the topological order, we then process g , namely, relax all the out-going edges of $g: (g, h)$.

A topological order of V is: a, b, c, d, g, e, f, h .

11/19

Example

Similarly, following the topological order, we next process e, f and h and get the final $dist(v)$ for all vertices.

The final $dist(v)$ is the shortest path distance from s (namely, a) to v for every $v \in V$.

12/19

The correctness of our algorithm follows from the following claim:

Claim. At the moment right before v is processed, spdist(u) has already been computed for every $u \in IN(v)$.

The above claim can be easily established by induction on the number ℓ of edges in a shortest path.

Base case: $\ell = 0$. Trivial.

Inductive case: Suppose that the claim is correct for $\ell < i$. Next we will prove the claim on any vertex v for which there is a shortest path π with length $\ell = i$. Let u be the predecessor of v on π . By the topological order, when v is about to be processed, u must have already been processed. Think about what happens when we relax the edge (u, v) .

 $A \left(\overline{A} \right) \rightarrow A \left(\overline{A} \right) \rightarrow A \left(\overline{A} \right) \rightarrow A$

Let $G = (V, E)$ be a weighted directed graph where the weight of an edge (u, v) is $w(u, v)$. Define $\lambda = \infty$.

Consider the following algorithm:

- Pick an arbitrary $s \in V$, initialize $dist(s) = 0$ and $dist(v) = \lambda$ for all $v \in V - \{s\}.$
- Repeat the following $|V| 1$ times: - relax all the edges in E .

Prove: when the algorihtm terminates, G contains a negative cycle if and only if there is an edge $(u, v) \in E$ such that

 $dist(v) > dist(u) + w(u, v)$

[SSSP on DAGs and Negative Cycle Detection](#page-0-0)

重

 $A \left(\overline{A} \right) \rightarrow A \left(\overline{A} \right) \rightarrow A \left(\overline{A} \right) \rightarrow A$

Consider the following graph which contains a negative cycle $b \to d \to e$. Note that $\lambda = 3 + 6 + 4 + 8 + 4 = 25$. Let the source vertex be a, we initialize $dist(a) = 0$ and $dist(v) = \lambda$ for every other vertex v.

There is no ∞ in actual programming. Here it suffices to use $\lambda = 25$ as the "infinity". Think: why?

化间隙 化重变 化重

15/19

Example

After relax all the edges $|V| - 1 = 4$ times by following the alphabetical order of the edges, we have:

Since the edge (b, d) satisfies $dist(d) > dist(b) + w(b, d)$, we know that there must be a negative cycle!

重

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Prove: when the algorihtm terminates, G contains a negative cycle if and only if there is an edge $(u, v) \in E$ such that

$$
dist(v) > dist(u) + w(u, v) \qquad (1)
$$

Proof. 1 The if direction.

We already know that Bellman-Fords algorithm correctly finds all shortest path distances (from s) after $|V| - 1$ rounds of edge relaxations if there are no negative cycles in G.

Hence, if inequality [\(1\)](#page-16-0) still holds after $|V| - 1$ rounds, it means that an even shorter path from s to v has just been discovered. Therefore, in such a case, G must contain a negative cycle.

÷.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Proof (cont.).

2. The only if direction.

Suppose that there is a negative cycle $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_\ell \rightarrow v_1$. Then we have

$$
w(v_{\ell},v_1)+\sum_{i=1}^{\ell-1}w(v_i,v_{i+1})<0
$$
 (2)

Assume on the contrary that (1) does not hold on any edge in E , then we have

$$
dist(v_{i+1}) \leq dist(v_i) + w(v_i, v_{i+1}) \quad \text{for all} \quad i \in [1, \ell-1]
$$
 (3)

$$
dist(v_1) \leq dist(v_\ell) + w(v_\ell, v_1)
$$
 (4)

[SSSP on DAGs and Negative Cycle Detection](#page-0-0)

 \equiv \cap $\alpha \cap$

 $\mathbf{A} \sqcup \mathbf{B} \rightarrow \mathbf{A} \boxplus \mathbf{B} \rightarrow \mathbf{A} \boxplus \mathbf{B} \rightarrow \mathbf{A}$

Proof (cont.).

The inequalities (3) and (4) together imply:

⇒
$$
\sum_{i=1}^{\ell} dist(v_i) \leq \sum_{i=1}^{\ell} dist(v_i) + w(v_{\ell}, v_1) + \sum_{i=1}^{\ell-1} w(v_i, v_{i+1})
$$
(5)
\n⇒
$$
w(v_{\ell}, v_1) + \sum_{i=1}^{\ell-1} w(v_i, v_{i+1}) \geq 0
$$
(6)

which contradicts (2).

 $A \cup B \cup A \cap B \cup A \subseteq B \cup A \subseteq B$

19/19

П

 \equiv \cap $\alpha \cap$