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Fractional Knapsack Problem

Suppose there are n gold bricks, where the i-th gold brick gi weighs
pi > 0 pounds and is worth di > 0 dollars. Given a knapsack with
capacity W > 0, our goal is to put as much gold as possible into the
knapsack such that the total value we can gain is maximized.

Different from the 0-1 Knapsack Problem (which has been discussed in

the special exercise list 3), in this fractional variant, each gold brick is

allowed to be broken into smaller pieces, i.e., we may take any fraction xi
(0 ≤ xi ≤ 1) of gi , then gi will contribute the weight pi · xi to the total

weight in the knapsack and the value di · xi to the total value.
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Fractional Knapsack Problem

More formally, let gi = (di , pi ) represent the value di and the weight pi of
gi , xi be the fraction taken from gi , and W be the capacity of the
knapsack. Our mission is to find a solution, denoted by a vector
X = (x1, x2, · · · , xn), to the following optimization problem:

max
n∑

i=1

di · xi

s.t.
n∑

i=1

pi · xi ≤W
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Example

Assume there are 4 gold bricks {(280, 40), (100, 10), (120, 20), (120, 24)}
and a knapsack with capacity 60. It can be verified that:

X1 = (1, 0, 1, 0) is a solution with

ToatalValue = 280× 1 + 100× 0 + 120× 1 + 120× 0 = 400

ToatalWeight = 40× 1 + 10× 0 + 20× 1 + 24× 0 = 60

And similarly, X2 = (1, 1, 0.5, 0) is another solution with

ToatalValue = 280× 1 + 100× 1 + 120× 0.5 + 120× 0 = 440

ToatalWeight = 40× 1 + 10× 1 + 20× 0.5 + 24× 0 = 60

Obviously, X2 is preferred since it achieves higher value.

The Fractional Knapsack Problem



5/13

Algorithm

Next, we will present a simple greedy algorithm for solving the fractional
knapsack problem.

Define vi = di/pi to be the value-per-pound for the i-th gold brick gi .
The first step of our algorithm is to calculate vi for all i = 1, · · · , n and
sort all gold bricks by vi in descending order.

For simplicity, let us assume v1 ≥ v2 ≥ · · · ≥ vn, namely, the n gold

bricks have already been sorted according to the value-per-pound.
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Algorithm

The algorithm initializes xi = 0 for all i = 1, · · · , n and then do the
following:

1. for i = 1 to n

2. if pi ≤W

3. xi = 1, W ←W − pi

4. else

5. xi = W /pi , break

6. return X = (x1 · · · xn)
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Example

Consider again the previous example with the set of gold bricks
S = {(280, 40), (100, 10), (120, 20), (120, 24)} and W = 60. After
sorting by vi , we have S ′ = {(100, 10), (280, 40), (120, 20), (120, 24)}.

Then the greedy algorithm runs as follows (based on S ′).

1. Since p1 = 10 < W , set x1 = 1 and W = 60− 10 = 50.

2. Since p2 = 40 < W , set x2 = 1 and W = 50− 40 = 10.

3. Since p3 = 20 > W , set x3 = W /p3 = 0.5.

4. return X = [1 1 0.5 0] as the final solution.

Note that this solution gives total value 440 and total weight 60.
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Analysis

Next, we prove that the greedy algorithm presented before gives an
optimal solution to the fractional knapsack problem, namely, the solution
that achieves the maximum value among all the possible choices.

Again, without loss of generality, for the n gold bricks, let us assume that
v1 ≥ v2 ≥ · · · ≥ vn.

Define T to be the set of gold pieces collected by an optimal solution,

henceforth, instead of using X , for clarity, we will use T to denote an

optimal solution.
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Analysis

Lemma 1. There exists an optimal solution that selects exactly the same
fraction x1 (0 < x1 ≤ 1) of g1 as the greedy choice did.

Proof. Let T ∗ be an arbitrary optimal solution that does not select the
same fraction of g1 as the greedy choice did. We will turn T ∗ into
another optimal solution T that selects the same fraction of g1 as the
greedy choice did and thereby finish the proof.

Suppose the greedy algorithm selects a fraction x1 of g1, which implies

W ≥ p1 · x1. Since T ∗ does not take the greedy choice, it can only take

less than x1 fraction of g1.
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Analysis

Proof (cont.). Now, from T ∗, we can take away some gold pieces that
totally weigh p1 · x1 pounds and replace them by the x1 fraction of g1,
which does not violate the capacity requirement, and hence yields
another solution T .

Since g1 has the maximum value-per-pound, T is not worse than T ∗.
Therefore, T is another optimal solution that selects the same fraction x1
of g1 as the greedy choice did.
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Analysis

Lemma 2. Let S = {g1, · · · , gn} be a set of n gold bricks satisfying
v1 ≥ v2 ≥ · · · ≥ vn, and S ′ = S − {g1}. Given a capacity W ≥ p1,
suppose T ′ is an optimal solution to the fractional knapsack problem on
S ′ and W − p1, then T ′ ∪ {g1} is an optimal solution to the fractional
knapsack problem on S and W .

Proof. We will prove by contradiction. Suppose that T ′ ∪ {g1} is not an
optimal solution to the fractional knapsack problem on S and W . By
Lemma 1, there exists an optimal solution T to the fractional knapsack
problem on S and W that selects g1. Denote by V (T ) the total value
achieved by the solution T , then

V (T ′ ∪ {g1}) < V (T )
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Analysis

Proof (cont.). On the other hand, we know that all the other gold
pieces in T − {g1} come from S ′ and since T ′ is an optimal solution to
the fractional knapsack problem on S ′ and W − p1, we have:

V (T ′) ≥ V (T − {g1})
⇒ V (T ′ ∪ {g1}) ≥ V (T )

and thus giving a contradiction.
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Analysis

Theorem. The greedy algorithm gives the optimal solution to the
fractional knapsack problem.

Proof. We will prove by induction on the number n of the gold bricks.

Base Case. n = 1, the algorithm is obviously optimal.

Inductive Step. Assuming that the algorithm is correct for all n ≤ k.
We need to prove that it is also correct for n = k + 1, and this directly
follows from Lemma 2.
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