CSCI3160: Regular Exercise Set 2

Problem 1

- Faster Algorithm for Finding the Number of Crossing Inversions.
- **Problem 2**
 - Give an *O*(*n*log*n*)-time algorithm to solve the dominance counting problem discussed in the class.

Problem: Given an array A of n distinct integers, count the number of inversions.

 \Box An inversion is a pair of (i, j) such that

•
$$1 \leq i < j \leq n$$
.

• A[i] > A[j].

Example: Consider A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6). Then (1, 2) is an inversion because A[1] = 10 > A[2] = 3. So are (1, 3), (3, 4), (4, 5), and so on. There are in total 31 inversions.

- Let: A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6)
 - $A_1 = (2,3,8,9,10), A_2 = (1,4,5,6,7).$
 - The counts of inversions in A_1 and A_2 are known by solving the "counting inversion" problem recursively on A_1 and A_2 .
- □ We need to count the number of crossing inversion (i, j) where *i* is in A_1 and *j* in A_2 .
- Binary search
 - Conducting n/2 binary searches ($O(n \log n)$).
 - Let f (n) be the worst-case running time of the algorithm on n numbers.
 - ✓ $f(n) \le 2f(\lceil n/2 \rceil) + O(n \log n)$
 - ✓ which solves to $f(n) = O(n\log^2 n)$.

Problem1: Faster Algorithm for Finding the Number of Crossing Inversions.

- Let S_1 and S_2 be two disjoint sets of n integers. Assume that S_1 is stored in an array A_1 , and S_s in an array A_2 . Both A_1 and A_2 are sorted in ascending order. Design an algorithm to find the number of such pairs (a, b) satisfying all of the following conditions:
 - ✓ $a \in S1$,
 - ✓ $b \in S2$,
 - ✓ a > b.
 - ✓ Your algorithm must finish in O(n) time.

□ Method

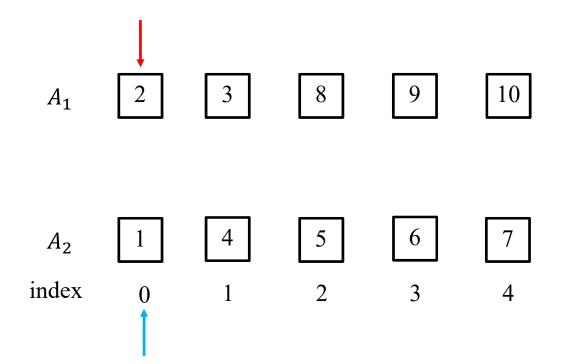
• Merge A_1 and A_2 into one sorted list A.

Let: A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6)

• $A_1 = (2,3,8,9,10), A_2 = (1,4,5,6,7)$

A₂ 1 4 5 6 7

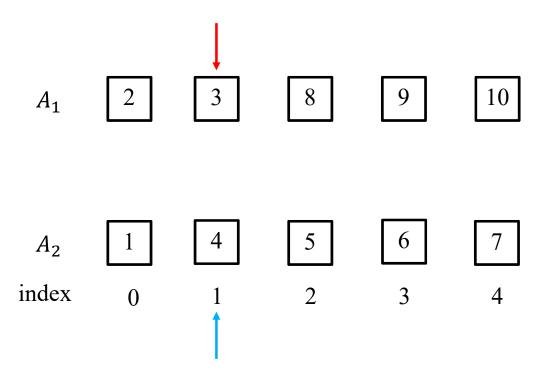
□ We will merge them together and in the meantime maintain the count of crossing inversions.



- Ordered list produced: Nothing yet
- The count of crossing inversions : 0

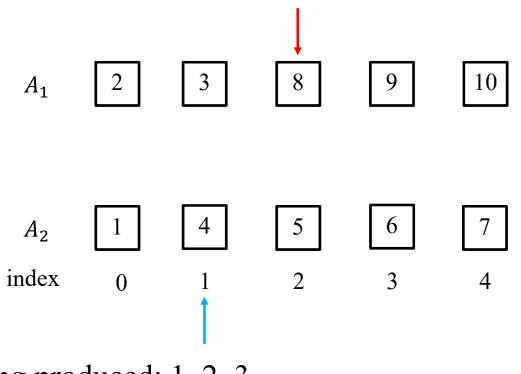


- Ordered list produced: 1
- The count of crossing inversions : 0



- Ordering produced: 1, 2
- The count of crossing inversions : 0 + 1 = 1.

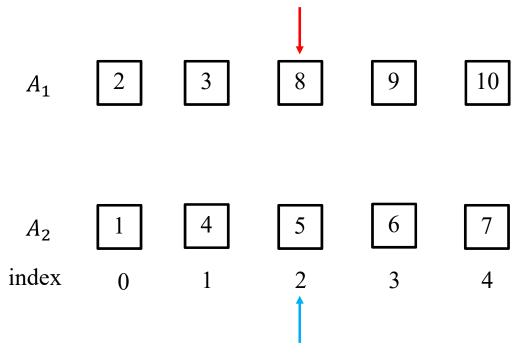
Last count Newly added count (# elements from A2 already in the ordered list produced)



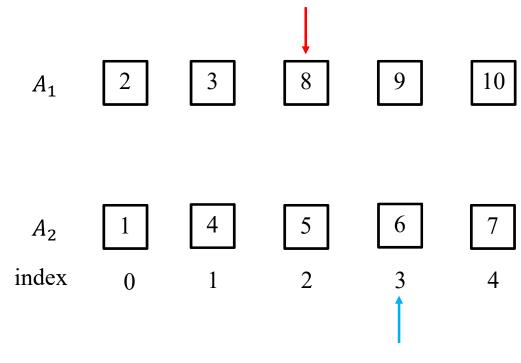
- Ordering produced: 1, 2, 3
- The count of crossing inversions : 1 + 1 = 2.

۲ Newly added count (# Last count elements from A2 already in the ordered list produced)

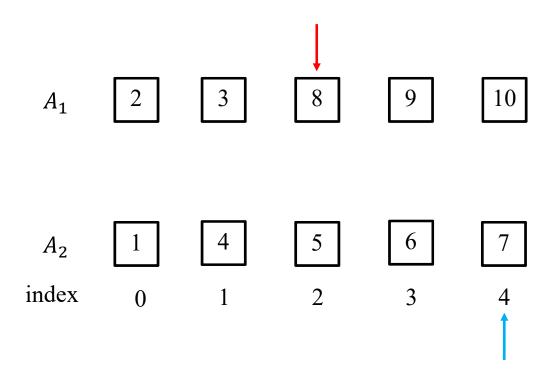
1



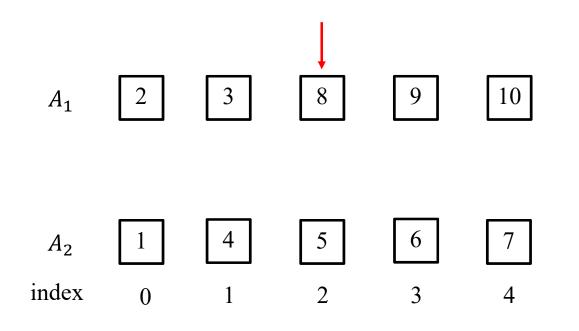
- Ordering produced: 1, 2, 3, 4
- The count of crossing inversions : 2



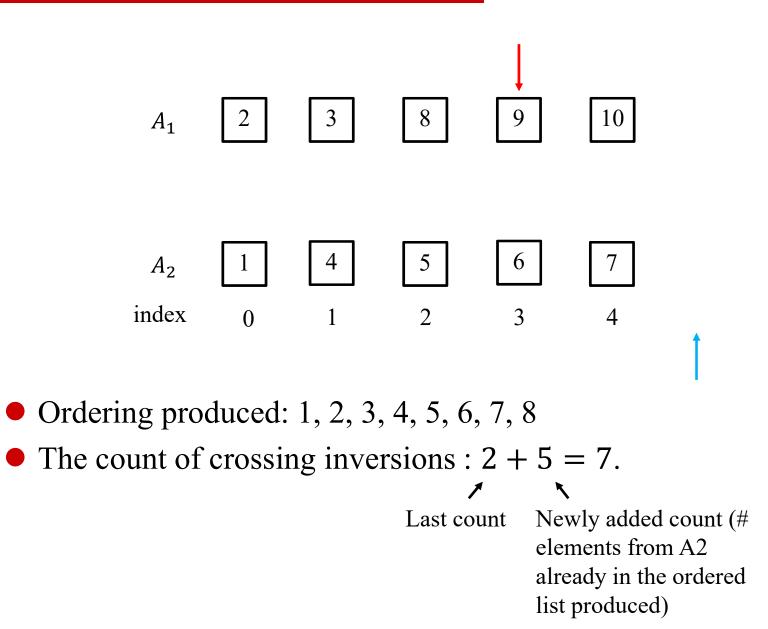
- Ordering produced: 1, 2, 3, 4, 5
- The count of crossing inversions : 2

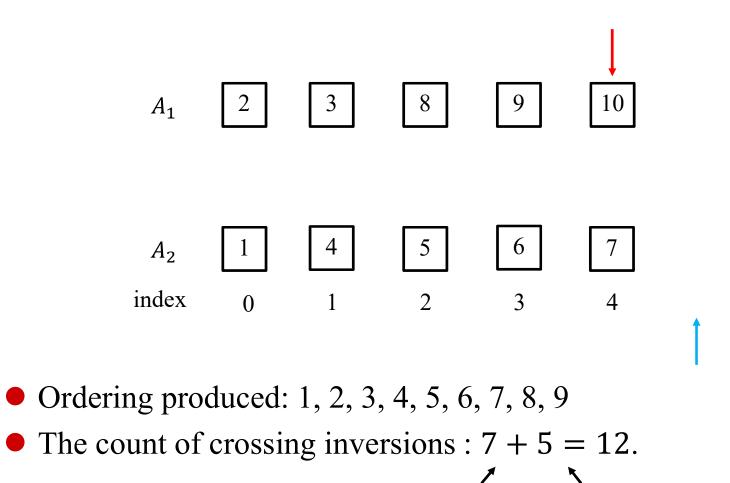


- Ordering produced: 1, 2, 3, 4, 5, 6
- The count of crossing inversions : 2.

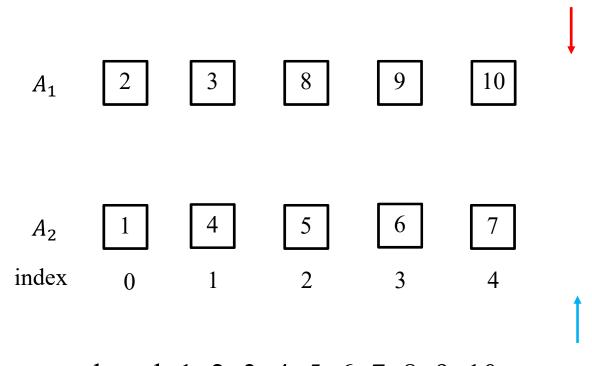


- Ordering produced: 1, 2, 3, 4, 5, 6, 7
- The count of crossing inversions : 2





Last count Newly added count (# elements from A2 already in the ordered list produced)



- Ordering produced: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- The count of crossing inversions : 12 + 5 = 17.

Last count Newly added count (# elements from A2 already in the ordered list produced)

۲

1

□ Analysis

Let f(n) be the worst-case running time of the algorithm on n numbers.

Then

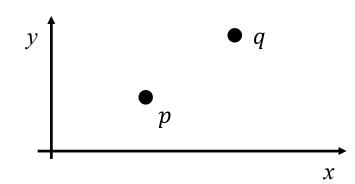
- $f(n) \le 2f([n/2]) + O(n),$
- which solves to $f(n) = O(n \log n)$.

□ Problem 2

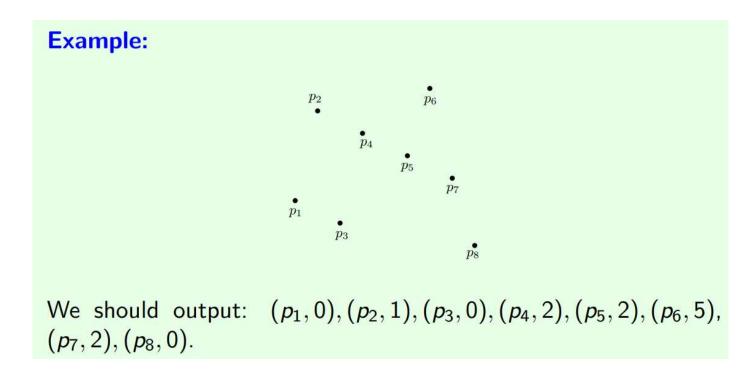
• Give an *O*(*n*log*n*)-time algorithm to solve the dominance counting problem discussed in the class.

□ Point dominance definition

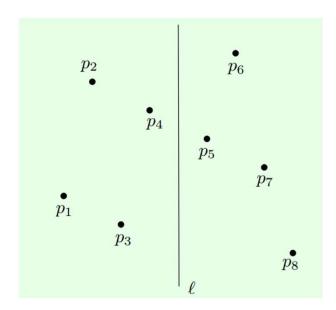
- Denote by N the set of integers. Given a point p in twodimensional space N², denote by p[1] and p[2] its x- and ycoordinates, respectively.
- Given two distinct points p and q, we say that q dominates pif $p[1] \leq q[1]$ and $p[2] \leq q[2]$.



□ Let *P* be a set of n points in \mathbb{N}^2 . Find, for each point $p \in P$, the number of points in *P* that are dominated by *p*.

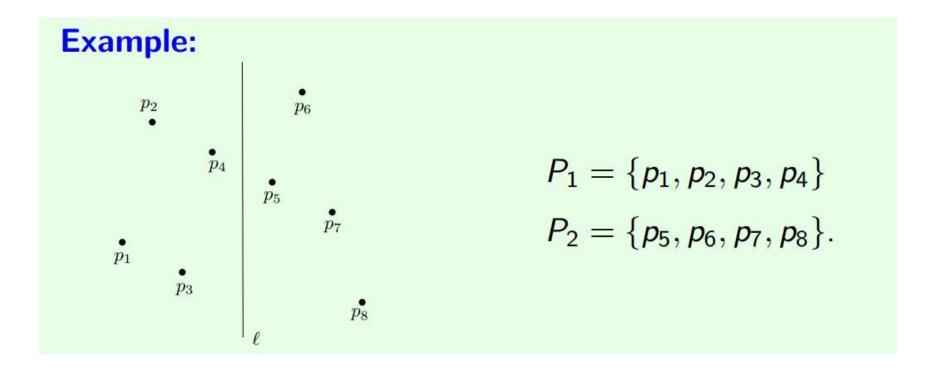


Divide: Find a vertical line l such that P has $\lfloor n/2 \rfloor$ points on each side of the line. (k-selection, O(n) time).



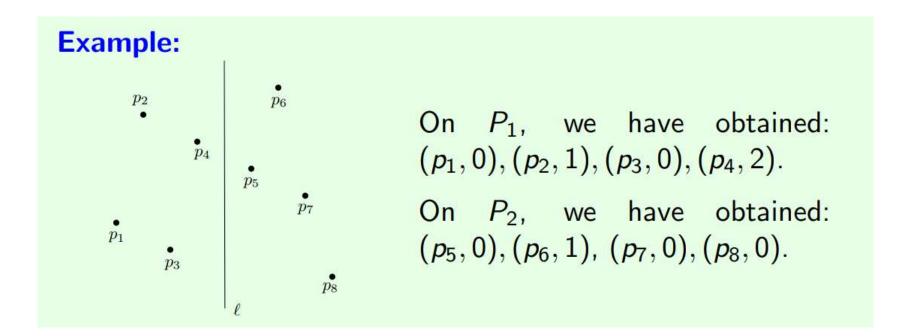
Divide:

- P_1 = the set of points of *P* on the left of *l*.
- P_2 = the set of points of *P* on the right of *l*.



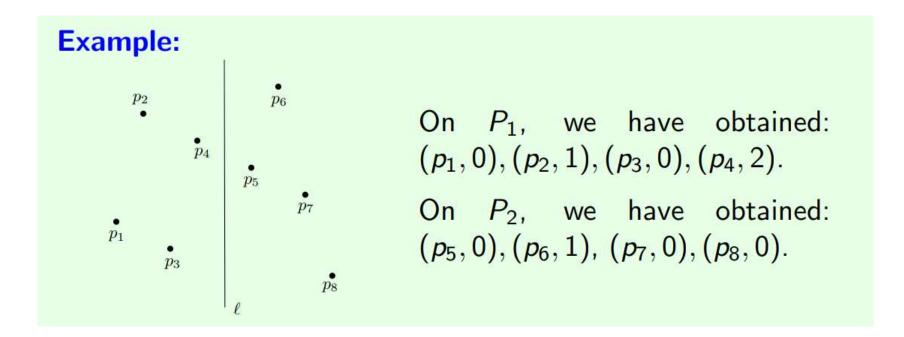
Divide:

• Solve the dominance counting problem on P_1 and P_2 separately.



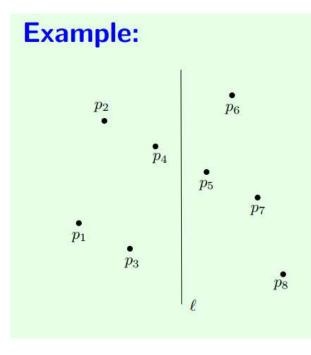
Divide:

Remains to obtain, for each point *p* ∈ *P*₂, how many points in *P*₁ it dominates.



\Box Sort P_1 by y-coordinate

• Then, for each point $p \in P_2$, we can obtain the number of points in P_1 dominated by p using binary search.



 P_1 in ascending of y-coordinate: p_3, p_1, p_4, p_2 .

How to perform binary search to obtain the fact that p_5 dominates 2 points in P_1 ?

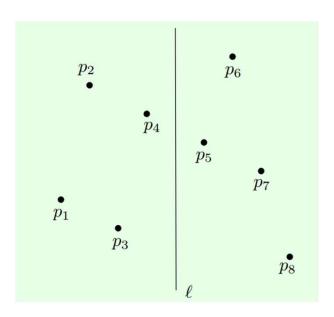
 Search using the y-coordinate of p₅.

Dominance counting: a faster algorithm

- □ Scan the point from P_1 by y-coordinate in ascending order, and conduct the same operation from P_2 synchronously.
 - Then, for each point $p \in P_2$, we can obtain the number of points in P_1 dominated by p using merging the following two sorted arrays, based on y-coordinates.

•
$$P_1 = (p_3, p_1, p_4, p_2)$$

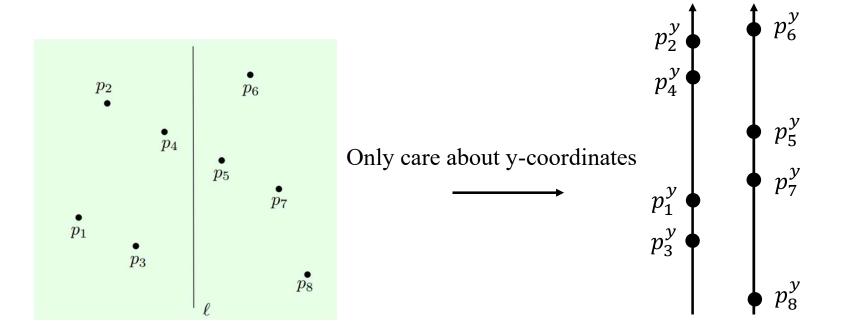
• $P_2 = (p_8, p_7, p_5, p_6)$



□ Scan the points from P_1 by y-coordinate in ascending order. Do the same on P_2 .

•
$$P_1 = (p_3 , p_1 , p_4 , p_2)$$

•
$$P_2 = (p_8, p_7, p_5, p_6)$$



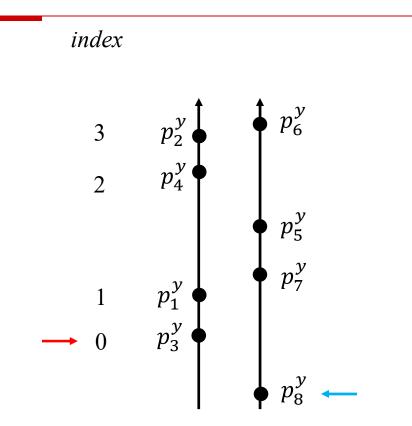
$$\Box P_{1} = (p_{3}, p_{1}, p_{4}, p_{2})$$

$$\Box P_{2} = (p_{8}, p_{7}, p_{5}, p_{6})$$

$$\Box \overline{P} = ()$$

- All the points will be stored in this array in ascending order of y-coordinate.
- To be produced by merging P_1 and P_2 .

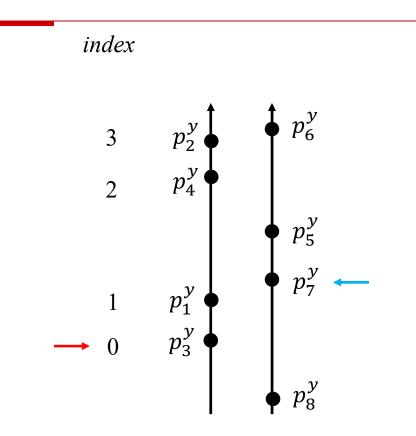
 $\square P_{1} = (p_{3}, p_{1}, p_{4}, p_{2})$ $\square P_{2} = (p_{8}, p_{7}, p_{5}, p_{6})$ $\square State$ $\bullet \overline{P} = ()$



 $\square P_1 = (p_3, p_1, p_4, p_2)$ $\square P_2 = (p_8, p_7, p_5, p_6)$ $\square State$

•
$$\overline{P} = (p_8)$$

• p_8 dominates 0 point in P_1 .

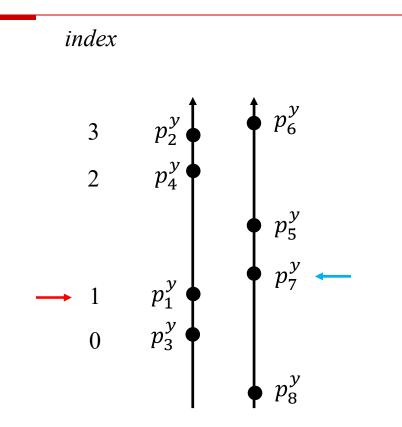


$$\square P_1 = (p_3, p_1, p_4, p_2)$$

$$\square P_2 = (p_8, p_7, p_5, p_6)$$

$$\square State$$

•
$$\overline{P} = (p_8 , p_3)$$

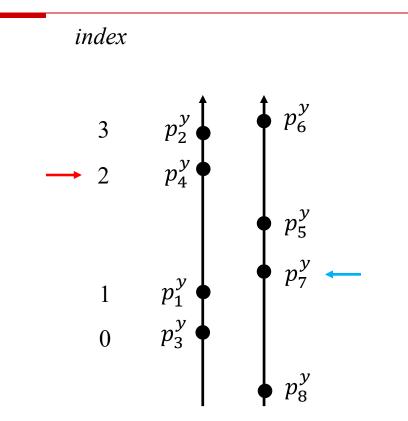


$$\square P_1 = (p_3, p_1, p_4, p_2)$$

$$\square P_2 = (p_8, p_7, p_5, p_6)$$

$$\square State$$

•
$$\overline{P} = (p_8 , p_3 , p_1)$$



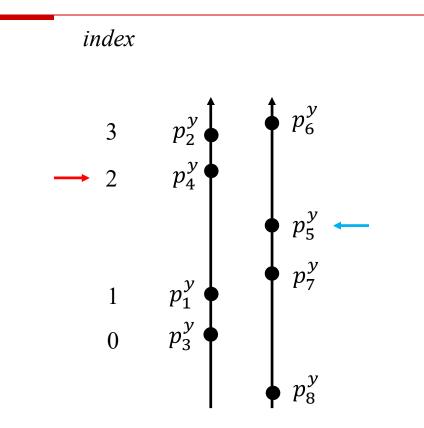
$$\square P_1 = (p_3, p_1, p_4, p_2)$$

$$\square P_2 = (p_8, p_7, p_5, p_6)$$

$$\square State$$

•
$$\overline{P} = (p_8 \ , p_3 \ , p_1 \ , p_7 \)$$

• p_7 dominates 2 point in P_2



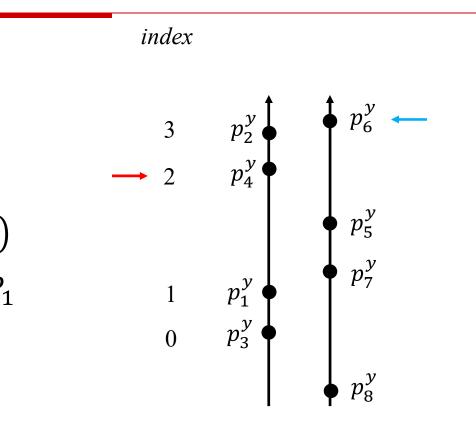
$$\square P_1 = (p_3, p_1, p_4, p_2)$$

$$\square P_2 = (p_8, p_7, p_5, p_6)$$

$$\square State$$

•
$$\overline{P}=\left(p_{8}\text{ , }p_{3}\text{ , }p_{1}\text{ , }p_{7}\text{ , }p_{5}
ight)$$

•
$$p_5$$
 dominates 2 point in P_1

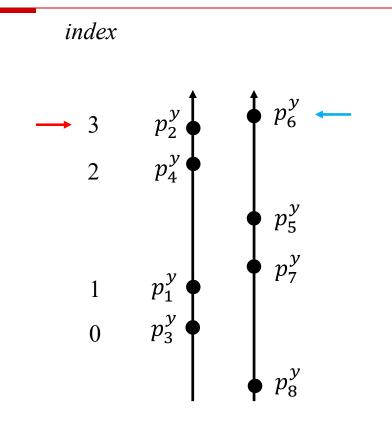


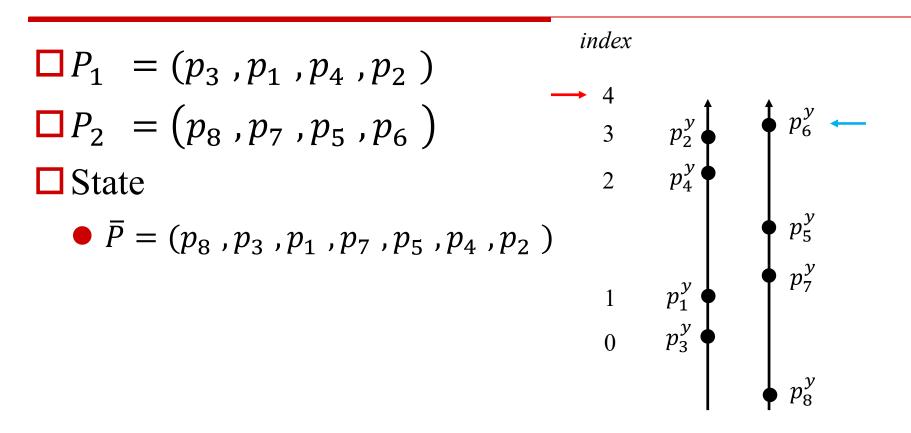
$$\square P_1 = (p_3, p_1, p_4, p_2)$$

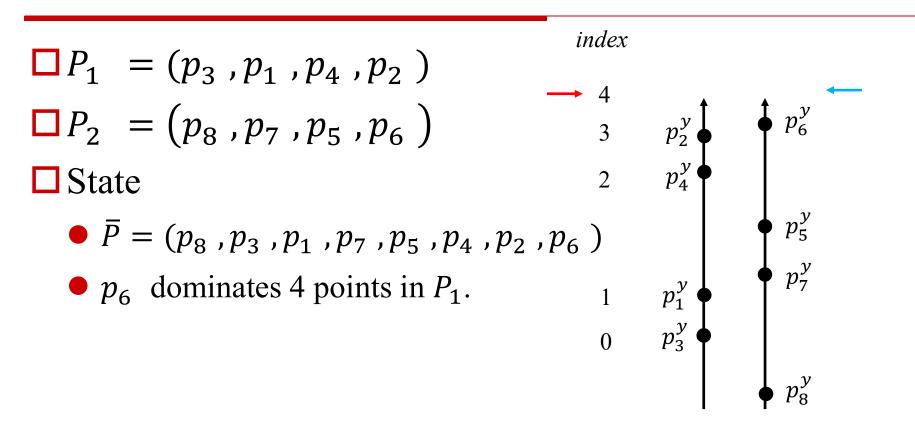
$$\square P_2 = (p_8, p_7, p_5, p_6)$$

$$\square State$$

•
$$\overline{P} = (p_8 \ , p_3 \ , p_1 \ , p_7 \ , p_5 \ , p_4 \)$$







$$\square P_1 = (p_3, p_1, p_4, p_2).$$

$$\square P_2 = (p_8, p_7, p_5, p_6).$$

$$\square \overline{P} = (p_8, p_3, p_1, p_7, p_5, p_4, p_2, p_6).$$

$$\square \text{ Current time complexity: } O(n).$$

□ Analysis

- Let f(n) be the worst-case running time of the algorithm on n points.
- $f(n) \le 2f([n/2]) + O(n)$,
- which solves to $f(n) = O(n \log n)$.