The k-Selection Problem (Deterministic)

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

> \sim \sim The k[-Selection Problem \(Deterministic\)](#page-8-0)

 Ω

The k-Selection Problem

Input

You are given a set S of n integers in an array, the value of n , and also an integer $k \in [1, n]$.

Output

The k-th smallest integer of S.

 Ω

We will describe an algorithm solving the problem deterministically in $O(n)$ time.

Recall:

Define the rank of an integer v in S as the number of elements in S smaller than or equal to v .

For example, the rank of 23 in $\{76, 5, 8, 95, 10, 31\}$ is 3, while that of 31 is 4.

A Deterministic Algorithm

We will assume that n is a multiple of 10 (if not, pad up to 9 dummy elements).

Step 1: Divide A into chunks of size 5, that is: (i) each chunk has 5 elements, and (ii) there are $n/5$ chunks.

Step 2: From each chunk, identify the median of the 5 elements therein. Collect all the $n/5$ medians into an array B .

Step 3: Recursively run the algorithm to find the median p of B .

つくい

A Deterministic Algorithm

Step 4: Find the rank r of p in A . Step 5:

- If $r = k$, return p.
- If $r < k$, produce an array A' containing all the elements of A strictly less than p . Recursively find the k -th smallest element in A' .
- If $r > k$, produce an array A' containing all the elements of A strictly greater than p. Recursively find the $(k - r)$ -th smallest element in A' .

つくい

Lemma 1.

The value of r falls in the range from $\left[(3/10)n \right]$ to $\left[(7/10)n \right] + 7$.

Proof: Let us first prove the lemma by assuming that n is a multiple of 10.

Let C_1 be the set of chunks whose medians are $\leq p$. Let C_2 be the set of chunks whose medians are $> p$.

Hence: $|C_1| = |C_2| = n/10$.

ARABA

Every chunk in C_1 contains at least 3 elements $\leq p$. Hence:

$$
r \ge 3|C_1| = (3/10)n.
$$

Every chunk in C_2 contains at least 3 elements $> p$. Hence:

$$
r \leq n-3|C_1| = (7/10)n.
$$

It thus follows that when *n* is a multiple of 10, $r \in [(3/10)n, (7/10)n]$.

Analysis

Now consider that n is not a multiple of 10. Let n' be the lowest multiple of 10 at least n. Hence, $n \leq n' < n + 10$. By our earlier analysis:

$$
(3/10)n' \le r \le (7/10)n'
$$

\n
$$
\Rightarrow (3/10)n \le r \le (7/10)(n+10) = (7/10)n + 7
$$

\n
$$
\Rightarrow [(3/10)n] \le r \le (7/10)(n+10) < [(7/10)n] + 7
$$

where the last step used the fact that r is an integer.

Analysis

Let $f(n)$ be the worst-case running time of our algorithm on *n* elements.

We know that when *n* is at most a certain constant, $f(n) = O(1)$.

For larger n:

$$
f(n) = f(\lceil (n+10)/5 \rceil) + f(\lceil (7/10)n \rceil + 7) + O(n)
$$

= $f(\lceil n/5 \rceil + 2) + f(\lceil (7/10)n \rceil + 7) + O(n)$

Solving the recurrence gives $f(n) = O(n)$.