CSCI3610: Special Exercise Set 3

Problem 1. If we run the activity-selection algorithm taught in the class on the following input: $S = \{[1, 10], [2, 22], [3, 23], [20, 30], [25, 45], [40, 50], [47, 62], [48, 63], [60, 70]\}$ what is the set of intervals returned?

Problem 2. The following is an alternative greedy algorithm for solving the activity selection problem. Initialize an empty T, and then repeat the following steps until S is empty:

- (Step 1) Add to T the interval I = [s, f] in S that has the largest s-value.
- (Step 2) Remove from S (i) the interval I, and (ii) all the intervals that overlap with I.

Finally, return T as the answer.

Prove: the above algorithm returns an optimal solution. (Hint: think how to cleverly relate the above algorithm to the algorithm taught in the class. Then you would realize there is a two-word proof for this problem: "by XXXXXXXXX", where XXXXXXXX is an 8-letter English word.)

Problem 3 (0-1 Knapsack). Suppose that there are n gold bricks, where the i-th piece weighs p_i bounds and is worth d_i dollars. Given a positive integer W, our goal is to find a set S of gold bricks such that

- the total weight of the bricks in S is at most W, and
- \bullet the total value of the bricks in S is maximized (among all the sets S satisfying the first condition).

Assuming $d_1 \ge d_2 \ge ... \ge d_n$, let us consider the following greedy algorithm:

- 1. $S = \emptyset$
- 2. for i = 1 to n
- 3. if $p_i \leq W$ then
- 4. add p_i to S; $W \leftarrow W p_i$

Prove: the above algorithm does *not* guarantee finding the desired set S.