CSCI3610: Special Exercise Set 2

Problem 1. In the class, we gave an $O(n \log^2 n)$ -time algorithm to count the number of inversions in an array of length n. Improve the running time to $O(n \log n)$.

Problem 2. Prove: if you can solve the dominance counting on n points in f(n) time, then you can count the number of inversions in an integer array of length n in f(n) + O(n) time. (Hint: you can convert the inversion counting problem to an instance of dominance counting.)

Problem 3. Assuming $m \ge n$, give an algorithm to multiply an $m \times n$ matrix with an $n \times m$ matrix in $O(m^2 \cdot n^{0.81})$ time. (Hint: apply Strassen's algorithm to multiply $\lceil m/n \rceil^2$ pairs of order-*n* matrices.)

Problem 4. Assuming $m \ge n \ge t$, give an algorithm to multiply an $m \times n$ matrix with an $n \times t$ matrix in $O(m \cdot n \cdot t^{0.81})$ time. (Hint: apply Strassen's algorithm to multiply pairs of order-t matrices.)