
CSCI3160: Midterm Exam

NOTE 1: Write all your solutions in the answer book.
NOTE 2: For a problem that demands an algorithm of f(n) time, you will still get a full mark
if your algorithm runs in f(n) expected time.
NOTE 3: You do not need to describe any algorithm that has already been discussed in the
lectures or tutorials. For example, if you want to use the k-selection algorithm to find the
median in an array of size n, just say “find the median using the k-selection algorithm in O(n)
time”.

Problem 1 (20%). Consider applying the algorithm discussed in the class to calculate the edit
distance between strings s = “honda” and t = “pony”. Recall that the algorithm fills in a matrix.
Show the values for all the cells in the matrix.

Solution.

p o n y

h 1 2 3 4

o 2 1 2 3

n 3 2 1 2

d 4 3 2 2

a 5 4 3 3

Problem 2 (20%). Assuming m ≥ n, give an algorithm to multiply an m× n matrix A with an
n×m matrix B in O(m2 · n0.81) time. You can assume that m is a multiple of n.

Solution. Cut A and B each into m/n sub-matrices of dimensions n× n. The product AB can be
obtained by multiplying each sub-matrix of A with each sub-matrix of B using Strassen’s algorithm
in O(n2.81) time. The total running time is O((mn )2 · n2.81) = O(m2 · n0.81).

Problem 3 (20%) Let A be an array of n integers. Consider the following recursive function which
is defined for any i, j satisfying 1 ≤ i ≤ j ≤ n:

f(i, j) =

{
0 if i = j

A[i] ·A[j] + minj−1
k=i+1{f(i, k) + f(k, j)} if i 6= j

Design an algorithm to calculate f(1, n) in O(n3) time.

Solution. First set f(i, i) = 0 for all i ∈ [1, n]. In general, after calculating all f(i, j) with j − i = s
(for some integer s ≥ 0), calculate f(i, j) for all i, j satisfying j − i = s + 1. In this way, each f(i, j)
can be obtained in O(n) time. Since there are O(n2) values to compute, the total running time is
O(n3).

Problem 4 (20%). Let S be a set of n integers where n is a power of 2. We want to design an
algorithm to output the i-th smallest integer in S for i = 20, 21, 22, ..., 2log2 n (namely, 1 + log2 n
integers to output in total). For example, suppose that the input array is (8, 10, 2, 4, 12, 16, 14, 6);
we should output 2, 4, 8, and 16. Attempt the following tasks:

(a) (5%) Prove: Suppose that, for some i ≥ 2, we have already collected the i smallest integers in
S into some array A (which is not necessarily sorted). We can obtain in O(i) time the i/2
smallest integers in S.



(b) (2%) Prove: 1 + 2 + 4 + 8 + ... + n/2 + n = O(n).

(c) (13%) Design an algorithm to find the 1 + log2 n integers in O(n) time.

Solution. (a) Use k-selection to find the (i/2)-th smallest integer x in A. Then collect all the
integers in A that are at most x.

(b) Solution obvious and omitted.

(c) Define Si as the set of i smallest integers in S. After obtaining Si, we can find the (i/2)-th
smallest integer in O(i) time. Using (a), Si/2 can also be obtained in O(i) time. The algorithm then
runs recursively from i = n (and ends at i = 2).

Problem 5 (20%). Let I be a set of n intervals, each of which is in the domain [0, U ] for some
very large U � n. It is guaranteed that the union of all the intervals in I equals [0, U ] (i.e., every
value in [0, U ] is covered by at least one interval in I). We want to pick the smallest number of
intervals in I whose union equals [0, U ].

For example, suppose that I = {[10, 15], [0, 35], [20, 50], [55, 60], [5, 30], [0, 25], [40, 60], [45, 50], [25, 45]}
and U = 60. We need to pick at least 3 intervals, e.g., {[0, 35], [20, 50], [40, 60]}. Another optimal
solution is {[0, 25], [25, 45], [40, 60]}.

Attempt the following tasks:

(a) (5%) Suppose that I is the longest interval in I that starts from 0 (e.g., I = [0, 35] in the
above example). Prove: I must appear in an optimal solution.

(b) (15%) Describe an algorithm to find an optimal solution. Your algorithm should finish in
polynomial time, e.g., O(n100).

Solution. (a) Take any optimal solution. Identify the interval I ′ therein that covers 0. Replace I ′

with I, which still yields a solution of the same size.

(b) Find the longest interval I covering 0. Suppose that I = [0, x]. Discard all the intervals in S
that are contained in I. For each remaining interval [a, b] ∈ S, if x ∈ [a, b], trim the interval into
[x, b]. Then recursively to pick the smallest number of intervals in S to cover [x, U ]. Return those
intervals together with I.

2


