
Measuring the Efficiency of
an Algorithm by the Worst Input

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Measuring the Efficiency of an Algorithm by the Worst Input



A significant part of computer science is devoted to understanding the
power of the RAM model in solving specific problems, that is, what
would be a “fastest” algorithm that can produce a correct output on
every input to the underlying problem?

But how do we measure “fast”? One approach—the one we follow in this

course—is to look at the algorithm’s cost on the worst input, as we will

formalize in this lecture.

Yufei Tao Measuring the Efficiency of an Algorithm by the Worst Input



Cost on the Worst Input

Define In, where n is an integer, to be the set of all inputs to a problem
that have the same problem size n.

Given an input I ∈ In, the cost X (I ) of an algorithm A is the length of
its execution on I .

The worst-case cost of A under the problem size n is the
maximum X (I ) of all I ∈ In.

The worst expected cost of A under the problem size n is the
maximum E[X (I )] of all I ∈ In.

Yufei Tao Measuring the Efficiency of an Algorithm by the Worst Input



Example: Dictionary Search

Problem Input: In the memory, a set S of n integers have been
arranged in ascending order at the memory cells from address 1 to n.
The value of n has been placed in Register 1 of the CPU. Another integer
v has been placed in Register 2 of the CPU.

n is the problem size.

In is the set of all possible (S , v).

Goal: Determine whether v exists in S .

Yufei Tao Measuring the Efficiency of an Algorithm by the Worst Input



Example: Dictionary Search

A “yes”-input with n = 16

...

5 9 12 17 26 28 35 38 41 47 52 68 69 72 83 88

16 35

A “no”-input with n = 16

...

5 9 12 17 26 28 35 38 41 47 52 68 69 72 83 88

16 36

Yufei Tao Measuring the Efficiency of an Algorithm by the Worst Input



Example 1: Dictionary Search

The worst-case cost of the binary search algorithm is O(log n).

In other words, on any input in In, the maximum number f (n) of atomic
operations performed by the algorithm must grow no faster than log2 n.

Note: This does not mean f (n) = log2 n.

“f (n) = O(log n)” only says that f (n) could be functions like
10(1 + log2 n), 352 log3 n,

√
log n + 78 log2(n83), etc.

Yufei Tao Measuring the Efficiency of an Algorithm by the Worst Input



Example 2

Consider the following randomized algorithm:

/* A is an array of size n that contains at least one 0 */
1. do
2. r = RANDOM(1, n)
3. until A[r ] = 0
4. return r

What is the expected cost of the algorithm? The answer is “it depends”:

If all numbers in A are 0, the algorithm finishes in O(1) time.

If A has only one 0, the algorithm finishes in O(n) expected time
because

A[r ] has 1/n probability of being 0.
In expectation, we need to repeat n times to find the 0.

Yufei Tao Measuring the Efficiency of an Algorithm by the Worst Input



Example 2 (cont.)

/* A is an array of size n that contains at least one 0 */
1. do
2. r = RANDOM(1, n)
3. until A[r ] = 0
4. return r

Worst-case cost of the algorithm = ∞
Worst expected cost of the algorithm = O(n)

Yufei Tao Measuring the Efficiency of an Algorithm by the Worst Input



Before finishing the lecture, we will tap into the power of random-
ization by witnessing a problem where randomized algorithms are
provably faster than deterministic ones in expected cost.

Yufei Tao Measuring the Efficiency of an Algorithm by the Worst Input



Power of Randomization

Problem “Find-a-Zero”: Let A be an array of n integers, among
which half of them are 0. Design an algorithm to report an arbitrary
position of A that contains a 0.

For example, suppose A = (9, 18, 0, 0, 15, 0, 33, 0). An algorithm can

report 3, 4, 6, or 8.

Yufei Tao Measuring the Efficiency of an Algorithm by the Worst Input



Power of Randomization

1. do
2. r = RANDOM(1, n)
3. until A[r ] = 0
4. return r

The algorithm finishes in O(1) expected time on every input A!

In contrast, any deterministic algorithm must probe at least n/2 integers

of A in the worst case! In other words, any deterministic algorithm must

have a worst case time of Θ(n)—provably slower than the above

randomized algorithm (in expectation).

Yufei Tao Measuring the Efficiency of an Algorithm by the Worst Input


