
Recursion

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Recursion



Recursion permits us to approach a difficult problem using an inductive
view:

Suppose that we know how to solve the same problem but on
smaller inputs, how do we solve the problem on the current size?

This is a very basic technique to design algorithms (think: what
algorithms you know are designed based on recursion?). We will discuss
two examples in this lecture.

Yufei Tao Recursion



Tower of Hanoi

There are 3 rods: A, B, C.

On rod A, there are n disks of different sizes, stacked in such a way that
no disk of a larger size is above a disk of a smaller size.

The other two rods are empty.

A B C

.

.

.

1

n− 1
n

Yufei Tao Recursion



Tower of Hanoi

Permitted operation: Move the top-most disk of a rod to another rod.
Constraint: No disk of a larger size can be above a disk of a smaller size.

A B C

.

.

.

1

n− 1
n

Question: How many operations are needed to move all disks to rod B?

Yufei Tao Recursion



Tower of Hanoi – by Recursion

Suppose that we have solved the problem with n − 1 disks.
We can solve the problem with n disks as follows:

A B C

n

2

.

.

.
n− 1

1

A B C

n

2

.

.

.
n− 1

1

Yufei Tao Recursion



Tower of Hanoi – by Recursion

How many operations are needed by the algorithm?

Suppose that it is f (n). We have clearly f (1) = 1. Recursively:

f (n) = 1 + 2 · f (n − 1)

Solving this recurrence gives: f (n) = 2n − 1.

Yufei Tao Recursion



Greatest Common Divisor (GCD)

Given two non-negative integers n and m, find their GCD, denoted as
GCD(n,m).

For example, GCD(24, 32) = 8. Note: GCD(0, 8) is also 8.

We want to design an algorithm in RAM with small running time.

Yufei Tao Recursion



Greatest Common Divisor (GCD)

Without loss of generality, assume n ≤ m.

Lemma: If n ≤ m, then GCD(n,m) = GCD(n,m − n).

Proof: The lemma is obviously correct if n = m. Next, we focus on the
case where n < m (i.e., m strictly larger). Set x = GCD(n,m − n). We
need to prove two statements:

Statement 1: x divides both m and n.

Statement 2: there is no y > x such that y divides both m and n.

Statement 1 is trivial (proof left to you). In the next slide, we will prove
Statement 2.

Yufei Tao Recursion



Greatest Common Divisor (GCD)

We prove Statement 2 by contradiction. Suppose that such a y exists.
Since y divides both m and n, we can write m = y · c1 and n = y · c2,
where c1 and c2 are positive integers. This leads to

y(c1 − c2) = m − n.

Furthermore, as m > n, we know that

c1 ≥ c2 + 1.

It thus follows that y divides m − n. In other words, it is a common
divisor of n and m − n.

However, we know by definition that x is the greatest common divisor of
n and m − n. This contradicts the assumption that y > x .

Yufei Tao Recursion



Greatest Common Divisor (GCD)

From the previous lemma we get:

Corollary: If n < m, then GCD(n,m) = GCD(n,m mod n).

Proof:
GCD(n,m) = GCD(n,m− n) = GCD(n,m− 2n), ...,= GCD(n,m− t · n)
where t = bm/nc. Note that m − t · n is exactly m mod n.

Yufei Tao Recursion



GCD – Algorithm (Euclid’s Algorithm)

Assume n ≤ m.
If n = 0, then return m
Otherwise, return GCD(n,m mod n).

Example

GCD(24, 32) = GCD(24, 8) = GCD(0, 8) = 8.

Yufei Tao Recursion



GCD – Algorithm (Euclid’s Algorithm)

Next, we will prove that the running time is O(logm).

Suppose we execute the “otherwise line” h times. Let ni ,mi (1 ≤ i ≤ h)
be the two values of “n” and “m” at the i-th execution. Define
si = ni + mi .

We will prove:

Lemma: For i ≥ 2, si ≤ 4
5 · si−1.

This implies h = O(logm) (think: why?).

Yufei Tao Recursion



GCD – Algorithm (Euclid’s Algorithm)

Lemma: For i ≥ 2, si ≤ 4
5 · si−1.

Essentially we need to prove: n + m mod n ≤ 4
5 (n + m).

Case 1: m ≥ (3/2)n.
Thus, n + m mod n < 2n = 4

5 ·
5
2n ≤

4
5 (n + m).

Case 2: m < (3/2)n.
Thus, n + m mod n < n + n/2 = 3

2n = 3
4 · 2n ≤

3
4 (n + m).

We now conclude the proof.

Yufei Tao Recursion


