Recursion

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

4 0 8 - 6 \sim

E

э

 \rightarrow

 299

Recursion permits us to approach a difficult problem using an *inductive* view:

Suppose that we know how to solve the same problem but on smaller inputs, how do we solve the problem on the current size?

This is a very basic technique to design algorithms (think: what algorithms you know are designed based on recursion?). We will discuss two examples in this lecture.

ഹൈ

There are 3 rods: A, B, C.

On rod A, there are n disks of different sizes, stacked in such a way that no disk of a larger size is above a disk of a smaller size.

The other two rods are empty.

Permitted operation: Move the top-most disk of a rod to another rod. **Constraint:** No disk of a larger size can be above a disk of a smaller size.

Question: How many operations are needed to move all disks to rod B?

Tower of Hanoi – by Recursion

Suppose that we have solved the problem with $n - 1$ disks. We can solve the problem with n disks as follows:

Ð

つくへ

∍

Tower of Hanoi – by Recursion

How many operations are needed by the algorithm?

Suppose that it is $f(n)$. We have clearly $f(1) = 1$. Recursively:

$$
f(n) = 1 + 2 \cdot f(n-1)
$$

Solving this recurrence gives: $f(n) = 2ⁿ - 1$.

Greatest Common Divisor (GCD)

Given two non-negative integers n and m , find their GCD, denoted as $GCD(n, m)$.

For example, $GCD(24, 32) = 8$. Note: $GCD(0, 8)$ is also 8.

We want to design an algorithm in RAM with small running time.

 200

Greatest Common Divisor (GCD)

Without loss of generality, assume $n \leq m$.

Lemma: If $n < m$, then $GCD(n, m) = GCD(n, m - n)$.

The proof is elementary and left to you.

Corollary: If $n < m$, then $GCD(n, m) = GCD(n, m \mod n)$.

GCD – Algorithm (Euclid's Algorithm)

Assume $n \leq m$. If $n = 0$, then return m Otherwise, return $GCD(n, m \mod n)$.

 $GCD(24, 32) = GCD(24, 8) = GCD(0, 8) = 8.$

ヨト э

 \sim

 Ω

GCD – Algorithm (Euclid's Algorithm)

Next, we will prove that the running time is $O(\log m)$.

Suppose we execute the "otherwise line" $\,h$ times. Let $\,n_i,\,m_i \,\,(1 \leq i \leq h) \,$ be the two values of "n" and "m" at the *i*-th execution. Define $s_i = n_i + m_i$.

We will prove:

Lemma: For $i \geq 2$, $s_i \leq \frac{4}{5} \cdot s_{i-1}$.

This implies $h = O(\log m)$ (think: why?).

GCD – Algorithm (Euclid's Algorithm)

Lemma: For $i \geq 2$, $s_i \leq \frac{4}{5} \cdot s_{i-1}$.

Essentially we need to prove: $n + m \bmod n \leq \frac{4}{5}(n + m)$.

Case 1:
$$
m \ge (3/2)n
$$
.
Thus, $n + m \mod n < 2n = \frac{4}{5} \cdot \frac{5}{2}n \le \frac{4}{5}(n + m)$.

Case 2: $m < (3/2)n$. Thus, $n + m \mod n < n + n/2 = \frac{3}{2}n = \frac{3}{4} \cdot 2n \leq \frac{3}{4}(n + m)$.

We now conclude the proof.