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So far our study has focused on showing that a problem can be solved
efficiently, namely, in polynomial time. There are, however, many other
problems that

either have been proved to be unsolvable by our computers today
(i.e., no algorithms can possibly exist);

or are solvable but are widely conjectured to admit no
polynomial-time algorithms on our computers.

This lecture marks the beginning of a discussion on computational
complexity, more specifically, on the NP-hardness theory, which is a
powerful tool for arguing that a problem belongs to the class described in
the second bullet.

The theory on computational hardness is built on Turing ma-
chines, which are taught in CSCI3130 (Formal Languages and
Automata Theory). Unsolvable problems — formally known as
undecidable problems — are discussed in that course.
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The NP-hardness theory is, in essence, about decision problems.
Intuitively, these are problems whose outputs are either “yes” or “no”.

Examples of non-decision problems:

Sort an array of n integers.

Count the number of inversions in an array of n integers.

Find the shortest path from a source vertex s to a
destination vertex t.

Examples of decision problems:

Given an array of n integers, are there two identical integers?

Given an array of n distinct integers, are there at least n/100
inversions?

Is there a path from a source vertex s to a destination vertex
t that has a length of at most `, where ` is an integer.
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We will now define formally what is a “decision problem”.
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Encoding an Input

An input sequence σ is a non-empty sequence of integers.

For any problem that can be solved by our computers, every possible

input can be encoded as a sequence of integers, a.k.a. an input sequence

(think: why?).

Yufei Tao Decision Problems and the Polynomial Class



6/20

Not All Input Sequences are Meaningful

On the other hand, not every input sequence encodes a legal input for
the underlying problem.

Example: Suppose that a problem takes as the input an array of
n distinct integers, and that each input should be encoded as an
input sequence of length n. The following input sequences are not
legal inputs:

“325, 325”
“1, 32522, 1”.
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Decision Problem

A decision problem is defined by a pair of (L,Π) where

L is a set of input sequences;

Π is a function that maps L to {0, 1}.

This is actually very intuitive. Each bit string σ ∈ L is a “legal” input to
the problem, while Π(σ) is the output of the problem (recall that a
decision problem should return yes or no).
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As mentioned, a main objective of the NP-hardness theory is to
study which decision problems can be solved in “polynomial time”
on a Turing machine which, however, is excessively complicated
for our purposes.

We will take a different approach by resorting to the RAM model
— the model we have been using throughout the course — to
explain the NP-hardness theory with the same mathematical rigor.
Towards that purpose, we must refine the the RAM model a bit
so that it has the same computing power as a Turing machine, as
far as polynomial time is concerned. As we will see, the refinement
lies in specifying an appropriate value for the word length.
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Refining the RAM model w.r.t. an input sequence
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Storing an Input in the RAM Model

Fix a decision problem (L,Π).

Let σ be an input sequence in L, i.e., an input to the problem.
Define m = |σ|.
Denote by σ[i ] (1 ≤ i ≤ m) the i-th integer in σ.

At the beginning:

m is stored in a register;

σ[1], σ[2], ..., σ[m] are stored in the first m cells of the memory.

Recall that each register/cell is defined as a word, namely, a se-
quence of w bits, where w is the word length. So far we have
never needed to worry about the value of w . But to discuss the
NP-hardness theory, we must limit w to avoid an “unreasonably
powerful” RAM model.
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Choosing the Word Length

In general, we can represent a signed integer x as a sequence that

Starts with a bit to represent the sign (e.g., 0 for negative and 1 for
positive);

and continues with the binary representation of |x |.

Denote by len(x) the number of bits required to represent x .

For example, “−3” is represented as 0011 and “24” as 111000.
Thus, len(−3) = 4 and len(24) = 6.
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Choosing the Word Length (cont.)

We define

N =
m∑
i=1

len(σ[i ])

namely, N is the number of bits required to represent σ. We will refer to
N as the bit length of σ.

We will set the word length as

w = N.
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Algorithms

An algorithm A is said to solve the decision problem (L,Π) if:

given any input sequence σ ∈ L, the algorithm A correctly out-
puts Π(σ), after the registers and memory have been initialized
according to σ in the way described earlier.

The cost of A is defined in the same way as before, namely, the number

of atomic operations performed.
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Equivalence to Turing Machines Up to a Polynomial Factor

This slide is not required in the syllabus, and assumes the knowledge of
Turing machines.

Theorem: A decision problem can be solved by a Turing machine
in polynomial steps if and only if there is a RAM algorithm solving
the problem in time polynomial to N, where N is the bit length of
the input sequence.

The proof is beyond the scope of this course and omitted.

It is important to note that the theorem does not hold if w is al-
lowed to be arbitrarily large (which equivalently says that a memory
cell can represent arbitrarily large integers).
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Be Careful with “Overflows”

Remember that a word of length w can represent integers in
[−2w−1, 2w − 1]. Therefore, when you do arithmetic operations
on two integers (e.g., +,−, ·, /), the result may fall out of the
range, and therefore, cannot be stored in a single word.

The issue can be dealt with in numerous ways. We will follow a
very simple approach: simply disallow such arithmetic operations,
or equivalently, when the result of an operation falls out of the
aforementioned range, a special register will be set to 1 so that the
algorithm knows that an overflow has occurred.
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The P class
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A decision problem (L,Π) is said to be polynomial-time solvable
if there is an algorithm A such that, for any input sequence σ ∈ L,
A solves the instance represented by σ in time polynomial to N,
where N is the bit-length of σ.

P is the set of decision problems that can be solved in polynomial
time.
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Example

Is the following problem in P?
“Given an array of n integers, are there two identical integers?”

The answer is Yes.

An input sequence σ has n integers.
The problem can be easily solved in O(n log n) time with sorting in RAM.
If N is the bit-length of an input sequence σ, it clearly holds that n ≤ N.
Hence, the problem can be settled in O(N logN) time, which is a
polynomial of N.
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Example

Similarly, it is easy to show that all the following problems are in P:

Given an array of n distinct integers, are there at least n/100
inversions?

Is there a path from a source vertex s to a destination vertex t that
has a length of `, where ` is an integer.

Given an undirected weighted graph and an integer t, decide
whether there is a spanning tree whose edges have a total weight of
at most t.

...

Rule of Thumb: If you can find an algorithm whose running time
is polynomial in all the parameters of the problem, then the problem
is (almost for sure) in P.

Yufei Tao Decision Problems and the Polynomial Class



20/20

Ideally, we would like to have all the decision problems in P — this
would suggest that our computers are powerful enough to settle all
those problems efficiently (i.e., in polynomial time). Unfortunately,
it is commonly believed that this is not true. We will delve into
this further in the subsequent lectures.
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