
1/11

Computational Complexity 3:
NP-Completeness and NP-Hardness

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao NP-complete and NP-hard



2/11

Rationales behind NP-Hardness

We have defined earlier the classes P and NP:

P is the set of decision problems that can be solved efficiently;

NP is the set of decision problems that can be verified efficiently.

Recall, however, that a main objective of the NP-hardness theory is to
argue that some decision problems could not be solvable in polynomial
time. The keyword “could” — as you can feel — implies that we are not
absolutely sure.

What a conundrum! How can we “argue for” the unlikely presence of

polynomial-time algorithms when we are “unsure”?

Yufei Tao NP-complete and NP-hard



3/11

Rationales behind NP-Hardness (cont.)

Let us resolve the conundrum.

We will define a set of NP problems — called the NP-complete class —
that have been studied by human beings for several decades, but no
polynomial time solutions are known (examples: 3-SAT, clique decision,
vertex cover decision, set cover decision, etc.)! And yet, if we manage to
find a polynomial time algorithm for any of those problems, then
suddenly all those problems can be solved in polynomial time!

So there are two possibilities:

1 There exists a mysterious algorithm that has escaped the scrutiny of
every one on earth that has ever worked on those problems.

2 Or maybe such an algorithm does not exist at all, meaning that
none of those problems can be solved in polynomial time.

Many people believe it is the second possibility that is true.

Yufei Tao NP-complete and NP-hard



4/11

The NP-Complete class — denoted as NPC — is the set of deci-
sion problems π such that

π is in NP;

if π can be solved in polynomial time, then every problem
in NP can be solved in polynomial time.

Every problem in NPC is said to be NP-complete.

In other words, NPC includes the most difficult decision problems in NP.

If a decision problem π satisfies the second bullet (but not neces-
sarily the first), π is said to be NP-hard.

Yufei Tao NP-complete and NP-hard



5/11

Reduction

Let π1 and π2 be two decision problems.
Next, we will learn a technique to prove a claim the following type:

If we can solve π1 in polynomial time, then we can solve π2 in
polynomial time.

More specifically, suppose that you are given an algorithm A1 solving π1
in polynomial time, how can you use A1 to solve π2 in polynomial time?

Yufei Tao NP-complete and NP-hard



6/11

Reduction

Answer: Convert problem π2 = (L2,Π2) to problem π1 = (L1,Π1), and
then solve the latter using A1.

Let σ2 be an input sequence of π2.
Generate an input sequence σ1 for π1 in polynomial time such that
Π2(σ2) can be inferred from Π1(σ1).
Use A1 to obtain Π1(σ1) in polynomial time.

Overall, we thus have obtained an algorithm solving π2 in polynomial
time.

In general, if a problem π2 can be solved using an algorithm A1

for another problem π1, we say that π2 can be reduced to π1, and
refer to the conversion as a reduction.
If the whole reduction takes polynomial time, we denote the fact
using π2 ≤P π1.

Yufei Tao NP-complete and NP-hard



7/11

Recall:

The NP-Complete class — denoted as NPC — is the set of deci-
sion problems π such that

π is in NP;

if π can be solved in polynomial time, then every problem
in NP can be solved in polynomial time.

If π is an NPC problem, it means that every other problem π′ in NP can
be reduced to π!

What a difficult claim to prove!
You must consider every possible π′, but NP has an infinite number
of problems!

Yufei Tao NP-complete and NP-hard



8/11

Interestingly, once the first NPC problem has been found, it is much
easier to prove the second.

Theorem: Let π∗ be a decision problem in NPC. If π∗ can be
reduced to another decision problem π in polynomial time, then π
must be NP-hard.
Hence, if π is also in NP, π is NP-complete.

Proof: Let π′ be any problem in NP. It holds that

π′ ≤P π
∗ ≤P π

which means that π′ can be reduced to π.

Yufei Tao NP-complete and NP-hard



9/11

The “first” NPC problem is excessively technical for our course. To
apply the theorem on the previous page, however, it suffices to use
any NPC problem π∗. One NPC problem commonly used to prove
NP-hardness is 3-SAT.

Yufei Tao NP-complete and NP-hard



10/11

Recall:

3-SAT

Variable: a boolean unknown x that can be assigned 0 or 1.
Literal: a variable x or its negation x̄ .
Clause: the OR of up to 3 literals.
Formula: the AND of clauses

The 3-SAT problem: Is there an assignment to the variables under
which the formula evaluates to 1?

Example:

(x1 ∨ x2 ∨ x̄3) ∧ (x̄2 ∨ x3 ∨ x4) ∧ (x̄1 ∨ x̄4)

The answer is “yes”. A certificate: x1 = 1, x2 = 0, x3 = 0, x4 = 0.

(x1) ∧ (x̄1 ∨ x2) ∧ (x̄2)

The answer is “no”.

Yufei Tao NP-complete and NP-hard



11/11

Theorem: 3-SAT is NP-complete.

The proof is beyond the scope of the course and omitted.

We will use 3-SAT to prove the NP-completeness of the clique
decision problem in the next lecture.

Yufei Tao NP-complete and NP-hard


