Computational Complexity 2: The NP (Non-Deterministic Polynomial) Class

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Yufei Tao [The NP Class](#page-17-0)

э

 Ω

イロト イ母ト イヨト イヨ

1/18

In the last lecture, we have already defined the class P of decision problems. Today we will define the class NP which is a **superset** of P. Intuitively, NP includes a set of decision problems where it is **easy to** accept or reject a proposed solution.

Ξ

 QQ

イロト イ母 トイラト イラト

2/18

Before formalizing this concept, let us look at a concrete example.

The Clique Decision Problem: Let $G = (V, E)$ be an undirected graph. Given an integer k , decide whether we can find a set S of at least k vertices in V that are mutually connected (i.e., there is an edge between any two vertices in S).

3/18

No polynomial time algorithm is known for the clique decision problem! This means no algorithms are known to solve this problem in time polynomial to $|V|, |E|$ and k. In other words, human beings currently **do** not know if the problem is in P.

However, if someone proposes a candidate solution S (with size k) to us, we can easily decide whether the vertices in S are mutually connected in $O(k^2 \cdot |E|)$, which is polynomial to $|V|, |E|$, and k. If so, S is called a certificate, because it serves as evidence that we should return 1.

Therefore, the problem is in NP.

イロト イ母 トイヨ トイヨ)

4/18

We now start to formalize the problem class NP.

Fix a decision problem (L, Π) .

Define L_1 as the set of input sequences $\sigma \in L$ such that $\Pi(L) = 1$. Define L_0 as the set of input sequences $\sigma \in L$ such that $\Pi(L) = 0$.

Now consider an input sequence $\sigma \in L$. Let N be the bit-length of σ .

Let ϕ be any input sequence whose bit-length is a **polynomial of** N. Denote by σ : ϕ the input sequence obtained by concatenating σ and ϕ . We will refer to σ : ϕ a **polynomial extension** of σ .

The input sequence σ : ϕ then forms the "real input" for an algorithm to process.

 \overline{AB}) \overline{AB}) \overline{AB})

5/18

We say that an algorithm $\mathcal A$ can verify in polynomial time a decision problem (L, Π) if both of the following hold:

- For any input sequence $\sigma \in L_1$ with bit-length N, A returns 1 on at **least one** polynomial extension $\sigma : \phi$ of σ in time polynomial to N.
	- In this case, ϕ is called a **certificate**.
- For any input sequence $\sigma \in L_0$ with bit-length N, A returns 0 on **every** polynomial extension $\sigma : \phi$ of σ in time polynomial to N.

NP is the set of decision problems that can be verified by an algorithm in polynomial time.

6/18

Example: Clique Decision Problem

Consider the clique decision problem with graph $G = (V, E)$ and integer k as the input. Denote by σ the input sequence that encodes G and k. We will assume that the bit-length N of σ satisfies $N = \Omega(|E|)$ and $N = \Omega(|V|)$.

We now give an algorithm $\mathcal A$ that can verify the problem in polynomial time. For any polynomial extension $\sigma : \phi$, we require ϕ to be a sequence of k distinct integers in $[1, |V|]$, corresponding to k vertices in V. If ϕ violates this condition, A returns 0 immediately. Otherwise, A checks whether the k vertices are mutually connected, and returns 1 or 0 accordingly.

If the answer to the problem is "yes", there is a set S of k mutually connected vertices. Clearly our algorithm can verify that S is indeed a certificate in $O(k^2 \cdot |E|) = O(|V|^2|E|) = O(N^3)$ time.

If the answer to the problem is "no", our algorithm always returns 0.

イロメ イ母メ イヨメ イヨメー 君

7/18

 QQ

NP stands for non-deterministic polynomial.

Intuitively, you can think of a problem (L, Π) in NP as being "solvable" in polynomial **parallel** time as follows. Create a very large (often exponential in the bit-length) number of parallel threads, each of which works on a different polynomial extension.

As long as one thread returns 1, we know that the problem should have an output of 1. If no thread returns 1 after some polynomial time, we return 0.

8/18

Most of the decision problems that have ever been studied in computer science are in NP.

Next we will give more examples of NP problems.

Lemma: Every decision problem in P is in NP.

The proof is simple and left to you as an exercise.

Variable: a boolean unknown x that can be assigned 0 or 1. **Literal:** a variable x or its negation \bar{x} . Clause: the OR of up to 3 literals. Formula: the AND of clauses

The 3-SAT problem: Is there an assignment to the variables under which the formula evaluates to 1?

Example:

$$
(x_1 \vee x_2 \vee x_3) \wedge (\bar{x_2} \vee x_3 \vee x_4) \wedge (\bar{x_1} \vee \bar{x_4})
$$

The answer is "yes". A certificate: $x_1 = 1, x_2 = 0, x_3 = 0, x_4 = 0$.

$$
(x_1) \wedge (\bar{x_1} \vee x_2) \wedge (\bar{x_2})
$$

The answer is "no".

11/18

No polynomial-time algorithms are known for the 3-SAT problem. This means that no algorithm can solve the problem in time polynomial to the number *n* of variables and to the number *m* of clauses.

Hence, human beings do not know whether the problem is in P.

The problem is clearly in NP (think: why?).

イロト (何) (日) (日)

12/18

Vertex Cover

Consider an undirected graph $G = (V, E)$.

Consider a subset $S \subseteq V$. S is a vertex cover if every edge $\{u, v\} \in E$ is adjacent to at least one vertex in S, i.e., $u \in S$, $v \in S$, or both.

The vertex cover decision problem: Given an integer k , decide whether there is a vertex cover with at most k vertices.

No polynomial-time algorithms are known for the vertex cover decision problem. This means that no algorithm can solve the problem in time polynomial to $|V|$, $|E|$, and k .

Hence, human beings do not know whether the problem is in P.

The problem is clearly in NP (think: why?).

イロト イ押 トイラト イラト

14/18

Consider any set U , called the *universe*. We are given *n* subsets of $U: S_1, S_2, ..., S_n$.

The set cover decision problem: Given an integer k , decide whether we can find k subsets from $\{S_1, S_2, ..., S_n\}$ such that the union of the k subsets is U.

```
Example: Consider U = \{1, 2, 3, 4, 5, 6, 7, 8\}S_1 = \{1, 2, 3, 4\}S_2 = \{2, 5, 7\}S_3 = \{6, 7\}S_4 = \{1, 8\}S_5 = \{1, 2, 3, 8\}The answer is "no" for k \leq 3 but "yes" for k \geq 4.
```


 $\mathbf{A} \equiv \mathbf{A} + \math$

15/18

 R

No polynomial-time algorithms are known for the set cover decision problem. This means that no algorithm can solve the problem in time polynomial to $m = \sum_{i=1}^{n} |S_i|$.

Hence, human beings do not know whether the problem is in P.

The problem is clearly in NP $(think: why?)$.

イロト イ押 トイヨ トイヨト

16/18

Rule of thumb: Ask yourself — can someone give you a certificate of a polynomial size (i.e., polynomial to all the problem parameters) that allows you to decide that the output should be 1 in polynomial time? If so, the problem is (almost for sure) in NP.

17/18

Let us end today's lecture by throwing out a difficult question:

 $P = NP?$

This is one of the biggest open problems in computer science today.

÷

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

18/18