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In the last lecture, we have already defined the class P of decision
problems. Today we will define the class NP which is a superset of P.
Intuitively, NP includes a set of decision problems where it is easy to
accept or reject a proposed solution.
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Before formalizing this concept, let us look at a concrete example.

The Clique Decision Problem: Let G = (V ,E ) be an undirected
graph. Given an integer k , decide whether we can find a set S of
at least k vertices in V that are mutually connected (i.e., there is
an edge between any two vertices in S).

Example: Consider

a

b

c d

e

f

The answer is “yes” for k ≤ 3, but “no” for k ≥ 4.
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No polynomial time algorithm is known for the clique decision problem!
This means no algorithms are known to solve this problem in time
polynomial to |V |, |E | and k . In other words, human beings currently do
not know if the problem is in P.

However, if someone proposes a candidate solution S (with size k) to us,
we can easily decide whether the vertices in S are mutually connected in
O(k2 · |E |), which is polynomial to |V |, |E |, and k . If so, S is called a
certificate, because it serves as evidence that we should return 1.

Therefore, the problem is in NP.
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We now start to formalize the problem class NP.

Fix a decision problem (L,Π).
Define L1 as the set of input sequences σ ∈ L such that Π(L) = 1.
Define L0 as the set of input sequences σ ∈ L such that Π(L) = 0.

Now consider an input sequence σ ∈ L.
Let N be the bit-length of σ.

Let φ be any input sequence whose bit-length is a polynomial of
N. Denote by σ : φ the input sequence obtained by concatenating
σ and φ. We will refer to σ : φ a polynomial extension of σ.

The input sequence σ : φ then forms the “real input” for an algorithm to

process.
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We say that an algorithm A can verify in polynomial time a decision
problem (L,Π) if both of the following hold:

For any input sequence σ ∈ L1 with bit-length N, A returns 1 on at
least one polynomial extension σ : φ of σ in time polynomial to N.

In this case, φ is called a certificate.

For any input sequence σ ∈ L0 with bit-length N, A returns 0 on
every polynomial extension σ : φ of σ in time polynomial to N.

NP is the set of decision problems that can be verified by an algo-
rithm in polynomial time.
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Example: Clique Decision Problem

Consider the clique decision problem with graph G = (V ,E ) and integer
k as the input. Denote by σ the input sequence that encodes G and k.
We will assume that the bit-length N of σ satisfies N = Ω(|E |) and
N = Ω(|V |).

We now give an algorithm A that can verify the problem in polynomial
time. For any polynomial extension σ : φ, we require φ to be a sequence
of k distinct integers in [1, |V |], corresponding to k vertices in V . If φ
violates this condition, A returns 0 immediately. Otherwise, A checks
whether the k vertices are mutually connected, and returns 1 or 0
accordingly.

If the answer to the problem is “yes”, there is a set S of k mutually
connected vertices. Clearly our algorithm can verify that S is indeed a
certificate in O(k2 · |E |) = O(|V |2|E |) = O(N3) time.

If the answer to the problem is “no”, our algorithm always returns 0.
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NP stands for non-deterministic polynomial.

Intuitively, you can think of a problem (L,Π) in NP as being “solv-
able” in polynomial parallel time as follows. Create a very large
(often exponential in the bit-length) number of parallel threads,
each of which works on a different polynomial extension.

As long as one thread returns 1, we know that the problem should
have an output of 1. If no thread returns 1 after some polynomial
time, we return 0.
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Most of the decision problems that have ever been studied in com-
puter science are in NP.

Next we will give more examples of NP problems.
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Lemma: Every decision problem in P is in NP.

The proof is simple and left to you as an exercise.
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3-SAT

Variable: a boolean unknown x that can be assigned 0 or 1.
Literal: a variable x or its negation x̄ .
Clause: the OR of up to 3 literals.
Formula: the AND of clauses

The 3-SAT problem: Is there an assignment to the variables under
which the formula evaluates to 1?

Example:

(x1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x3 ∨ x4) ∧ (x̄1 ∨ x̄4)

The answer is “yes”. A certificate: x1 = 1, x2 = 0, x3 = 0, x4 = 0.

(x1) ∧ (x̄1 ∨ x2) ∧ (x̄2)

The answer is “no”.
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3-SAT

No polynomial-time algorithms are known for the 3-SAT problem. This
means that no algorithm can solve the problem in time polynomial to the
number n of variables and to the number m of clauses.

Hence, human beings do not know whether the problem is in P.

The problem is clearly in NP (think: why?).
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Vertex Cover

Consider an undirected graph G = (V ,E ).

Consider a subset S ⊆ V .
S is a vertex cover if every edge {u, v} ∈ E is adjacent to at least one
vertex in S , i.e., u ∈ S , v ∈ S , or both.

The vertex cover decision problem: Given an integer k, decide
whether there is a vertex cover with at most k vertices.

Example:

a

b

c d

e

f

The answer is “no” for k ≤ 3, but “yes” for k ≥ 4.
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Vertex Cover

No polynomial-time algorithms are known for the vertex cover decision
problem. This means that no algorithm can solve the problem in time
polynomial to |V |, |E |, and k .

Hence, human beings do not know whether the problem is in P.

The problem is clearly in NP (think: why?).
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Set Cover

Consider any set U, called the universe.
We are given n subsets of U: S1,S2, ...,Sn.

The set cover decision problem: Given an integer k, decide
whether we can find k subsets from {S1,S2, ...,Sn} such that the
union of the k subsets is U.

Example: Consider U = {1, 2, 3, 4, 5, 6, 7, 8}
S1 = {1, 2, 3, 4}
S2 = {2, 5, 7}
S3 = {6, 7}
S4 = {1, 8}
S5 = {1, 2, 3, 8}
The answer is “no” for k ≤ 3 but “yes” for k ≥ 4.
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Set Cover

No polynomial-time algorithms are known for the set cover decision
problem. This means that no algorithm can solve the problem in time
polynomial to m =

∑n
i=1 |Si |.

Hence, human beings do not know whether the problem is in P.

The problem is clearly in NP (think: why?).

Yufei Tao The NP Class



17/18

Rule of thumb: Ask yourself — can someone give you a certificate
of a polynomial size (i.e., polynomial to all the problem parameters)
that allows you to decide that the output should be 1 in polynomial
time? If so, the problem is (almost for sure) in NP.
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Let us end today’s lecture by throwing out a difficult question:

P = NP?

This is one of the biggest open problems in computer science today.
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