
k-Selection

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao k-Selection

The k-Selection Problem

Problem: You are given a set S of n integers in an array, and also
an integer k ∈ [1, n]. Design an algorithm to find the k-th smallest
integer of S .

For example, suppose that S = (53, 92, 85, 23, 35, 12, 68, 74), and k = 3.
You should output 35.

This problem can be easily settled in O(n log n) time by sorting. Next, we
will solve it in O(n) expected time with randomization.

Yufei Tao k-Selection

Idea

To illustrate the idea behind our algorithm, suppose that we pick an
arbitrary element (say the first) v of S .

v

Move elements around so that those smaller than v are placed before v ,
and those larger are placed after v . This requires only O(n) time (no
sorting required).

v< v > v

x elements y elements

If x = k − 1, done—v is what we are looking for.

If x < k − 1, recurse by performing (k − (x + 1))-selection on the y
elements to the right of v .

If x > k − 1, recurse by performing k-selection on the x elements to
the left of v .

Yufei Tao k-Selection

Idea

Obstacle: x or y can be very small (0 if we are unlucky) such that we
can throw away only few elements before recursion!

v< v > v

x elements y elements

Wish: Make x ≥ n/3 and y ≥ n/3.
Anecdote: Randomly select v from the whole array! Wish comes true
with probability 1/3!

New obstacle: Would still fail with probability 2/3.
New anecdote: Choose another v if we fail—3 repeats in expectation!

Yufei Tao k-Selection

Algorithm

The rank of an integer v in S is the number of elements in S
smaller than or equal to v .

For example, suppose that S = (53, 92, 85, 23, 35, 12, 68, 74). Then, the
rank of 53 is 4, and that of 12 is 1.

Finding the rank of v in S (stored in an array) takes only O(|S |) time.

Yufei Tao k-Selection

Algorithm

1 Randomly pick an integer v from S .

2 Get the rank of v—let it be r .

3 If r is not in [n/3, 2n/3], repeat from Step 1.

4 Otherwise:

4.1 If k = r , return v .
4.2 If k < r , produce an array A containing all the integers of S

strictly smaller than v . Recurse on A by looking for the k-th
smallest element in A.

4.3 If k > r , produce an array A containing all the integers of S
strictly larger than v . Recurse on A by looking for the
(k − r)-th smallest element in A.

Yufei Tao k-Selection

Example

Consider that we want to find the 10th smallest element from a set S of
12 elements:

5 12917 3826 3528 41 72 83 88

Suppose that the v we randomly choose is 12, whose rank is 3. This is
not in the range of [4, 8]

So we repeat by randomly choosing another v from S . Suppose that this
time v = 83, whose rank is 11. This is not good either.

Repeat by choosing yet another v , say, 35, whose rank is 7. We generate
an array with only the elements larger than 35:

38 41 72 83 88

Recurse by finding the 3rd smallest element in this array.

Yufei Tao k-Selection

Cost Analysis

Step 1 (on Slide 6) takes O(1) time.
Step 2 takes O(n) time.

How many times do we have to repeat the above two steps?
With a probability 1/3, we can proceed to Step 3 ⇒ need to repeat only
3 times in expectation!

When we are at Step 3, A has at most d2n/3e elements left.

Yufei Tao k-Selection

Cost Analysis

Let f (n) be the expected running time of our algorithm on an array of
size n.

We know from the earlier analysis:

f (1) ≤ O(1)

f (n) ≤ O(n) + f (d2n/3e).

Solving the recurrence gives f (n) = O(n) (master theorem).

Yufei Tao k-Selection

It is worth mentioning that the k-selection problem can actually
be solved in O(n) time deterministically. However, the algorithm
is much more complicated—this demonstrates again the power of
randomization.

Yufei Tao k-Selection

