
1/25

Greedy 3: Huffman Codes

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Greedy 3: Huffman Codes

2/25

Coding

Suppose that we have an alphabet Σ (like the English alphabet). The
goal of coding is to map each alphabet to a binary string—called a
codeword—so that they can be transmitted electronically.

For example, suppose Σ = {a, b, c , d , e, f }. Assume that we agree on
a = 000, b = 001, c = 010, d = 011, e = 100, and f = 101. Then, a
letter such as “bed” will be encoded as 001100011.

We can, however, achieve better coding efficiency (i.e., producing shorter

digital documents) if the frequencies of the letters are known. In general,

more frequent letters should be encoded with less bits. The next slide

shows an example.

Yufei Tao Greedy 3: Huffman Codes

3/25

Example

Suppose we know that the frequencies of a, b, c , d , e, f are
0.1, 0.2, 0.13, 0.09, 0.4, 0.08, respectively.

If we encode each letter with 3 digits, then the average number of digits
per letter is obviously 3.

However, if we adopt the encoding of a = 100, b = 111, c = 101,
d = 1101, e = 0, f = 1100, the average number of digits per letter is:

3 · 0.1 + 3 · 0.2 + 3 · 0.13 + 4 · 0.09 + 1 · 0.4 + 4 · 0.08 = 2.37.

So in the long run, the new encoding is expected to save
1− (2.37/3) = 21% of bits!

Yufei Tao Greedy 3: Huffman Codes

4/25

Example

You probably would ask: why not just encode the letters as:
e = 0, b = 1, c = 00, a = 01, d = 10, f = 11—namely, encode the next
frequent letter using as few bits as possible?

The answer is: you cannot decode a document unambiguously! For
example, consider the string 10: how do you know whether this is two
letters “be”, or just one letter “d”?

This issue arises because the codeword of a letter happens to be a prefix
of the codeword of another letter. We, therefore, should prevent this,
which has led to an important class of codes in coding theory: the prefix
codes (actually “prefix-free” codes would have been more appropriate,
but the name “prefix codes” has become a standard).

Yufei Tao Greedy 3: Huffman Codes

5/25

Example

Consider once again our earlier encoding: a = 100, b = 111, c = 101,
d = 1101, e = 0, f = 1100. Observe that the encoding is “prefix free”,
and hence, allows unambiguous decoding.

For example, what does the following binary string say?

10011010100110011011001101

Yufei Tao Greedy 3: Huffman Codes

6/25

The Prefix Coding Problem

An encoding of the letters in an alphabet Σ is a prefix code if no
codeword is a prefix of another codeword.

For each letter σ ∈ Σ, let freq(σ) denote the frequency of σ. Also,
denote by l(σ) the number of bits in the codeword of σ.

Given an encoding, its average length is calculated as∑
σ∈Σ

freq(σ) · l(σ).

The objective of the prefix coding problem is to find a prefix code for Σ
that has the smallest average length.

Yufei Tao Greedy 3: Huffman Codes

7/25

A Binary Tree View

Let us start to attack the prefix coding problem. A key observation is
that every prefix code can be represented as a binary tree.

A code tree on Σ as a binary tree T satisfying:

Every leaf node of T is labeled with a distinct letter in Σ;
conversely, every letter in Σ is the label of a distinct leaf
node in T .

For every internal node of T , its left edge (if exists) is
labeled with 0, and its right edge (if exists) with 1.

The codeword of a letter σ ∈ Σ can be obtained by concatenating the bit
labels of the edges on the path from the root of T to the leaf σ.

Yufei Tao Greedy 3: Huffman Codes

8/25

Example

Consider once again our earlier encoding: a = 100, b = 111, c = 101,
d = 1101, e = 0, f = 1100. The following is the corresponding code tree:

f d

a c b

e

0 1

0

0 0

0

1

1

1

1

Think: Why must every letter be at the leaf? (Hint: prefix free)

Yufei Tao Greedy 3: Huffman Codes

9/25

Average Length from the Binary Tree

Let T be the code tree corresponding to a prefix code.

Given a letter σ of Σ, denote by d(σ) its depth, which is the level of its
leaf node in T (i.e., the number of edges on the path from the root to
the leaf).

Clearly, the average length of the prefix code equals∑
σ∈Σ

d(σ) · freq(σ).

Yufei Tao Greedy 3: Huffman Codes

10/25

Example

f d

a c b

e

0 1

0

0 0

0

1

1

1

1

The depths of e, a, c , f , d , b are 1, 3, 3, 4, 4, 3, respectively. The average
length of the encoding equals

freq(e) · 1 + freq(a) · 3 + freq(c) · 3 + freq(f) · 4 + freq(d) · 4 + freq(b) · 3.

Yufei Tao Greedy 3: Huffman Codes

11/25

Huffman’s Algorithm

Next, we will present a surprisingly simple algorithm for solving the prefix
coding problem. The algorithm constructs a code tree in a bottom-up
manner.

Let n = |Σ|. At the beginning, there are n stand-alone nodes, each
corresponding to a different letter in Σ. If letter σ corresponds to a node
z , set the frequency of z to freq(σ).

Let S be the set of these n nodes.

Yufei Tao Greedy 3: Huffman Codes

12/25

Huffman’s Algorithm

Then, the algorithm repeats the following until S has a single node left:

1. Remove from S two nodes u1, u2 with the smallest frequencies.

2. Create a node v with u1, u2 as its children. Set the frequency of v
to be the frequency sum of u1 and u2.

3. Insert v into S .

When S has only one node left, we have already obtained the target code
tree. The prefix code derived from this code tree is known as a Huffman
code.

Yufei Tao Greedy 3: Huffman Codes

13/25

Example

Consider our earlier example where the frequencies of a, b, c , d , e, f are
0.1, 0.2, 0.13, 0.09, 0.4, 0.08, respectively.

At the beginning, S has 6 nodes:

fda cb e

4010 20 13 89

The number in each circle represents the frequency of each node (e.g., 10
means 10%).

Yufei Tao Greedy 3: Huffman Codes

14/25

Example

Merge the two nodes with the smallest frequencies 8 and 9. Now S has 5
nodes {a, b, c , e, u1}:

a cb e

4010 20 13 17

d

9

f

8

u1

Yufei Tao Greedy 3: Huffman Codes

15/25

Example

Merge the two nodes with the smallest frequencies 10 and 13. Now S
has 4 nodes {b, e, u1, u2}:

df

b e

4020

98

17

ca

1310

23u2 u1

Yufei Tao Greedy 3: Huffman Codes

16/25

Example

Merge the two nodes with the smallest frequencies 17 and 20. Now S
has 3 nodes {e, u1, u3}:

df

e

40

98

17

ca

1310

23

b

20

37u2 u3

Yufei Tao Greedy 3: Huffman Codes

17/25

Example

Merge the two nodes with the smallest frequencies 23 and 37. Now S
has 2 nodes {e, u4}:

df

e

40

98

17

ca

1310

23

b

20

37

60 u4

Yufei Tao Greedy 3: Huffman Codes

18/25

Example

Merge the two remaining nodes. Now S has a single node left.

df

e

40

98

17

ca

1310

23

b

20

37

60

100

This is the final code tree.

Yufei Tao Greedy 3: Huffman Codes

19/25

It should be fairly straightforward for you to implement the algo-
rithm in O(n log n) time, where n = |Σ|.

Think: Why do we say the algorithm is greedy?

Next, we prove that the algorithm indeed gives an optimal prefix
code, i.e., one that has the smallest average length among all the
possible prefix codes.

Yufei Tao Greedy 3: Huffman Codes

20/25

Crucial Property 1

Lemma: Let T be a code tree corresponds to an optimal prefix code.
Then, every internal node of T must have two children.

Proof: Suppose that the lemma is not true. Then, there is an internal
node u with only one child node v . Imagine removing u as follows:

If u is the root, simply make v the new root.

Otherwise, make v a child node of the parent of u.

The above removal generates a new binary tree whose average length is
smaller than that of T , which contradicts the fact that T is optimal. .

Yufei Tao Greedy 3: Huffman Codes

21/25

Crucial Property 2

Lemma: Let σ1 and σ2 be two letters in Σ with the lowest frequencies.
There exists an optimal prefix code whose code tree has σ1 and σ2 as two
sibling leaves at the deepest level.

Proof: Take an arbitrary prefix code with binary tree T . If σ1 and σ2 are
indeed sibling leaves at the deepest level, then the claim already holds.
Next, we assume that this is not the case.

Suppose T has height h. Recall that the level of a node is the number of
edges on the path from the root to the node. In other words, the deepest
leaves are at h − 1. Take an arbitrary internal node p at level h − 2. By
the previous lemma, p must have two leaves (at level h − 1). Let σ′

1 and
σ′

2 be the letters corresponding to those leaves.

Yufei Tao Greedy 3: Huffman Codes

22/25

Crucial Property 2

Proof (cont.): Now swap σ1 with σ′
1, and σ2 with σ′

2, which gives a new
binary tree T ′. Note that T ′ has σ1 and σ2 as sibling leaves at the
deepest level.

How does the average length of T ′ compare with that of T? As the
frequency of σ1 is no higher than that of σ′

1, swapping the two letters can
only decrease the average length of the tree (i.e., as we are assigning a
shorter codeword to a more frequent letter). Similarly, the other swap
can only decrease the average length.

It follows that the average length of T ′ is no larger than that of T ,
meaning that T ′ is optimal as well.

Yufei Tao Greedy 3: Huffman Codes

23/25

Optimality of Huffman Coding

We are now ready to prove:

Theorem: Huffman’s algorithm produces an optimal prefix code.

Proof: We will prove by induction on the size n of the alphabet Σ.

Base Case: n = 2. In this case, the algorithm encodes one letter with 0,
and the other with 1, which is clearly optimal.

General Case: Assuming that the theorem holds for n = k − 1 (k ≥ 3),
next we show that it also holds for n = k .

Yufei Tao Greedy 3: Huffman Codes

24/25

Optimality of Huffman Coding

Proof (cont.): Let σ1 and σ2 be two letters with the lowest frequencies.
From Property 2, we know that there is an optimal prefix code whose
code tree T has σ1 and σ2 as two sibling leaves at the deepest level. Let
p be the parent of σ1 and σ2.

Construct a new alphabet Σ′ that includes all letters in Σ, except σ1 and
σ2, but a letter p whose frequency equals f (σ1) + f (σ2). Let T ′ be the
tree obtained by removing leaf nodes σ1 and σ2 from T (thus making p a
leaf).

Let T ′ be the binary tree obtained by Huffman’s algorithm on Σ′. Since
|Σ′| = k − 1, we know from the inductive assumption that T ′ is optimal,
meaning that

avg length of T ′ ≤ avg length of T ′

Yufei Tao Greedy 3: Huffman Codes

25/25

Optimality of Huffman Coding

Proof (cont.): Now consider the binary tree T produced by Huffman’s
algorithm on Σ. Clearly, T extends T ′ by simply putting σ1 and σ2 as
child nodes of p. Hence:

avg length of T = avg length of T ′ + f (σ1) + f (σ2)

≤ avg length of T ′ + f (σ1) + f (σ2)

= avg length of T .

This indicates that T also gives an optimal prefix code.

Yufei Tao Greedy 3: Huffman Codes

