
1/12

Dynamic Programming 1: Introduction

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Dynamic Programming 1: Introduction



2/12

This is the beginning of several lectures on the topic of dynamic
programming. This technique aims to avoid repetitive computation in
solving a problem recursively, and often allows us to reduce the running
time from an exponential function to a polynomial function.

Yufei Tao Dynamic Programming 1: Introduction



3/12

A Recurrence Computation Problem

Input: An array A that contains n integers.
Output: Compute the value of F (1, n), where for any i , j ∈ [1, n]

F (i , j) ={
0 if i > j(∑j

k=i A[k]
)

+ minj
k=i

{
F (i , k − 1) + F (k + 1, j)

}
otherwise

Yufei Tao Dynamic Programming 1: Introduction



4/12

Example: Suppose that A = (40, 15, 35, 10)
We have:

F (1, 0) = 0

F (1, 1) = 40,F (2, 2) = 15,F (3, 3) = 35,F (4, 4) = 10

F (1, 2) = 70,F (2, 3) = 65,F (3, 4) = 55

F (1, 3) = 155,F (2, 4) = 85

F (1, 4) = 180

Yufei Tao Dynamic Programming 1: Introduction



5/12

Naive Recursion

The recurrence

F (i , j) ={
0 if i > j(∑j

k=i A[k]
)

+ minj
k=i

{
F (i , k − 1) + F (k + 1, j)

}
otherwise

leads to a straightforward recursive algorithm:

algorithm F (i , j)
1. if i > j return 0

2. common =
∑j

k=i A[k]
3. min =∞
4. for k = i to j
5. v = F (i , k − 1) + F (k + 1, j)
6. if v < min then min = v
7. return common + min

Yufei Tao Dynamic Programming 1: Introduction



6/12

Naive Recursion

The algorithm in the previous slide is extremely expensive — its
running time is Ω(3n)!

The crucial reason behind the inefficiency is that it does plenty of
wasteful computation: e.g., if you run F (1, 4), you will see that the
algorithm computes F (2, 2) repeatedly for 5 times!

This is a typical scenario that can be dealt with using the dynamic
programming technique. Its objective is to avoid as much as pos-
sible re-computation by memorizing the F (i , j) values that have
already been computed.

Yufei Tao Dynamic Programming 1: Introduction



7/12

The “Matrix View” of Dynamic Programming

Let us take a different approach to compute F (i , j).
Treat F as an n × n matrix.

Our goal is to fill in all the cells of the matrix.
We will do so by processing the cells in “groups”:

Define the group number of cell F (i , j) as j − i .
A group consists of all the cells with the same group number.

Note that all the cells with negative group numbers will be filled with 0

for sure.

Yufei Tao Dynamic Programming 1: Introduction



8/12

The “Matrix View” of Dynamic Programming

Lemma: Consider cell F (i , j); denote by g = j − i its group num-
ber. Suppose that all the cells of group number smaller than or
equal to g −1 have been properly filled. Then, we can fill in F (i , j)
in O(n) time.

Proof: Follows directly from the recurrence

F (i , j) =

(
j∑

k=i

A[k]

)
+

j

min
k=i

{
F (i , k − 1) + F (k + 1, j)

}
noticing that each F (i , k − 1) and F (k + 1, j) can be obtained in O(1)

time.

Yufei Tao Dynamic Programming 1: Introduction



9/12

An Algorithm Based on Dynamic Programming

algorithm Fill-F
1. fill all cells F (i , j) satisfying n ≥ i > j ≥ 1 with 0
2. for g = 0 to n − 1

/* g is the group number */
3. for every cell F (i , j) satisfying j − i = g
4. apply the lemma of Slide 8 to compute F (i , j)

Yufei Tao Dynamic Programming 1: Introduction



10/12

Example: Suppose that A = (40, 15, 35, 10)
We fill the cells of F in the following order:

Cells with negative group numbers:
Set F (i , j) = 0 for all i , j satisfying i > j

Cells of Group 0:
F (1, 1) = 40,F (2, 2) = 15,F (3, 3) = 35,F (4, 4) = 10

Cells of Group 1:
F (1, 2) = 70,F (2, 3) = 65,F (3, 4) = 55

Cells of Group 2:
F (1, 3) = 155,F (2, 4) = 85

The only cell with group number 3: F (1, 4) = 180

Yufei Tao Dynamic Programming 1: Introduction



11/12

Now let us analyze the running time of the algorithm in Slide 9.

Line 1 clearly takes O(n2) time.
The for-loop at Lines 2-4 runs for n times.
The for-loop at Lines 3-4 runs for at most n times (each group has at
most n cells).
Line 4 takes O(n) time.

Therefore, overall the algorithm runs in O(n3) time.

Yufei Tao Dynamic Programming 1: Introduction



12/12

The above problem, in spite of its simplicity, illustrates adequately the

rationales behind the dynamic programming technique. Recall that, by

solving the problem recursively in a straightforward manner, we ended up

with an exponential time complexity. Dynamic programming lowered the

complexity to a polynomial function by memorizing the key information

already computed, thus avoiding the need to recompute the same

information again and again.

Yufei Tao Dynamic Programming 1: Introduction


