Dynamic Programming 1: Introduction

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Yufei Tao [Dynamic Programming 1: Introduction](#page-11-0)

э

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

This is the beginning of several lectures on the topic of **dynamic** programming. This technique aims to avoid repetitive computation in solving a problem recursively, and often allows us to reduce the running time from an exponential function to a polynomial function.

Ξ

 QQ

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A}$

A Recurrence Computation Problem

Input: An array A that contains n integers. **Output**: Compute the value of $F(1, n)$, where for any $i, j \in [1, n]$

$$
F(i,j) = \n\begin{cases}\n0 & \text{if } i > j \\
\left(\sum_{k=i}^{j} A[k]\right) + \min_{k=i}^{j} \left\{ F(i, k-1) + F(k+1, j) \right\} & \text{otherwise}\n\end{cases}
$$

E

 QQ

イロト イ母 トイヨ トイヨト

Example: Suppose that $A = (40, 15, 35, 10)$ We have:

$$
\bullet\ \ F(1,0)=0
$$

•
$$
F(1,1) = 40, F(2,2) = 15, F(3,3) = 35, F(4,4) = 10
$$

•
$$
F(1,2) = 70, F(2,3) = 65, F(3,4) = 55
$$

$$
\bullet \ \ F(1,3) = 155, F(2,4) = 85
$$

$$
\bullet\ \ F(1,4)=180
$$

高山 2990

メロメ (御) メモンメモン

The recurrence

$$
F(i,j) = \n\begin{cases}\n0 & \text{if } i > j \\
\left(\sum_{k=i}^{j} A[k]\right) + \min_{k=i}^{j} \left\{ F(i,k-1) + F(k+1,j) \right\} & \text{otherwise}\n\end{cases}
$$

leads to a straightforward recursive algorithm:

\n- algorithm
$$
F(i,j)
$$
\n- 1. if $i > j$ return 0
\n- 2. common $= \sum_{k=i}^{j} A[k]$
\n- 3. $min = \infty$
\n- 4. for $k = i$ to j
\n- 5. $v = F(i, k-1) + F(k+1, j)$
\n- 6. if $v < min$ then $min = v$
\n- 7. return common + min
\n

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A}$

5/12

 299

È.

The algorithm in the previous slide is **extremely expensive** $-$ its running time is $Ω(3ⁿ)!$

The crucial reason behind the inefficiency is that it does plenty of **wasteful** computation: e.g., if you run $F(1, 4)$, you will see that the algorithm computes $F(2, 2)$ repeatedly for 5 times!

This is a typical scenario that can be dealt with using the dynamic programming technique. Its objective is to avoid as much as possible re-computation by **memorizing** the $F(i, j)$ values that have already been computed.

イロト イ母 トイラト イラト

6/12

The "Matrix View" of Dynamic Programming

Let us take a different approach to compute $F(i, j)$. Treat F as an $n \times n$ matrix.

Our goal is to fill in all the cells of the matrix. We will do so by processing the cells in "groups":

Define the **group number** of cell $F(i, j)$ as $j - i$. A group consists of all the cells with the same group number.

Note that all the cells with **negative** group numbers will be filled with 0 for sure.

マタンマミンマミン

7/12

The "Matrix View" of Dynamic Programming

Lemma: Consider cell $F(i, j)$; denote by $g = j - i$ its group number. Suppose that all the cells of group number smaller than or equal to $g - 1$ have been properly filled. Then, we can fill in $F(i, j)$ in $O(n)$ time.

Proof: Follows directly from the recurrence

$$
F(i,j) = \left(\sum_{k=i}^{j} A[k]\right) + \min_{k=i}^{j} \left\{F(i,k-1) + F(k+1,j)\right\}
$$

noticing that each $F(i, k - 1)$ and $F(k + 1, i)$ can be obtained in $O(1)$ time.

画

 Ω

イロメ イ母メ イヨメ イヨメー

An Algorithm Based on Dynamic Programming

algorithm Fill-F

- 1. fill all cells $F(i, j)$ satisfying $n \ge i > j \ge 1$ with 0
- 2. for $g = 0$ to $n 1$
	- /* g is the group number $*/$
- 3. **for** every cell $F(i, j)$ satisfying $j i = g$
- 4. apply the lemma of Slide [8](#page-7-0) to compute $F(i, j)$

∍

 Ω

イロト イ母 トイヨ トイヨト

Example: Suppose that $A = (40, 15, 35, 10)$ We fill the cells of F in the following order:

- Cells with negative group numbers: Set $F(i, j) = 0$ for all *i*, *j* satisfying $i > j$
- Cells of Group 0: $F(1, 1) = 40, F(2, 2) = 15, F(3, 3) = 35, F(4, 4) = 10$

• Cells of Group 1: $F(1, 2) = 70, F(2, 3) = 65, F(3, 4) = 55$

• Cells of Group 2:

$$
F(1,3) = 155, F(2,4) = 85
$$

• The only cell with group number 3: $F(1, 4) = 180$

重

 Ω

 \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{B}

Now let us analyze the running time of the algorithm in Slide [9.](#page-8-0)

Line 1 clearly takes $O(n^2)$ time. The for-loop at Lines 2-4 runs for n times. The for-loop at Lines 3-4 runs for at most n times (each group has at most *n* cells). Line 4 takes $O(n)$ time.

Therefore, overall the algorithm runs in $O(n^3)$ time.

イロト イ母 トイラト イラト

11/12

The above problem, in spite of its simplicity, illustrates adequately the rationales behind the dynamic programming technique. Recall that, by solving the problem recursively in a straightforward manner, we ended up with an exponential time complexity. Dynamic programming lowered the complexity to a polynomial function by **memorizing** the key information already computed, thus avoiding the need to recompute the same information again and again.

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \pmod{2} \mathbf{A} + \mathbf{A} \pmod{2} \mathbf{A}$

12/12