Dynamic Programming 3: Edit Distances

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Yufei Tao [Dynamic Programming 3: Edit Distances](#page-29-0)

Ξ

 QQ

イロト イ母 トイラト イラト

Remember that designing a dynamic programming algorithm requires discovering a **recursive structure** of the underlying problem. Today we will illustrate this through another problem: computing the edit distance of two strings.

イロト イ団 トイヨトイ

2/30

Practical applications often need to evaluate the similarity of two strings. For example, when you mis-type "algorithm" as "alogrthm" at Google, you may be delighted that the search engine has corrected the spelling error for you. But why wouldn't Google think that your mis-spelled word could be "structure"? The answer is, of course, "alogrthm" looks more similar to "algorithm" then to "structure". To make such a clever judgement, we must resort to a metric to quantify string similarity.

We will discuss one popular metric: edit distance.

イロト イ母ト イヨト イヨト

3/30

Given two strings s and t, the edit distance $edit(s, t)$ is the **smallest** number of following **edit operations** to turn s into t :

- **o** Insertion: add a letter
- **O** Deletion: remove a letter
- **Substitution:** replace a character with another one.

э

 QQ

イロト イ母ト イヨト イヨト

Consider that $s =$ abode and $t =$ blog. Then, $edit(s, t) = 4$ because

• We can change abode into blog by 4 operations:

4 delete a \Rightarrow bode **2** insert 1 after $b \Rightarrow b \cdot b$ 3 delete $d \Rightarrow b \log d$. 4 substitute e with $g \Rightarrow b \log b$

IMPOSSIBLE TO do so with at most 3 operations.

Remark: There could be more than one way to change s into t using the smallest number of operations. In the above example, try to come up with another 4 operations to change abode into blog.

AD - 4 E - F

5/30

The Edit Distance Problem

Input: A string s of m letters, and a string t of n letters. **Output**: Their edit distance $edit(s, t)$.

Yufei Tao [Dynamic Programming 3: Edit Distances](#page-0-0)

÷.

 QQ

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A}$

To facilitate the subsequent discussion, let us agree on some notations. Given a string σ , denote by

- \bullet $|\sigma|$ the length of σ , i.e., how many letters there are in σ .
- \bullet $\sigma[i]$ the *i*-th character of σ , for each $i \in [1, |\sigma|]$.
- \bullet σ [x..y] as the substring of σ starting from σ [x] and ending at σ [y]. Specially, if $x > y$, then $\sigma[x,y]$ refers to the empty string.

G.

 Ω

イロメ イタメ イヨメ イヨメ

Recurrence for Computing the Edit Distance

Lemma: Let s and t be two strings with lengths m and n , resp. **1** If $m = 0$, then edit(s, t) = n. **2** If $n = 0$, then edit(s, t) = m. **3** If $m > 0$, $n > 0$, and $s[m] = t[n]$, then edit(s, t) is min $\sqrt{ }$ $\left\langle \right\rangle$ \mathcal{L} $1 + edit(s, t[1..n - 1])$ $1 + edit(s[1..m-1], t)$ $edit(s[1..m-1], t[1..n-1])$ **4** If $m > 0$, $n > 0$, and $s[m] \neq t[n]$, then edit(s, t) is min $\sqrt{ }$ $\left| \right|$ \mathcal{L} $1 + edit(s, t[1..n - 1])$ $1 + edit(s[1..m - 1], t)$ $1 + edit(s[1..m - 1], t[1..n - 1])$

We will prove the lemma at the end.

Yufei Tao [Dynamic Programming 3: Edit Distances](#page-0-0)

G.

 Ω

 \Box \rightarrow \Box \Box \rightarrow \Box \rightarrow \Box \rightarrow \Box \rightarrow

Calculating the recursive function in the preceding slide is a typical application of dynamic programming.

E

 QQ

イロト イ母 トイラト イラト

Structure of the Recurrence

Before proceeding, let us observe several facts about the recurrence on Slide [8:](#page-7-0)

- Function $edit(.,.)$ has 2 parameters.
- The first parameter has $m + 1$ possible choices, namely, $s[1..0], s[1..1], ..., s[1..m].$
- The second parameter has $n+1$ possible choices, namely, $t[1..0], t[1..1], ..., t[1..n].$
- In any case, edit(a, b) depends only on edit(a', b') where a' and b' are **shorter** than a and b , respectively.

These observations motivate us to evaluate the recursion in a bottom-up manner: starting with the short strings and then propagating to the longer ones.

イロト イ押 トイラト イラト・ラー

10/30

Dynamic Programming

Initialize a two-dimensional array A of $m+1$ rows and $n+1$ columns. Label the rows as $0, ..., m$, and the columns as $0, ..., n$.

The algorithm aims to fill in the cell $A[i, j]$ at row i and column j as:

$$
A[i,j] = edit(s[1..i], t[1..j]).
$$

The value of $A[m, n]$ is therefore edit(s, t).

イロト イ母 トイラト イラト

11/30

The target matrix A for $s =$ abode and $t =$ blog:

Yufei Tao [Dynamic Programming 3: Edit Distances](#page-0-0)

メロメメ 御き メミメメ ミメー

12/30

 QQ

目

Dynamic Programming

The algorithm fills in A according to the order below:

- **1** Fill in row 0 and column 0.
- 2 Fill in the cells of row 1 from left to right.
- **3** Fill in the cells of row 2 from left to right.
- 4
- \bullet Fill in the cells of row m from left to right.

∍

 Ω

イロト イ母 トイラト イラト

Dynamic Programming

The recurrence on Slide [8](#page-7-0) guarantees that when we need to fill in a cell $A[i,j]$, all the dependent cells must have been ready.

Specifically, $A[i, j] =$ min $\sqrt{ }$ J \mathcal{L} $1 + A[i, j - 1]$ $1 + A[i-1,j]$ $A[i-1,j-1]$ if $s[i] = t[j]$, or $1 + A[i-1,j-1]$ otherwise

Yufei Tao [Dynamic Programming 3: Edit Distances](#page-0-0)

 \overline{AB}) \overline{AB}) \overline{AB}) \overline{AB}

14/30

 $s =$ abode and $t =$ blog. The matrix A at the beginning:

Yufei Tao [Dynamic Programming 3: Edit Distances](#page-0-0)

目

 QQ

メロメメ 御 メメ きょくきょう

 $s =$ abode and $t =$ blog. Fill in column 0 and row 0:

Yufei Tao [Dynamic Programming 3: Edit Distances](#page-0-0)

暑い 299

メロメ メタメ メミメ メミメー

 $s =$ abode and $t =$ blog. Now we fill in cell $A[1,1]$. Since $s[1] = a$ which is different from $t[1] = b$, the recurrence on Lemma [8](#page-7-0) says that $A[1, 1] =$

$$
\min \left\{ \begin{array}{c} 1 + A[1,0] = 1 \\ 1 + A[0,1] = 1 \\ 1 + A[0,0] = 1 \end{array} \right.
$$

which is 1

∍

 Ω

イロト イ母 トイラト イラトー

 $s =$ abode and $t =$ blog.

Similarly, fill in the other cells in row 1.

Yufei Tao [Dynamic Programming 3: Edit Distances](#page-0-0)

目

 QQ

メロメメ 御き メミメメミメン

 $s =$ abode and $t =$ blog. Now we fill in cell $A[2,1]$. Since $s[1] = b$ which is the same as $t[1] = b$, the recurrence on Lemma [8](#page-7-0) says that $A[2,1] =$

$$
\min \left\{ \begin{array}{c} 1 + A[2, 0] = 3 \\ 1 + A[1, 1] = 2 \\ A[1, 0] = 1 \end{array} \right.
$$

which is 1

∍

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

 $s =$ abode and $t =$ blog. Fill in the other cells of row 2.

The algorithm then continues in the same fashion to fill in rows 3, 4, and 5.

Yufei Tao [Dynamic Programming 3: Edit Distances](#page-0-0)

重し QQ

 $A \cup B \rightarrow A \cup B \rightarrow A \cup B \rightarrow A \rightarrow B \rightarrow A$

Clearly, filling in one cell takes only $O(1)$ time. As there are $O(nm)$ cells to fill, the overall running time is $O(nm)$.

Yufei Tao [Dynamic Programming 3: Edit Distances](#page-0-0)

 \equiv

 QQ

We now proceed to prove the lemma on Slide 8. The proof will not be tested in quizzes and exams.

Yufei Tao [Dynamic Programming 3: Edit Distances](#page-0-0)

∍

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Proof: Cases 1 and 2 are trivial. We will focus on proving Case 3 because Case 4 can be established with a similar argument.

Henceforth, we will consider $m > 0$, $n > 0$, and $s[m] = t[n]$.

Yufei Tao [Dynamic Programming 3: Edit Distances](#page-0-0)

重

 QQ

イロト イ押ト イミト イミト

We will first show

$$
edit(s, t) \leq min \begin{cases} 1 + edit(s, t[1..n-1]) \\ 1 + edit(s[1..m-1], t) \\ edit(s[1..m-1], t[1..n-1]) \end{cases}
$$

In fact, this directly follows from the fact that we can convert s into t in 3 methods:

- 1. Delete $t[n]$, and use the least number of edit operations to change s into $t[1..n-1]$. The total number of edit operations is therefore $1 + edit(s, t[1..n - 1]).$
- 2. Delete $s[m]$, and use the least number of edit operations to change $s[1..m-1]$ into t. The total number of edit operations is therefore $1 + edit(s[1..m - 1], t).$
- 3. Simply change $s[1..m-1]$ into $t[1..n-1]$. The total number of edit operations is therefore $edit(s[1..m-1], t[1..n-1])$.

DE 11 Ω

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

The rest of the proof is to establish the following non-trivial fact:

$$
edit(s, t) \geq min \begin{cases} 1 + edit(s, t[1..n-1]) \\ 1 + edit(s[1..m-1], t) \\ edit(s[1..m-1], t[1..n-1]) \end{cases}
$$

which will complete the whole proof.

Yufei Tao [Dynamic Programming 3: Edit Distances](#page-0-0)

 \equiv

 QQ

 $A \equiv \mathbf{1} + \mathbf{1} +$

Let \overline{SEQ}^* be an optimal sequence of edit operations that converts s into t. Denote by $|SEQ^*|$ the length of SEQ^* . Our objective is to prove that at least one of the following will happen:

- $\textbf{1}$ We can obtain a sequence of $|\mathit{SEQ}^*|-1$ edit operations that converts s into $t[1..n-1]$.
- ? We can obtain a sequence of $|{\mathit{SEQ}}^*|-1$ edit operations that converts $s[1..m-1]$ into t.
- $\overline{\textbf{3}}$ We can obtain a sequence of $|{SEQ^*}|$ edit operations that converts $s[1..m - 1]$ into $t[1..n - 1]$.

This will establish the inequality of the previous slide (think: why?).

26/30

We will distinguish three possibilities.

Possibility 1: $s[m]$ matches $t[n]$ at the end of SEQ^* .

In this case, *SEQ** cannot have deleted or substituted *s*[*m*] (think: why so for substitution?). Hence, $S \bar{E} Q^*$ itself is a sequence of operations that converts $s[1..m-1]$ into $t[1..n-1]$. Therefore, Case 3 happens.

 $A \oplus B$ and $A \oplus B$ and $A \oplus B$

27/30

Possibility 2: s[m] does not match $t[n]$ at the end, but SEQ^* never deletes it.

Claim: SEQ^{*} must contain an operation which inserts the character matching $t[n]$.

Proof: As s[m] does not match t[n], there must be another character say c — that matches $t[n]$ at the end of $S E Q^{\ast}.$ Furthermore, c must be **after** s[m], because s[m] (probably having gone through some substitution) remains till the end and needs to match some character in t other than t[n]. Therefore, c must have been inserted by SEQ^{*}.

When $S \cancel{E} Q^*$ inserted c , it must have given c the value $t[n]$. Think: why?

Hence, by discarding the operation described in the claim, we turn SEQ^* into a sequence of operations that converts s into $t[1..n-1]$. Therefore, Case 1 happens.

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{B} \mathbf{B}$

28/30

Possibility 3: SEQ^* deletes $s[m]$.

In this case, after discarding the operation deleting $s[m]$, SEQ^* becomes a sequence of operations that converts $s[1..m-1]$ into t. Therefore, Case 2 happens.

∍

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

This completes the whole proof of the lemma on Slide 8.

Yufei Tao [Dynamic Programming 3: Edit Distances](#page-0-0)

イロン イ団 メイミン イミン

30/30

 QQ 暑い