
1/31

Dynamic Programming 3: Edit Distances

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Dynamic Programming 3: Edit Distances

2/31

Remember that designing a dynamic programming algorithm re-
quires discovering a recursive structure of the underlying problem.
Today we will illustrate this through another problem: computing
the edit distance of two strings.

Yufei Tao Dynamic Programming 3: Edit Distances

3/31

Practical applications often need to evaluate the similarity of two strings.
For example, when you mis-type “algorithm” as “alogrthm” at Google,
you may be delighted that the search engine has corrected the spelling
error for you. But why wouldn’t Google think that your mis-spelled word
could be “structure”? The answer is, of course, “alogrthm” looks more
similar to “algorithm” then to “structure”. To make such a clever
judgement, we must resort to a metric to quantify string similarity.

We will discuss one popular metric: edit distance.

Yufei Tao Dynamic Programming 3: Edit Distances

4/31

Edit Distance

Given two strings s and t, the edit distance edit(s, t) is the smallest
number of following edit operations to turn s into t:

Insertion: add a letter

Deletion: remove a letter

Substitution: replace a character with another one.

Yufei Tao Dynamic Programming 3: Edit Distances

5/31

Example

Consider that s = abode and t = blog. Then, edit(s, t) = 4 because

We can change abode into blog by 4 operations:

1 delete a ⇒ bode
2 insert l after b ⇒ blode
3 delete d ⇒ bloe.
4 substitute e with g ⇒ blog

Impossible to do so with at most 3 operations.

Remark: There could be more than one way to change s into t
using the smallest number of operations. In the above example, try
to come up with another 4 operations to change abode into blog.

Yufei Tao Dynamic Programming 3: Edit Distances

6/31

The Edit Distance Problem

Input: A string s of m letters, and a string t of n letters.
Output: Their edit distance edit(s, t).

Yufei Tao Dynamic Programming 3: Edit Distances

7/31

Some Notations

To facilitate the subsequent discussion, let us agree on some notations.

Given a string σ, denote by

|σ| the length of σ, i.e., how many letters there are in σ.

σ[i] the i-th character of σ, for each i ∈ [1, |σ|].

σ[x ..y] as the substring of σ starting from σ[x] and ending at σ[y].
Specially, if x > y , then σ[x ..y] refers to the empty string.

Yufei Tao Dynamic Programming 3: Edit Distances

8/31

Recurrence for Computing the Edit Distance

Lemma: Let s and t be two strings with lengths m and n, resp.

1 If m = 0, then edit(s, t) = n.

2 If n = 0, then edit(s, t) = m.

3 If m > 0, n > 0, and s[m] = t[n], then edit(s, t) is

min

 1 + edit(s, t[1..n − 1])
1 + edit(s[1..m − 1], t)
edit(s[1..m − 1], t[1..n − 1])

4 If m > 0, n > 0, and s[m] 6= t[n], then edit(s, t) is

min

 1 + edit(s, t[1..n − 1])
1 + edit(s[1..m − 1], t)
1 + edit(s[1..m − 1], t[1..n − 1])

We will prove the lemma at the end.

Yufei Tao Dynamic Programming 3: Edit Distances

9/31

Calculating the recursive function in the preceding slide is a typical
application of dynamic programming.

Yufei Tao Dynamic Programming 3: Edit Distances

10/31

Structure of the Recurrence

Before proceeding, let us observe several facts about the recurrence on
Slide 8:

Function edit(., .) has 2 parameters.

The first parameter has m + 1 possible choices, namely,
s[1..0], s[1..1], ..., s[1..m].

The second parameter has n + 1 possible choices, namely,
t[1..0], t[1..1], ..., t[1..n].

In any case, edit(a, b) depends only on edit(a′, b′) where a′ and b′

are shorter than a and b, respectively.

These observations motivate us to evaluate the recursion in a bottom-up
manner: starting with the short strings and then propagating to the
longer ones.

Yufei Tao Dynamic Programming 3: Edit Distances

11/31

Dynamic Programming

Initialize a two-dimensional array A of m + 1 rows and n + 1 columns.
Label the rows as 0, ...,m, and the columns as 0, ..., n.

The algorithm aims to fill in the cell A[i , j] at row i and column j as:

A[i , j] = edit(s[1..i], t[1..j]).

The value of A[m, n] is therefore edit(s, t).

Yufei Tao Dynamic Programming 3: Edit Distances

12/31

Example

The target matrix A for s = abode and t = blog:

0 1 2 3 4

0 0 1 2 3 4
1 1 1 2 3 4
2 2 1 2 3 4
3 3 2 2 2 3
4 4 3 3 3 3
5 5 4 4 4 4

Yufei Tao Dynamic Programming 3: Edit Distances

13/31

Dynamic Programming

The algorithm fills in A according to the order below:

1 Fill in row 0 and column 0.

2 Fill in the cells of row 1 from left to right.

3 Fill in the cells of row 2 from left to right.

4 ...

5 Fill in the cells of row m from left to right.

Yufei Tao Dynamic Programming 3: Edit Distances

14/31

Dynamic Programming

The recurrence on Slide 8 guarantees that when we need to fill in
a cell A[i , j], all the dependent cells must have been ready.

Specifically, A[i , j] =

min

 1 + A[i , j − 1]
1 + A[i − 1, j]
A[i − 1, j − 1] if s[i] = t[j], or 1 + A[i − 1, j − 1] otherwise

Yufei Tao Dynamic Programming 3: Edit Distances

15/31

Example

s = abode and t = blog.
The matrix A at the beginning:

0 1 2 3 4

0 - - - - -
1 - - - - -
2 - - - - -
3 - - - - -
4 - - - - -
5 - - - - -

Yufei Tao Dynamic Programming 3: Edit Distances

16/31

Example

s = abode and t = blog.
Fill in column 0 and row 0:

0 1 2 3 4

0 0 1 2 3 4
1 1 - - - -
2 2 - - - -
3 3 - - - -
4 4 - - - -
5 5 - - - -

Yufei Tao Dynamic Programming 3: Edit Distances

17/31

Example

s = abode and t = blog.
Now we fill in cell A[1, 1]. Since s[1] = a which is different from t[1] = b,
the recurrence on Lemma 8 says that A[1, 1] =

min

 1 + A[1, 0] = 1
1 + A[0, 1] = 1
1 + A[0, 0] = 1

which is 1.

0 1 2 3 4

0 0 1 2 3 4
1 1 1 - - -
2 2 - - - -
3 3 - - - -
4 4 - - - -
5 5 - - - -

Yufei Tao Dynamic Programming 3: Edit Distances

18/31

Example

s = abode and t = blog.
Similarly, fill in the other cells in row 1.

0 1 2 3 4

0 0 1 2 3 4
1 1 1 2 3 4
2 2 - - - -
3 3 - - - -
4 4 - - - -
5 5 - - - -

Yufei Tao Dynamic Programming 3: Edit Distances

19/31

Example

s = abode and t = blog.
Now we fill in cell A[2, 1]. Since s[1] = b which is the same as t[1] = b,
the recurrence on Lemma 8 says that A[2, 1] =

min

 1 + A[2, 0] = 3
1 + A[1, 1] = 2
A[1, 0] = 1

which is 1.

0 1 2 3 4

0 0 1 2 3 4
1 1 1 2 3 4
2 2 1 - - -
3 3 - - - -
4 4 - - - -
5 5 - - - -

Yufei Tao Dynamic Programming 3: Edit Distances

20/31

Example

s = abode and t = blog.
Fill in the other cells of row 2.

0 1 2 3 4

0 0 1 2 3 4
1 1 1 2 3 4
2 2 1 2 3 4
3 3 - - - -
4 4 - - - -
5 5 - - - -

The algorithm then continues in the same fashion to fill in rows 3, 4, and

5.

Yufei Tao Dynamic Programming 3: Edit Distances

21/31

Running Time

Clearly, filling in one cell takes only O(1) time. As there are O(nm) cells
to fill, the overall running time is O(nm).

Yufei Tao Dynamic Programming 3: Edit Distances

22/31

We now proceed to prove the lemma on Slide 8.

Yufei Tao Dynamic Programming 3: Edit Distances

23/31

Proof: Cases 1 and 2 are trivial. We will focus on proving Case 3
because Case 4 can be established with a similar argument.

Henceforth, we will consider m > 0, n > 0, and s[m] = t[n].

Yufei Tao Dynamic Programming 3: Edit Distances

24/31

We will first show

edit(s, t) ≤ min

 1 + edit(s, t[1..n − 1])
1 + edit(s[1..m − 1], t)
edit(s[1..m − 1], t[1..n − 1])

In fact, this directly follows from the fact that we can convert s into t in
3 methods:

1. Delete t[n], and use the least number of edit operations to change s
into t[1..n − 1]. The total number of edit operations is therefore
1 + edit(s, t[1..n − 1]).

2. Delete s[m], and use the least number of edit operations to change
s[1..m − 1] into t. The total number of edit operations is therefore
1 + edit(s[1..m − 1], t).

3. Simply change s[1..m− 1] into t[1..n− 1]. The total number of edit
operations is therefore edit(s[1..m − 1], t[1..n − 1]).

Yufei Tao Dynamic Programming 3: Edit Distances

25/31

The rest of the proof is to establish the following non-trivial fact:

edit(s, t) ≥ min

 1 + edit(s, t[1..n − 1])
1 + edit(s[1..m − 1], t)
edit(s[1..m − 1], t[1..n − 1])

which will complete the whole proof.

Yufei Tao Dynamic Programming 3: Edit Distances

26/31

Let SEQ∗ be an optimal sequence of edit operations that converts s into
t. Denote by |SEQ∗| the length of SEQ∗. Our objective is to prove that
at least one of the following will happen:

1 We can obtain a sequence of |SEQ∗| − 1 edit operations that
converts s into t[1..n − 1].

2 We can obtain a sequence of |SEQ∗| − 1 edit operations that
converts s[1..m − 1] into t.

3 We can obtain a sequence of |SEQ∗| edit operations that converts
s[1..m − 1] into t[1..n − 1].

This will establish the inequality of the previous slide (think: why?).

Yufei Tao Dynamic Programming 3: Edit Distances

27/31

We will distinguish three possibilities.

Possibility 1: SEQ∗ never deletes or replaces s[m].
In this case, SEQ∗ itself is a sequence of operations that converts
s[1..m − 1] into t[1..n − 1]; hence, Case 3 happens.

Yufei Tao Dynamic Programming 3: Edit Distances

28/31

Possibility 2: SEQ∗ deletes s[m].
In this case, after discarding the operation deleting s[m], SEQ∗ becomes
a sequence of operations that converts s[1..m − 1] into t; hence, Case 2
happens.

Yufei Tao Dynamic Programming 3: Edit Distances

29/31

Possibility 3: SEQ∗ replaces s[m] with a character say ∆ 6= s[m].

Claim 1: ∆ is then never deleted or replaced in SEQ∗.

Proof: If ∆ is deleted later, then we can make SEQ∗ shorter by directly
removing s[m] with one single operation (thus saving two operations:
replacing s[m] with ∆ and then deleting ∆).

If ∆ is replaced with ∆′ later, then we can make SEQ∗ shorter by
directly replacing s[m] with ∆′ (thus saving two operations: replacing
s[m] with ∆ and then with ∆′).

Think: Why can we assert ∆ 6= s[m]?

Yufei Tao Dynamic Programming 3: Edit Distances

30/31

Claim 2: SEQ∗ must contain an operation “insert t[n]” that inserts
the character matching t[n] at the end.

Proof: By Claim 1, ∆ remains in the final string obtained by SEQ∗. As
∆ 6= s[m], the final string must contain a character — say c — that
matches t[n]. Since no operations can change the order of two
characters, that character c must have been inserted by SEQ∗.

The character c must be inserted by the operation “insert t[n]”.

Otherwise, suppose that c was inserted by “insert ∆′′” for some

∆′′ 6= t[n]. There would have to be another operation later in SEQ∗ that

replaced c with t[n]. We could then make SEQ∗ shorter by replacing the

first operation with “insert t[n]” and removing the latter one.

Yufei Tao Dynamic Programming 3: Edit Distances

31/31

In this case, after discarding the operation described in Claim 2, SEQ∗

becomes a sequence of operations that converts s into t[1..n − 1]; hence,

Case 1 happens.

Yufei Tao Dynamic Programming 3: Edit Distances

