Dynamic Programming 2: Optimal BST

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Yufei Tao [Dynamic Programming 2: Optimal BST](#page-19-0)

Ξ.

 QQ

イロト イ母 トイヨ トイヨト

Designing a dynamic programming algorithm, in general, requires discovering a **recursive structure** of the underlying problem. Next, we will illustrate this through the **optimal BST problem**.

Ξ

 Ω

イロト イ母 トイヨ トイヨト

- **Each node stores a key.**
- \bullet The key of an internal node u is larger than any key in its left subtree, and **smaller** than any key in its right subtree.

Yufei Tao [Dynamic Programming 2: Optimal BST](#page-0-0)

э

 Ω

KENKEN

 \leftarrow \Box \rightarrow \leftarrow \Box \rightarrow

- The level of a node u in a BST T denoted as level $T(u)$ equals the number of edges on the path from the root to u.
	- **The level of the root is 0.**
- The **depth** of a tree is the maximum level of the nodes in the tree.
- **•** Searching for a node u incurs cost proportional to $1 + level_T(u)$.
	- How many nodes do you need to access to search for node 10, 20, 30, and 40, respectively?

э. Ω

イロト イ母 トイラト イラト

Let S be a set of *n* integers. We know that a balanced BST on S has depth $O(\log n)$. This is good if we assume that all the integers in S are searched with equal probabilities.

In practice, not all keys are equally important: some are searched **more** often than others. This gives rise to an interesting question:

If we know the search frequencies of the integers in S, how to build a better BST to minimize the average search cost?

 \rightarrow \equiv \rightarrow

5/20

Example:

Suppose that we know the frequencies of 10, 20, 30, and 40 are 40%, 15%, 35%, and 10%, respectively. Then, the average cost of searching for a key in the BST equals:

> $freq(10) \cdot cost(10) + freq(20) \cdot cost(20) +$ $freq(30) \cdot cost(30) + freq(40) \cdot cost(40)$ $40\% \cdot 2 + 15\% \cdot 1 + 35\% \cdot 3 + 10\% \cdot 2$ $= 2.2$

where $freq(k)$ denotes the search frequency of key k, and $cost(k)$ denotes the cost of searching for k in the tree.

E

 Ω

イロト イ押 トイラト イラト

The Optimal BST Problem

Input:

- A set S of n integers: $\{1, 2, ..., n\}$;
- An array W where $W[i]$ $(1 \le i \le n)$ stores a positive integer weight.

Output:

A BST T on S with the smallest average cost:

$$
avgcost(T) = \sum_{i=1}^{n} W[i] \cdot cost_{T}(i).
$$

where $cost_T(i) = 1 + level_T(i)$ is the number of nodes accessed to find the key i in T .

Think: here we consider that the keys are $1, 2, \ldots n$, respectively; do we lose any generality?

∍

 Ω

 \overline{AB}) \overline{AB}) \overline{AB})

A Slightly More General Problem

We will solve a more general version of the problem.

Input:

- \bullet S and W same as before:
- Integers a, b satisfying $1 \le a \le b \le n$.

Output:

A BST T on $\{a, a+1, ..., b\}$ with the smallest **average cost**:

$$
avgcost(T) = \sum_{i=a}^{b} W[i] \cdot cost_T(i).
$$

where $cost_T(i) = 1 + level_T(i)$ is the number of nodes accessed to find the key i in T .

イロト イ母 トイラト イラトー

8/20

DE 11 OQ As mentioned, an important step in designing a dynamic programming algorithm is to figure out the **recursive structure** of the underlying problem. Typically, this involves three steps:

- **1** identify all the possible options for the "first" choice;
- **2** conditioned on the first choice, find the optimal solution;
- **3** take the first choice that leads to the **overall best** solution.

Next, we will explain how to do so for the optimal BST problem.

œ. QQ

 $A \cup B \rightarrow A \cup B \rightarrow A \cup B \rightarrow A \cup B \rightarrow A$

1. Find all the Options for the First Choice

First Choice: Key at the root of T? Clearly, we have $b - a + 1$ options: we can put $a, a + 1, \dots$, or b as the key at the root.

Suppose that we put r as the key at the root for some $r \in [a, b]$. Then, its left subtree must be a BST T_1 on $S_1 = \{a, ..., r-1\}$, and its right subtree must be a BST T_2 on $S_2 = \{r+1, ..., b\}$.

10/20

つひへ

 \overline{AB}) \overline{AB}) \overline{AB}

 Ω

2. Conditioned on the First Choice, Find the Optimal Solution: Put r at the root of T . Next, we will show that, to minimize the average cost of T, we should choose the best trees for T_1 and T_2 .

$$
avgcost(T)
$$
\n
$$
= \sum_{i=a}^{b} W[i] \cdot cost_{\tau}(i) = \sum_{i=a}^{b} W[i] \cdot (1 + level_{\tau}(i))
$$
\n
$$
= \left(\sum_{i=a}^{b} W[i]\right) + \sum_{i=a}^{b} W[i] \cdot level_{\tau}(i)
$$
\n
$$
= \left(\sum_{i=a}^{b} W[i]\right) + \left(\sum_{i=a}^{r-1} W[i] \cdot level_{\tau}(i)\right) + \left(\sum_{i=r+1}^{b} W[i] \cdot level_{\tau}(i)\right)
$$

(Continuing on the next slide)

重

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

$$
= \left(\sum_{i=a}^{b} W[i]\right) + \left(\sum_{i=a}^{r-1} W[i] \cdot (1 + level_{\tau_1}(i))\right) +
$$

$$
\left(\sum_{i=r+1}^{b} W[i] \cdot (1 + level_{\tau_2}(i))\right)
$$

$$
= \left(\sum_{i=a}^{b} W[i]\right) + \left(\sum_{i=a}^{r-1} W[i] \cdot cost_{\tau_1}(i)\right) + \left(\sum_{i=r+1}^{b} W[i] \cdot cost_{\tau_2}(i)\right)
$$

$$
= \left(\sum_{i=a}^{b} W[i]\right) + avgcost(T_1) + avgcost(T_2)
$$

Clearly, we should minimize avgcost(T_1) and avgcost(T_2), namely, building optimal BSTs on S_1 and S_2 , recursively.

 $\mathbf{A} \sqcup \mathbf{B} \rightarrow \mathbf{A} \boxplus \mathbf{B} \rightarrow \mathbf{A} \boxplus \mathbf{B} \rightarrow \mathbf{A}$

13/20

 \equiv \cap $\alpha \cap$

Example: $S = \{1, 2, 3, 4\}$; $W = (40, 15, 35, 10)$.

Consider the option of putting 2 at the root. As mentioned, the right subtree has two choices:

We know from the above discussion that the right subtree should be an optimal BST on $\{3, 4\}$. Which of the above two choices is optimal on $\{3,4\}$?

The answer is the second one: it has an average cost of $35 \cdot 1 +$ $10 \cdot 2 = 55$.

 $\left\{ \bigoplus_k k \bigotimes_k \exists k \in \mathbb{Z} \right. \right\}$

14/20

Define $optavg(a, b)$ as

- 0, if $a > b$;
- the smallest average cost of a BST on $\{a, a+1, ..., b\}$, otherwise.

Define *optavg*(a, b | r) as the optimal average cost of a BST, on condition that the BST has r as the key of the root.

The previous discussion has essentially proved:

$$
\begin{array}{ll}\n\text{optavg}(a, b \mid r) \\
= \left(\sum_{i=a}^{b} W[i] \right) + \text{optavg}(a, r-1) + \text{optavg}(r+1, b).\n\end{array}
$$

重

 Ω

医单位 医单位

Example: $S = \{1, 2, 3, 4\}$; $W = (40, 15, 35, 10)$.

Consider the option of putting 2 at the root.

$$
optavg(1, 4 | 2)
$$

= $\left(\sum_{i=1}^{4} W[i]\right) + optavg(1, 1) + optavg(3, 4)$
= 100 + 40 + 55 = 195.

Hence, if we want to put 2 at the root, the best BST we can construct has average cost 195.

4. 17. 18

重

 QQ

 $\sqrt{2}$) $\sqrt{2}$) $\sqrt{2}$

3. Selecting the Best First Choice: The best choice for r is the one that leads to the smallest average cost, namely:

$$
optavg(a, b)
$$
\n
$$
= \min_{r=a}^{b} optavg(a, b | r)
$$
\n
$$
= \left(\sum_{i=a}^{b} W[i]\right) + \min_{r=a}^{b} \left\{ optavg(a, r-1) + optavg(r+1, b)\right\}.
$$

4. 17. 18

This is the recursive structure of the problem.

Yufei Tao [Dynamic Programming 2: Optimal BST](#page-0-0)

Þ

 QQ

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow \sqrt{m}

Yufei Tao [Dynamic Programming 2: Optimal BST](#page-0-0)

Putting Everything Together

We have converted the optimal BST problem into the following problem:

Input: An array W of *n* integers. **Output** Compute *optavg* $(1, n)$ where for any $a, b \in [1, n]$:

$$
optavg(a, b) =
$$
\n
$$
\begin{cases}\n0, \text{ if } a > b \\
\left(\sum_{i=a}^{b} W[i]\right) + \min_{r=a}^{b} \left\{\text{optavg}(a, r-1) + \text{optavg}(r+1, b)\right\} \\
\text{otherwise}\n\end{cases}
$$

This is precisely the problem we studied in the previous lecture! Recall that with dynamic programming, we can compute $optavg(1, n)$ in $O(n^3)$ time.

19/20

Strictly speaking, there is one more step: although we have calculated optavg $(1, n)$, we still have not produced the optimal BST yet!

This is, in fact, rather trivial — you can do so in $O(n)$ time after computing $optavg(1, n)$ with dynamic programming. This will be left as a regular exercise.

A + + = + + = +

20/20