Greedy 1: Activity Selection (Picking a Maximum Number of Disjoint Intervals)

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Yufei Tao [Activity Selection](#page-9-0) Activity Selection

Ξ

 Ω

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow

In this lecture, we will commence our discussion of the **greedy** technique. In fact, this technique enforces a very simple strategy: simply make the locally optimal decision at each step. It is important to note that this technique does **not** always give a **globally optimal** solution. There are, however, problems where it does. The nontrivial part of applying the technique is to prove (or disprove) the global optimality.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

2/10

Problem definition

Input: A set S of n intervals of the form $[s, f]$ where s and f are integer values.

Output: A subset T of disjoint intervals in S with the largest size $|T|$.

Remark: You can think of $[s, f]$ as the duration of an activity, and consider the problem as picking the largest number of activities that do not have time conflicts.

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$

3/10

Activity Selection

Example: Suppose

 $S = \{[1, 9], [3, 7], [6, 20], [12, 19], [15, 17], [18, 22], [21, 24]\}.$

An optimal solution is $T = \{[3, 7], [15, 17], [18, 22]\}.$ Optimal solutions may not be unique; here is another one: $\mathcal{T} = \{ [1, 9], [12, 19], [21, 24] \}.$

э

 Ω

 $\left\{ \bigoplus_k k \bigotimes_k \mathbb{P}_k \big| k \geq k \right\}$

Complication: Once an interval is taken, those overlapping with it will have to be discarded. So one mistake may lead to a suboptimal solution.

It turns out that the following **greedy** strategy works: simply take the interval with the **earliest** finish time (i.e., smallest f -value) at each step.

Algorithm

Repeat the following steps until S becomes empty:

- Add to T the interval $\mathcal{I} \in S$ with the smallest finish time.
- Remove from S all the intervals intersecting $\mathcal I$ (including $\mathcal I$ itself)

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow

5/10

Example: Suppose $S = \{[1, 9], [3, 7], [6, 20], [12, 19], [15, 17], [18, 22],\}$ [21, 24]}.

Sort the intervals in S by finish time: $S = \{[3, 7], [1, 9], [15, 17],$ $[12, 19]$, $[6, 20]$, $[18, 22]$, $[21, 24]$.

We first add [3, 7] to T, after which intervals [3, 7], [1, 9] and [6, 20] are removed. Now S becomes $S = \{[15, 17], [12, 19], [18, 22],$ [21, 24]}. The next interval added to T is [15, 17], which shrinks S further to $S = \{ [18, 22], [21, 24] \}$. After [18, 22] is added to T, S becomes empty and the algorithm terminates.

画

 Ω

イタト イミト イミト

Now comes the nontrivial part: prove the algorithm is **correct**, namely, it indeed returns an optimal solution. We will do so by mathematical induction.

Base Step: $n = 1$.

That is, S has only one interval, in which case the output of the algorithm is obviously optimal.

Inductive Step: Assuming that the algorithm is correct for all $n \leq k$. We will prove that it is also correct for $n = k + 1$.

画

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Claim: Let $\mathcal{I} = [s, f]$ be the interval in S with the smallest finish time. There must be an optimal solution that contains \mathcal{I} .

Proof: Let T^* be an arbitrary optimal solution that does not contain \mathcal{I} . We will turn \mathcal{T}^* into another optimal solution \mathcal{T} that contains $\mathcal{I},$ and thereby finish the proof.

Let $\mathcal{I}' = [s', f']$ be the interval in T^* with the **smallest** finish time. We construct T as follows: add all the intervals in T^* to T except \mathcal{I}' , and finally add $\mathcal I$ to $\mathcal T$.

We will prove that all the intervals in T are disjoint. This indicates that T is also an optimal solution, and hence, will complete the proof.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

8/10

画

Activity Selection

It suffices to prove that I cannot intersect with any other interval $J \in T$.

Suppose on the contrary that there is such a $\mathcal{J} = [a, b]$. By definition of \mathcal{I}' , we must have $f'\leq b$. Combining this and the fact that $\mathcal J$ is disjoint with \mathcal{I}' , we assert that $f' <$ a. On the other hand, by definition of \mathcal{I} , it must hold that $f \leq f'$. It thus follows that $f < a$. But this indicates that I and I are disjoint, giving a contradiction.

9/10

Activity Selection

Think 1: Now that we know $\mathcal I$ must be in an optimal solution, how do we proceed with the induction proof that the algorithm is correct for $n = k + 1$? This will be left as a regular exercise (solution provided in full).

Think 2: How to implement the algorithm in $O(n \log n)$ time? This will be left as another regular exercise (again, solution provided in full).

K ロ ト K 何 ト K ヨ ト K ヨ ト

10/10