Single Source Shortest Paths

with Positive Weights

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

1/29

Yufei Tao SSSP on Positive Weights

In this lecture, we will discuss the single source shortest path (SSSP)
problem, which is a classic problem on graphs, and also a problem very
plenty of applications in practice.

2/29

Yufei Tao SSSP on Positive Weights

(Weighted Graphs)

Let G = (V, E) be a directed graph. Let w be a function that maps each
edge in E to a positive integer value. Specifically, for each e € E, w(e)
is an integer at least 0, which we call the weight of e.

A directed weighted graph is defined as the pair (G, w).

We use the notation (v, v) to denote an edge in G from node u to node
v. Here, node u is an in-neighbor of v.

Define IN(v) the set of all in-neighbors of v.

3/29
Yufei Tao SSSP on Positive Weights

“ h
A
b d 1 g 1 i
@] O)—————=O—>0
|
e

1

cO—0O

10

The integer on each edge indicates its weight. For example, w(d,g) =1,
w(g,f) =2, and w(c, e) = 10.

IN(d) = {c, e, h}.

4/29

Yufei Tao SSSP on Positive Weights

Shortest Path

Consider a path in G: (v1,w), (v2,v3), ..., (ve, ve11), for some integer
¢ > 1. We define the length of the path as

Z W(V,', V,'+1).

i=1

Recall that we may also denote the path as vi — vo — ... — Vg1,

A shortest path from u to v is a path that has the minimum length
among all the paths from u to v. Denote by spdist(u, v) the length of
the shortest path from u to v.

If v is unreachable from u, then spdist(u, v) = co.

5/29

Yufei Tao SSSP on Positive Weights

@ The path ¢ — e has length 10.

@ The path ¢ - d — g — f — e has length 6.

The first path is a shortest path from c to e; spdist(c, e) = 6.

6/29

Yufei Tao SSSP on Positive Weights

(Single Source Shortest Path (SSSP) with Positive Weights)

Let (G, w) with G = (V, E) be a directed weighted graph, where w
maps every edge of E to a positive value.

Given a vertex s in V/, the goal of the SSSP problem is to find, for
every other vertex t € V' \ {s}, a shortest path from s to t, unless t is
unreachable from s.

7/29

Yufei Tao SSSP on Positive Weights

(A Subsequence Property)

Lemma: If vy — vo» — ... = vgy1 is a shortest path from vy to vy 1, then
for every i,j satisfying 1 <i<j<{l+1, vi = vip1 — ... = vjisa
shortest path from v; to v;.

Proof: Suppose that this is not true. Then, we can find a shorter path
to go from v; to v;. Using this path to replace the original path from v;
to v; yields a shorter path from v; to vg41, which contradicts the fact
that vi — vo» — ... — vy is a shortest path. O

8/29

Yufei Tao SSSP on Positive Weights

L

10

Since ¢ - d — g — f — e is a shortest path, we know that any
subsequence of of this path is also a shortest path. For example,
¢ — d — g — f must be a shortest path from ¢ to f.

9/29

Yufei Tao SSSP on Positive Weights

Lemma:

spdist(s,u) = n?/\'/r(]){spdist(s, v) + w(v,u)}
ve u

The proof is simple and left to you.

Implication: This is a dynamic programming problem!
But what is non-trivial is how we should fill in the “matrix"! Namely,
what is the order of u by which we should compute spdist(s, u)?

Remark: The above lemma holds even if w(v, u) can be negative.

10/29
Yufei Tao SSSP on Positive Weights

Next, we will first explain Dijkstra’s algorithm for solving the
SSSP problem. As we will see, this algorithm essentially tells us a
good order to compute spdist(s, u) when all the edges have positive
weights.

Utilizing the subsequence property, our algorithm will output a
shortest path tree that encodes all the shortest paths from the
source vertex s.

11/29

Yufei Tao SSSP on Positive Weights

(The Edge Relaxation Idea)

For every vertex v € V, we will — at all times — maintain a value dist(v)
that represents the length of the shortest path from s to v found so far.

At the end of the algorithm, we will ensure that every dist(v) equals the
shortest path distance from s to v.

A core operation in our algorithm is called edge relaxation:
@ Relaxing an edge (u, v) means:

- If dist(v) < dist(u) + w(u, v), do nothing;
- Otherwise, reduce dist(v) to dist(u) + w(u, v).

12/29

Yufei Tao SSSP on Positive Weights

(Dijkstra's Algorithm)

@ Set parent(v) = nil for all vertices v € V

@ Set dist(s) =0, and dist(v) = oo for all other vertices v € V
Q SetS=V

© Repeat the following until S is empty:

5.1 Remove from S the vertex u with the smallest dist(u).
/* next we relax all the outgoing edges of u */

5.2 Relax every outgoing edge (u, v) of u

13/29

Yufei Tao SSSP on Positive Weights

Suppose that the source vertex is c.

vertex v | dist(v) | parent(v)
a o) nil
b 00 nil
c 0 nil
d 00 nil
e 00 nil
f) nil
g 00 nil
h 00 nil
i 00 nil

S={ab,c,d, e f,g h,i}.

14/29

Yufei Tao SSSP on Positive Weights

Relax the out-going edges of ¢ (because dist(c) is the smallest in S):

vertex v | dist(v) | parent(v)
a 00 nil
b 00 nil
i c 0 nil
O d 2 c
e 10 c
f o0 nil
g o0 nil
h 00 nil
i 00 nil

5 = {27 b7 d7 e? f7g) h7 i}
Note that ¢ has been removed!

15/29

Yufei Tao SSSP on Positive Weights

Relax the out-going edges of d (because dist(d) is the smallest in S):

h

S= {a7b7e7 f7g7h7 ’}

Yufei Tao

vertex v | dist(v) | parent(v)
a 8 d
b 00 nil
c 0 nil
d 2 c
e 10 c
f 00 nil
g 3 d
h) nil
i 00 nil

SSSP on Positive Weights

16/29

Relax the out-going edges of g:

vertex v | dist(v) | parent(v)
a 8 d
b) nil
c 0 nil
d 2 c
e 10 c
f 5 g
g 3 d
h o0 nil
i 4 g

17/29

Yufei Tao SSSP on Positive Weights

Relax the out-going edges of /:

vertex v | dist(v) | parent(v)
a 8 d
b) nil
c 0 nil
d 2 c
e 10 c
f 5 g
g 3 d
h o0 nil
i 4 g

S={ab,e,f, h}

18/29

Yufei Tao SSSP on Positive Weights

Relax the out-going edges of f:

vertex v | dist(v) | parent(v)
a 8 d
b) nil
c 0 nil
d 2 c
e 6 f
f 5 g
g 3 d
h o0 nil
i 4 g

19/29

Yufei Tao SSSP on Positive Weights

Relax the out-going edges of e:

vertex v | dist(v) | parent(v)
a 8 d
b) nil
c 0 nil
d 2 c
e 6 f
f 5 g
g 3 d
h o0 nil
i 4 g

S ={a,b, h}.

20/29

Yufei Tao SSSP on Positive Weights

Relax the out-going edges of a:

vertex v | dist(v) | parent(v)
a 8 d
b 9 a
c 0 nil
d 2 c
e 6 f
f 5 g
g 3 d
h o0 nil
i 4 g

21/29

Yufei Tao SSSP on Positive Weights

Relax the out-going edges of b:

vertex v | dist(v) | parent(v)
a 8 d
b 9 a
c 0 nil
d 2 c
e 6 f
f 5 g
g 3 d
h o0 nil
i 4 g

22/29

Yufei Tao SSSP on Positive Weights

Relax the out-going edges of h:

vertex v | dist(v) | parent(v)
a 8 d
b 9 a
c 0 nil
d 2 c
e 6 f
f 5 g
g 3 d
h o0 nil
i 4 g

s=1{.

All the shortest path distances are now final.

23/29

Yufei Tao SSSP on Positive Weights

(Constructing the Shortest Path Tree)

For every vertex v, if u = parent(v) is not nil, then make v a child of u.

vertex v parent(V) shortest path tree
a d c
b a ‘]
c nil B
d ¢ .(I/ \a
e f N0
f g f (]
g d l
h nil
i g

24/29

Yufei Tao SSSP on Positive Weights

It will be left as an exercise for you to implement Dijkstra’s algorithm in
O((|V| + |E]) - log|V]) time (solutions provided).

25/29

Yufei Tao SSSP on Positive Weights

Correctness

Theorem: When a node v is removed from S, the value dist(u)
equals precisely spdist(s, u).

We will prove the theorem by induction on the order of vertices removed.
The first vertex removed is just the source vertex s itself, on which the
statement of the theorem obviously holds because

dist(u) = spdist(s, u) = 0.

26/29

Yufei Tao SSSP on Positive Weights

Assuming that the theorem holds for all the vertices removed so far, we
will prove its correctness on the next vertex u to be removed from S.

Let 7 be a shortest path from s to u. We will prove the following claim:

Claim: When u is to be removed from S, all the vertices on 7 has
been removed.

The claim implies dist(u) = spdist(u) when u is removed from
S. To see why, let p be the node right before u on m. By
our inductive assumption, when p was removed from S, we had
dist(p) = spdist(p). Recall that after removing p, we needed to
relax all the outgoing edges of p, one of which was (p, u). After
relaxing the edge, we must have dist(u) = dist(p) + w(p,u) =
spdist(p) + w(p, u) = spdist(u).

27/29
Yufei Tao SSSP on Positive Weights

Proof of the claim: Suppose that the claim is not true. Define v,y be
the first vertex on 7 that is still in S, when u is to be removed from S.

Let Vgooq be the vertex right before vpog on 7; note that vgooq definitely
exists because vp,4 cannot be s.

By our inductive assumption, when vgo0q4 Was removed from S, we had
dist(Vgood) = spdist(Vgood). Remember we needed to relax all the the

outgoing edges of Vgo0q, 0ne of which was (Vgood, Vbad). After relaxing
the edge, we must have

dist(vbad) = dist(vgood) + W(Vgooda Vbad)
= spdist(Vgood) + W(Vgood, Vbad) = spdist(Vpad).

Since dist(vpaq) never increases during the algorithm, we must have
dist(vpag) < dist(u) when u is to be removed from S. But this
contradicts the fact that u has the smallest dist-value among all the
vertices in S. O

28/29

Yufei Tao SSSP on Positive Weights

We have completed the proof on the correctness of Dijkstra. It is
important to note that Dijkstra does not work if edges can take

negative weights — can you spot the place in our earlier argument
that depends on positive weights?

29/29

Yufei Tao SSSP on Positive Weights

