Single Source Shortest Paths with Positive Weights

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

œ **The [SSSP on Positive Weights](#page-28-0) SSSP** on Positive Weights

э

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

In this lecture, we will discuss the single source shortest path (SSSP) problem, which is a classic problem on graphs, and also a problem very plenty of applications in practice.

Ξ

 QQ

K □ ▶ K 倒 ▶ K ヨ ▶

Let $G = (V, E)$ be a directed graph. Let w be a function that maps each edge in E to a **positive** integer value. Specifically, for each $e \in E$, $w(e)$ is an integer at least 0, which we call the weight of e.

A **directed weighted graph** is defined as the pair (G, w) .

We use the notation (u, v) to denote an edge in G from node u to node v. Here, node u is an *in-neighbor* of v .

Define $IN(v)$ the set of all in-neighbors of v.

イロト イ押 トイラト イラト

3/29

The integer on each edge indicates its weight. For example, $w(d, g) = 1$, $w(g, f) = 2$, and $w(c, e) = 10$.

 $IN(d) = \{c, e, h\}.$

э

 QQ

4 ロト 4 母 ト 4 ヨ

Shortest Path

Consider a path in G: $(v_1, v_2), (v_2, v_3), ..., (v_\ell, v_{\ell+1})$, for some integer $\ell > 1$. We define the length of the path as

$$
\sum_{i=1}^{\ell} w(v_i, v_{i+1}).
$$

Recall that we may also denote the path as $v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_{\ell+1}$.

A shortest path from u to v is a path that has the minimum length among all the paths from u to v. Denote by $spdf(st(u, v))$ the length of the shortest path from u to v .

If v is unreachable from u, then spdist $(u, v) = \infty$.

 4 m \rightarrow 4 \overline{m} \rightarrow \rightarrow \overline{m} \rightarrow \rightarrow \overline{m} \rightarrow

5/29

- The path $c \rightarrow e$ has length 10.
- The path $c \to d \to g \to f \to e$ has length 6.

The first path is a shortest path from c to e; $spdist(c, e) = 6$.

4 F F 4 5 F F F

6/29

 QQ

Single Source Shortest Path (SSSP) with Positive Weights

Let (G, w) with $G = (V, E)$ be a directed weighted graph, where w maps every edge of E to a positive value.

Given a vertex s in V , the goal of the **SSSP problem** is to find, for **every** other vertex $t \in V \setminus \{s\}$, a shortest path from s to t, unless t is unreachable from s.

イロメ イタメ イヨメ イヨメ

7/29

A Subsequence Property

Lemma: If $v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_{\ell+1}$ is a shortest path from v_1 to $v_{\ell+1}$, then for every i,j satisfying $1 \leq i < j \leq \ell + 1$, $\mathsf{v}_i \to \mathsf{v}_{i+1} \to ... \to \mathsf{v}_j$ is a shortest path from v_i to v_j .

Proof: Suppose that this is not true. Then, we can find a shorter path to go from v_i to v_j . Using this path to replace the original path from v_i to v_i yields a shorter path from v_1 to $v_{\ell+1}$, which contradicts the fact that $v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_{\ell+1}$ is a shortest path.

イロト イ母 トイラト イラト

8/29

Since $c \to d \to g \to f \to e$ is a shortest path, we know that any subsequence of of this path is also a shortest path. For example, $c \to d \to g \to f$ must be a shortest path from c to f.

The [SSSP on Positive Weights](#page-0-0) SSSP on Positive Weights

4 ロ ト 4 母 ト 4 ヨ

9/29

Lemma:

$$
spdist(s, u) = \min_{v \in IN(u)} \{ spdist(s, v) + w(v, u) \}
$$

The proof is simple and left to you.

Implication: This is a dynamic programming problem! But what is non-trivial is how we should fill in the "matrix"! Namely, what is the order of u by which we should compute $spdist(s, u)$?

Remark: The above lemma holds even if $w(v, u)$ can be negative.

 $\sqrt{2}$) $\sqrt{2}$) $\sqrt{2}$

10/29

Next, we will first explain **Dijkstra's algorithm** for solving the SSSP problem. As we will see, this algorithm essentially tells us a good order to compute spdist(s, u) when all the edges have positive weights.

Utilizing the subsequence property, our algorithm will output a shortest path tree that encodes all the shortest paths from the source vertex s.

11/29

The Edge Relaxation Idea

For every vertex $v \in V$, we will – at all times – maintain a value $dist(v)$ that represents the length of the shortest path from s to v found so far.

At the end of the algorithm, we will ensure that every $dist(v)$ equals the shortest path distance from s to v .

A core operation in our algorithm is called **edge relaxation**:

- Relaxing an edge (u, v) means:
	- If $dist(v) < dist(u) + w(u, v)$, do nothing;
	- Otherwise, reduce $dist(v)$ to $dist(u) + w(u, v)$.

Dijkstra's Algorithm

- **1** Set parent(v) = nil for all vertices $v \in V$
- 2 Set dist(s) = 0, and dist(v) = ∞ for all other vertices $v \in V$
- 3 Set $S = V$
- \bullet Repeat the following until S is empty:
	- 5.1 Remove from S the vertex \boldsymbol{u} with the **smallest** $dist(\boldsymbol{u})$. /* next we relax all the outgoing edges of $u *$ /
	- 5.2 Relax every outgoing edge (u, v) of u

重

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Suppose that the source vertex is c .

$$
S = \{a, b, c, d, e, f, g, h, i\}.
$$

 $\rightarrow \equiv +$ **The [SSSP on Positive Weights](#page-0-0) SSSP** on Positive Weights

÷. \sim

4 ロ ト 4 何 ト 4

14/29

 290

E

Relax the out-going edges of c (because $dist(c)$ is the smallest in S):

4. 17. 18

 \leftarrow \overline{m} \rightarrow

∍

 $S = \{a, b, d, e, f, g, h, i\}.$ Note that c has been removed!

The [SSSP on Positive Weights](#page-0-0) SSSP on Positive Weights

Þ

 QQ

Example

Relax the out-going edges of d (because $dist(d)$ is the smallest in S):

4 0 8

 \leftarrow \leftarrow \leftarrow

$$
S = \{a,b,e,f,g,h,i\}.
$$

∍ **Tangel Tao SSSP** on Positive Weights

∍

 299

Relax the out-going edges of g :

$$
S = \{a,b,e,f,h,i\}.
$$

 $\leftarrow \mathbb{B}$ **The [SSSP on Positive Weights](#page-0-0) SSSP** on Positive Weights

←ロト ←何ト

 \sim Ξ \sim 17/29

 290

Relax the out-going edges of i :

$$
S=\{a,b,e,f,h\}.
$$

←ロト ←何ト

 \sim ÷ \sim 18/29

 290

Relax the out-going edges of f :

$$
S=\{a,b,e,h\}.
$$

←ロト ←何ト

 \sim Ξ \sim 19/29

 290

Relax the out-going edges of e:

$$
S=\{a,b,h\}.
$$

←ロト ←何ト

 \sim Ξ \sim 20/29

 290

Relax the out-going edges of a:

 $S = \{b, h\}.$

 $\leftarrow \equiv$ **IN The [SSSP on Positive Weights](#page-0-0) SSSP** on Positive Weights

Ε

 299

 \leftarrow \Box \leftarrow \leftarrow \rightarrow \mathcal{A} Ξ \sim

Relax the out-going edges of b :

K ロ ▶ K 倒 ▶ K

$$
S=\{h\}.
$$

Ξ

22/29

 290

Relax the out-going edges of h :

 $S = \{\}.$ All the shortest path distances are now final.

∍ **The [SSSP on Positive Weights](#page-0-0) SSSP** on Positive Weights

э

 QQ

Ξ

4 ロト 4 何 ト

Constructing the Shortest Path Tree

For every vertex v, if $u = parent(v)$ is not nil, then make v a child of u.

Example

4 ロト 4 何 ト 4 戸

24/29

 QQ

It will be left as an exercise for you to implement Dijkstra's algorithm in $O((|V| + |E|) \cdot \log |V|)$ time (solutions provided).

The [SSSP on Positive Weights](#page-0-0) SSSP on Positive Weights

B. QQ

 $A \equiv \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \mathbf{1}$

Theorem: When a node u is removed from S , the value $dist(u)$ equals precisely $spdist(s, u)$.

We will prove the theorem by induction on the order of vertices removed. The first vertex removed is just the source vertex s itself, on which the statement of the theorem obviously holds because $dist(u) = spdist(s, u) = 0.$

 \overline{AB}) \overline{AB}) \overline{AB}

26/29

Assuming that the theorem holds for all the vertices removed so far, we will prove its correctness on the **next** vertex u to be removed from S.

Let π be a shortest path from s to u. We will prove the following claim:

Claim: When u is to be removed from S, all the vertices on π has been removed.

The claim implies $dist(u) = spdist(u)$ when u is removed from S. To see why, let p be the node right before u on π . By our inductive assumption, when p was removed from S , we had $dist(p) = spdist(p)$. Recall that after removing p, we needed to relax all the outgoing edges of p, one of which was (p, u) . After relaxing the edge, we must have $dist(u) = dist(p) + w(p, u) =$ $spdfst(p) + w(p, u) = spdist(u).$

Proof of the claim: Suppose that the claim is not true. Define v_{bad} be the first vertex on π that is still in S, when u is to be removed from S.

Let v_{good} be the vertex right before v_{bad} on π ; note that v_{good} definitely exists because v_{bad} cannot be s.

By our inductive assumption, when v_{good} was removed from S, we had $dist(v_{good}) = spdist(v_{good})$. Remember we needed to relax all the the outgoing edges of v_{good} , one of which was (v_{good} , v_{bad}). After relaxing the edge, we must have

$$
dist(v_{bad}) = dist(v_{good}) + w(v_{good}, v_{bad})
$$

= $split(v_{good}) + w(v_{good}, v_{bad}) = splits(v_{bad}).$

Since $dist(v_{bad})$ never increases during the algorithm, we must have $dist(v_{bad}) < dist(u)$ when u is to be removed from S. But this contradicts the fact that u has the **smallest** dist-value among all the vertices in S.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

We have completed the proof on the correctness of Dijkstra. It is important to note that Dijkstra does not work if edges can take negative weights — can you spot the place in our earlier argument that depends on positive weights?

29/29