
1/29

Divide and Conquer

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Divide and Conquer



2/29

In this lecture, we will discuss the divide and conquer technique for
designing algorithms with strong performance guarantees. Our discussion
will be based on the following problems:

1 Sorting (a review of merge sort)

2 Counting inversions

3 Dominance counting

4 Matrix multiplication

We will focus on the ideas most relevant to illustrating divide and
conquer, and will not try very hard to attain the fastest possi-
ble running time. On some problems, improving the running time
makes interesting exercises, as will be duly mentioned.

Yufei Tao Divide and Conquer



3/29

The thinking behind divide and conquer:

Divide the problem into smaller parts. Do we gain anything if those
parts have been settled? In particular, can the results of those parts
be combined efficiently?

Yufei Tao Divide and Conquer



4/29

Sorting

Yufei Tao Divide and Conquer



5/29

Sorting

Problem: Given an array A of n distinct integers, produce another
array where the same integers have been arranged in ascending
order.

Thinking:

Divide: Let A1 the array containing the first dn/2e elements of A,
and A2 be the array containing the other elements of A.
Sort A1 and A2 recursively.

What do we gain? It suffices to merge the two sorted arrays A1,A2

into an overall ascending order. This can be done in O(n) time.

This is the merge sort algorithm.

Yufei Tao Divide and Conquer



6/29

Sorting

Running Time: Let f (n) denote the worst-case cost of the algorithm on
an array of size n. Then:

f (n) ≤ 2 · f (dn/2e) + O(n)

which gives f (n) = O(n log n).

Yufei Tao Divide and Conquer



7/29

Counting Inversions

Yufei Tao Divide and Conquer



8/29

Counting Inversions

Let: A = an array of n distinct integers.

An inversion is a pair of (i , j) such that

1 ≤ i < j ≤ n, and

A[i ] > A[j ].

Example: Consider A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6).
Then (1, 2) is an inversion because A[1] = 10 > A[2] = 3. So are
(1, 3), (3, 4), (4, 5), and so on.
There are in total 29 inversions.

Think: How many inversions can there be in the worst case?

Answer:
(
n
2

)
= Θ(n2).

Yufei Tao Divide and Conquer



9/29

Counting Inversions

Problem: Given an array A of n distinct integers, count the number
of inversions.

Trivial: O(n2) time.
We will do in the class: O(n log2 n) time.
You will do as an exercise: O(n log n) time.

Yufei Tao Divide and Conquer



10/29

Counting Inversions

Thinking:

Divide: Let A1 the array containing the first dn/2e elements of A,
and A2 be the array containing the other elements of A.

Solve the “counting inversions” problem recursively on A1 and A2,
respectively. By doing so, we have already obtained the number m1

of inversions in A1, and similarly, the number m2 for A2.

What do we gain?
It remains to count the number of crossing inversions (i , j) where i
is in A1 and j in A2.
⇒
The relative ordering within A1 no longer matters! Same for A2!

Yufei Tao Divide and Conquer



11/29

Counting Inversions

A1 = the array containing the first dn/2e elements of A
A2 = the array containing the other elements of A.

Sort A1 and A2.
For each element in A1, find out how many crossing inversions it
produces using binary search.

Example (cont.): A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6).
A1 = (2, 3, 8, 9, 10), A2 = (1, 4, 5, 6, 7)

Element 2 produces 1 crossing inversion
Element 3 produces 1, too.
Elements 8, 9, and 10 each produces 5.

Think: How to obtain each count with binary search?

In total, n/2 binary searches are performed, which takes O(n log n) time.

Yufei Tao Divide and Conquer



12/29

Counting Inversions

Running Time: Let f (n) denote the worst-case cost of the algorithm on
an array of size n. Then:

f (n) ≤ 2 · f (dn/2e) + O(n log n)

which gives f (n) = O(n log2 n).

Yufei Tao Divide and Conquer



13/29

Dominance Counting

Yufei Tao Divide and Conquer



14/29

Dominance Counting

Denote by N the set of integers.
Given a point p in two-dimensional space N2, denote by p[1] and p[2] its
x- and y-coordinate, respectively.

Given two distinct points p and q, we say that q dominates p if
p[1] ≤ q[1] and p[2] ≤ q[2]; see the figure below:

q

p

Yufei Tao Divide and Conquer



15/29

Dominance Counting

Let P be a set of n points in N2. Find, for each point p ∈ P, the
number of points in P that are dominated by p.

Example:

p1

p2

p3

p4

p5

p6

p7

p8

We should output: (p1, 0), (p2, 1), (p3, 0), (p4, 2), (p5, 2), (p6, 5),
(p7, 2), (p8, 0).

Yufei Tao Divide and Conquer



16/29

Dominance Counting

Let P be a set of n points in N2. Find, for each point p ∈ P, the
number of points in P that are dominated by p.

Trivial: O(n2)
We will do in the class: O(n log2 n) time.
You will do as an exercise: O(n log n) time.

Yufei Tao Divide and Conquer



17/29

Dominance Counting

Divide: Find a vertical line ` such that P has dn/2e points on each side
of the line.

Example:

p1

p2

p3

p4

p5

p6

p7

p8

`

Think: How to find such ` in O(n log n) time? How about O(n) time?

Yufei Tao Divide and Conquer



18/29

Dominance Counting

Divide:
P1 = the set of points of P on the left of `
P2 = the set of points of P on the right of `

Example:

p1

p2

p3

p4

p5

p6

p7

p8

`

P1 = {p1, p2, p3, p4}

P2 = {p5, p6, p7, p8}.

Yufei Tao Divide and Conquer



19/29

Dominance Counting

Divide:
Solve the dominance counting problem on P1 and P2 separately.

Example:

p1

p2

p3

p4

p5

p6

p7

p8

`

On P1, we have obtained:
(p1, 0), (p2, 1), (p3, 0), (p4, 2).

On P2, we have obtained:
(p5, 0), (p6, 1), (p7, 0), (p8, 0).

The counts obtained for the points in P1 are final (think: why?).

Yufei Tao Divide and Conquer



20/29

Dominance Counting

What do we gain?
It remains to count, for each point p2 ∈ P2, how many points in P1 it
dominates.

Example:

p1

p2

p3

p4

p5

p6

p7

p8

`

On P2, we have obtained:
(p5, 0), (p6, 1), (p7, 0), (p8, 0).

Regarding p5, for example, we
still need to find out that it dom-
inates 2 points from P1.

The x-coordinates do not matter any more!

Yufei Tao Divide and Conquer



21/29

Dominance Counting

What do we gain?

Sort P1 by y-coordinate.
Then, for each point p2 ∈ P2, we can obtain the number points in P1

dominated by p2 using binary search.

Example:

p1

p2

p3

p4

p5

p6

p7

p8

`

P1 in ascending of y-coordinate:
p3, p1, p4, p2.

How to perform binary search to
obtain the fact that p5 dominates
2 points in P1?

Search using the
y-coordinate of p5.

Yufei Tao Divide and Conquer



22/29

Dominance Counting

Analysis:

Let f (n) be the worst-case running time of the algorithm on n points.
Then:

f (n) ≤ 2f (dn/2e) + O(n log n)

which solves to f (n) = O(n log2 n).

Yufei Tao Divide and Conquer



23/29

Matrix Multiplication

Yufei Tao Divide and Conquer



24/29

Matrix Multiplication

Problem: Given two n×n matrices A and B, compute their product
AB.

We store an n× n matrix with an array of length n2 in “row-major” order.

Example:

[
1 2
3 4

]
is stored as (1, 2, 3, 4).

Note that any A[i , j ] — the element of A at the i-th row and j-th column
— can be accessed in O(1) time.

Trivial: O(n3) time
We will do in the class: O(n2.81) time for n being a power of 2

You will do as an exercise: O(n2.81) time for any n.

Yufei Tao Divide and Conquer



25/29

Matrix Multiplication

Warm Up: Suppose we want to compute

[
a b
c d

] [
e f
g h

]
. How many

multiplication operations do we need to perform?
Trivial: 8.
Non-trivial: 7.[

a b
c d

] [
e f
g h

]
=

[
p5 + p4 − p2 + p6 p1 + p2

p3 + p4 p1 + p5 − p3 − p7

]
where

p1 = a(f − h)

p2 = (a + b)h

p3 = (c + d)e

p4 = d(g − e)

p5 = (a + d)(e + h)

p6 = (b − d)(g + h)

p7 = (a− c)(e + f )

Yufei Tao Divide and Conquer



26/29

Matrix Multiplication (Strassen’s Algorithm)

Recall that the input A and B are order-n (i.e., n × n) matrices. Assume
for simplicity that n is a power of 2. Divide each of A and B into 4
submatrices of order n/2:

A =

[
A11 A12

A21 A22

]
,B =

[
B11 B12

B21 B22

]
It is easy to verify:

AB =

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
How many order-(n/2) matrix multiplications do we need?

Trivial: 8.
Non-trivial: 7 — see the next slide.

Yufei Tao Divide and Conquer



27/29

Matrix Multiplication

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
p5 + p4 − p2 + p6 p1 + p2

p3 + p4 p1 + p5 − p3 − p7

]

p1 = A11(B12 − B22)

p2 = (A11 + A12)B22

p3 = (A21 + A22)B11

p4 = A22(B21 − B11)

p5 = (A11 + A22)(B11 + B22)

p6 = (A12 − A22)(B21 + B22)

p7 = (A11 − A21)(B11 + B12)

If f (n) is the worst-case time of computing the product of two order-n
matrices, then each of pi (1 ≤ i ≤ 7) can be computed in
f (n/2) + O(n2) time.

Yufei Tao Divide and Conquer



28/29

Matrix Multiplication

Therefore:

f (n) = 7f (n/2) + O(n2)

which solves to f (n) = O(nlog2 7) = O(n2.81).

Yufei Tao Divide and Conquer



29/29

Matrix Multiplication

Remark: Matrix multiplication is one of the biggest open prob-
lems in computer science. Currently the fastest algorithm runs in
O(n2.373) time. It is not clear how much more improvement is
possible (although many people believe that it could be eventually
lowered to O(n2)).

Yufei Tao Divide and Conquer


