All-Pairs Shortest Paths

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Yufei Tao [All-Pairs Shortest Paths](#page-19-0)

E

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

In this lecture, we will look at a problem called all-pairs shortest paths which is closely related to the SSSP (single-source shortest path) problem discussed in the previous lectures.

We will learn two algorithms: the Floyd-Warshall algorithm and **Johnson's algorithm**. The first one is a standard dynamic programming algorithm, while the second is based on a new technique — called re -weighting $-$ that removes all negative edges.

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

2/20

All-Pairs Shortest Paths (APSP)

Input: Let $G = (V, E)$ be a directed graph. Let w be a function that maps each edge in E to an integer, which can be positive, 0, or negative. It is guaranteed that G has no negative cycles.

Output: The shortest path (SP) from node s to node t, for every $s \in V$ and every $t \in V$.

We will focus on finding the shortest path distance $spdf(s, t)$ for every $s, t \in V$. Extending the algorithm to report paths is easy and left to you.

We will explain how to compute the following: $spdfist(a, a) = 0$, $spdist(a, b) = 1$, ..., $spdist(a, g) = -9$ spdist(b, a) = ∞ , spdist(b, b) = 0, ..., spdist(b, g) = -4 ... $spdf(s, a) = \infty$, $spdist(g, b) = \infty$, ..., $spdist(g, g) = 0$

Yufei Tao [All-Pairs Shortest Paths](#page-0-0)

イロト イ母 トイミト

4/20

 QQ

If all the weights are non-negative, we can run Dijkstra's algorithm $|V|$ times. The total running time is $O(|V|(|V| + |E|) \log |V|)$.

For the general APSP problem (i.e., arbitrary weights), we can run Bellman-Ford's algorithm $|V|$ times. The total running time is $O(|V|^2|E|)$.

At the end of the lecture, we will be able to solve the (general) APSP problem in

 $O (\min\{|V|^3, |V|(|V|+|E|) \log |V|\})$.

Note that the complexity strictly improves that in the second box.

 $\Box \rightarrow A \Box B \rightarrow A \Box B \rightarrow A \Box B$

5/20

The Floyd-Warshall Algorithm

The Contract Paths Contract Paths Shortest Paths

È

 299

 $A \equiv \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \mathbf{1} \oplus \mathbf{1}$

Set $n = |V|$. We will assign to every vertex in V a distinct id from 1 to n .

Yufei Tao [All-Pairs Shortest Paths](#page-0-0)

∍

 4 **O** \rightarrow 4 \overline{m} \rightarrow 4 \overline{m} \rightarrow 4

7/20

 QQ

Define spdist($i, j \leq k$) as the smallest length of all paths from i to j that **pass only vertices with ids** $\leq k$ (except of course the start vertex *i* and end vertex i).

イロト イ母 トイミト

8/20

Lemma:

$$
spdist(i, j \leq k) =
$$

min
$$
\begin{cases} spdist(i, j \leq k - 1) \\ spdist(i, k \leq k - 1) + spdist(k, j \leq k - 1) \end{cases}
$$

The proof is simple and left to you.

Observe that spdist(i, $j \leq n$) = spdist(i, j). Our goal is therefore to compute $spdist(i, j \leq n)$ for all $i, j \in [1, n]$.

This clearly points to a dynamic programming algorithm that finishes in $O(|V|^3)$ time.

Yufei Tao [All-Pairs Shortest Paths](#page-0-0)

イロト イ団 トイヨトイ

9/20

Johnson's Algorithm

Recall:

If all the weights are non-negative, we can run Dijkstra's algorithm $|V|$ times. The total running time is $O(|V|(|V| + |E|) \log |V|)$.

But remember we are tackling a graph where edge weights can be negative. Can we convert all the weights into non-negative values so that we can apply the above strategy? The challenge is to carry out the conversion without affecting any shortest paths.

Introduce an arbitrary function $h: V \to \mathbb{Z}$, where $\mathbb Z$ represents the set of integer values.

For each edge (u, v) in E, redefine its weight as:

$$
w'(u, v) = w(u, v) + h(u) - h(v).
$$

Denote by G' the graph where

- \bullet the set V of vertices and the set E of edges are the same as G;
- the edges are weighted using function w' .

 $\left\{ \frac{1}{2} \right\}$ $\left\{ \frac{1}{2} \right\}$

12/20

Lemma: Consider any path $v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_x$ in G where $x \ge 1$. If the path has length ℓ , then it has length $\ell + h(v_1) - h(v_x)$ in $G'.$

Proof: The length of the path in G' is

$$
\sum_{i=1}^{x-1} w'(v_i, v_{i+1})
$$
\n
$$
= \sum_{i=1}^{x-1} (w(v_i, v_{i+1}) + h(v_i) - h(v_{i+1}))
$$
\n
$$
= \left(\sum_{i=1}^{x-1} w(v_i, v_{i+1})\right) + h(v_1) - h(v_x).
$$

遥 Yufei Tao [All-Pairs Shortest Paths](#page-0-0)

重

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \leftarrow & \overline{\square} & \rightarrow & \leftarrow & \end{array} \right.$

13/20

Corollary: If G has no negative cycles, G' has no negative cycles.

Proof: If $v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_x$ is a cycle, then $v_1 = v_x$. The previous lemma indicates that its length in G is the same as its length in $G'.$

Corollary: Let π be a path from vertex u to vertex v in G. If π is a shortest path in G , it is also a shortest path in G' .

Proof: Let π' be any other path from u to v in G'. Denote by ℓ and ℓ' the length of π and π' , respectively. It holds that $\ell \leq \ell'$. By the lemma of the previous slide, we know that π and π' have lengths $\ell + h(u) - h(v)$ and $\ell' + h(u) - h(v)$, respectively.

イロト イ部 トイ君 トイ君 トー

15/20

 2990

GHT 1

For our goal (i.e., turning all weights to non-negative), we must ensure:

 $w(u, v) > 0$

for all edges (u, v) in E. Not every function $h(.)$ can fulfill the purpose. In the example of the previous slide, we have provided such a function for illustration purposes.

But how to find such a "good" $h(.)$ in general? This calls for a second idea deployed by Johnson's algorithm, which always gives us a good function $h(.)$. In fact, the function $h(.)$ used in the previous slide was obtained using that idea, as we show next.

A "Dummy-Vertex" Trick

From $G=(V,E)$, let us construct a graph $G^{\Delta}=(V^{\Delta},E^{\Delta})$ where:

- $V^{\Delta} = V \cup \{v_{dummy}\};$
- E^{Δ} includes all the edges in E, and additionally, a new edge from V^{Δ} to every other vertex in V;
- \bullet Each edge inherited from E carries the same weight as in E. Every newly added edge carries the weight 0.

A "Dummy-Vertex" Trick

In $G^\Delta=(V^\Delta,E^\Delta)$, find the shortest path distance from $\rm v_{\rm dummy}$ to every other vertex. This is an SSSP problem which can be solved by Bellman-Ford's algorithm in $O(|V||E|)$ time.

18/20

A "Dummy-Vertex" Trick

Recall that we were looking for a good function $h(.)$ to re-weight the edges of G.

We have just found our function $h(.)$:

$$
h(u) = \mathit{spdist}(v_{dummy}, u)
$$

for every $u \in V$.

After re-weighting the edges of G with the above $h(.)$, we are guaranteed that all edge weights (in the graph G' obtained after re-weighting) must be non-negative.

Proving the above is easy and will be left as an exercise.

We therefore have obtained an algorithm to solve the APSP problem (with negative weights) in time $O(|V|(|V| + |E|) \log |V|)$.

重

 QQ

 $A \equiv \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \math$