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We have already seen that some decisions problems (very likely) cannot
be solved in polynomial time.

In practice, however, many problems are not decision problems, but
rather are so-called optimization problems. Nevertheless, in this
lecture, we will see that NP-hardness on decision problems implies that
many optimization problems (very likely) cannot be solved in polynomial
time, either.

So what can do on those optimization problems?

Instead of declaring failure immediately, we can find near-optimal

solutions in polynomial time, namely, trading away quality for efficiency.

Such algorithms are called approximation algorithms.
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Consider an undirected graph G = (V ,E ).

Consider a subset S ⊆ V . S is a vertex cover if every edge {u, v} ∈ E is
adjacent to at least one vertex in S , i.e., u ∈ S , v ∈ S , or both.

The vertex cover problem: Find a vertex cover of the smallest
size.

Example:

a

b

c d

e

f

An optimal solution is {a, f , c , e}.
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The vertex cover problem: Find a vertex cover of the smallest
size.

Note that this is not a decision problem.
Instead this is an optimization problem: from all the vertex covers, we
want the optimal one.
Earlier, we already introduced the decision version of the problem:

The vertex cover decision problem: Given an integer k, decide
whether there is a vertex cover with at most k vertices.

We state the next result without proof:

Theorem: The vertex cover decision problem is NP-complete.

Do you think the vertex cover (optimization) problem can be solved in

polynomial time? See the next slide for the answer.
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Theorem: If we can solve the vertex cover problem in polynomial
time, then we can solve every problem in NP in polynomial time.

Proof: Suppose that we can obtain the smallest size k∗ of all vertex
covers in polynomial time. Then, we can trivially solve the vertex cover
decision problem in polynomial time by comparing k∗ with k.

As mentioned earlier, the vertex cover decision problem is NP-complete.
Hence, that it can be solved in polynomial time means that all the
problems in NPC can be solved in polynomial time.

Corollary: Unless P = NP, the vertex cover problem cannot be
solved in polynomial time.
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Now what? Should we give up in despair?
Well, not if you are willing to sacrifice the quality of your solution a
little.

Denote by OPT the smallest size of vertex covers.
Next, we will show that it is possible to obtain in polynomial time a
vertex cover that includes at most 2 · OPT vertices.

The constant 2 is referred to as the approximation ratio.

Our algorithm is referred to as an approximation algorithm.

Yufei Tao Approximation Algorithms



7/20

An Approximation Algorithm

1. S = ∅
2. while E is not empty
3. pick an arbitrary edge {u, v} in E
4. add u, v to S
5. remove from E all the edges of u
6. remove from E all the edges of v
7. return S
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Example

Consider G = (V ,E ) is the following graph:

a

b

c d

e

f

Suppose we pick edge {b, c}.
Then, S = {b, c}, and E = {{a, e}, {a, d}, {d , e}, {d , f }}.

Suppose we pick edge {a, e} next.
Then, S = {a, b, c , e}, and E = {{d , f }}.

Finally we pick edge {d , f }.
The final S = {a, b, c , d , e, f }.

Yufei Tao Approximation Algorithms



9/20

It is trivial to implement the algorithm in time polynomial to |V | and |E |.
Next, we will prove

Theorem: |S | ≤ 2 · OPT .

In other words, our algorithm achieves an approximation ratio of 2.

We denote by M the set of edges picked. For instance, in the previous

example, M consists of {b, c}, {a, e}, and {d , f }.
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Claim: The edges in M do not share any vertices.

Proof: Suppose that M has two edges e1, e2 both adjacent to a vertex v .
Without loss of generality, let us assume that e1 was picked before e2.
However, after e1 is picked, all the edges of v are deleted. Hence, it is
impossible for e2 to be picked, giving a contradiction.

Claim: |M| ≤ OPT .

Proof: Any vertex cover must include at least a vertex of each edge in
M. Then, |M| ≤ OPT follows from the previous claim.

Thus, the theorem of the previous slide follows from the obvious fact that

|S | = 2|M|.
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We have seen that even though the vertex cover problem can un-
likely be solved in polynomial time exactly, we can still find a
good approximate solution (with a small approximation ratio) in
polynomial time.

This trade-quality-for-efficiency approach is very common in
tackling NP-hardness, and is a major topic in computer science.

We will see another problem next.
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We are given n sets S1,S2, ...,Sn.
Define U =

⋃n
i=1 Si , called the universe.

The set cover problem: From {S1,S2, ...,Sn}, find the smallest
number of sets whose union is U.

Example:
S1 = {1, 2, 3, 4}
S2 = {2, 5, 7}
S3 = {6, 7}
S4 = {1, 8}
S5 = {1, 2, 3, 8}
U = {1, 2, 3, 4, 5, 6, 7, 8}
An optimal solution is S1,S2,S3,S4.
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The set cover problem: From {S1,S2, ...,Sn}, find the smallest
number of sets whose union is U.

This is an optimization problem. Earlier, we introduced the decision
version of the problem:

The set cover decision problem: Given an integer k, decide
whether {S1,S2, ...,Sn} contains k sets whose union is U.

We state the next result without proof:

Theorem: The set cover decision problem is NP-complete.

You can then prove easily:

Corollary: Unless P = NP, the set cover problem cannot be solved
in polynomial time.
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Denote by OPT the smallest number of sets whose union is U.

Next, we will show that it is possible to obtain in polynomial time at
most (1 + ln |U|) · OPT sets whose union covers U.

That is, we will achieve an approximation ratio of 1 + ln |U|.
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Approximation Algorithm

1. S = ∅
2. while U still has elements not covered by the sets in S
3. S ← the set in {S1, ...,Sn} that includes the largest

number of newly-covered elements, namely, elements in S
that are not yet covered by the sets in S

4. add S to S
5. return S
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Example

S1 = {1, 2, 3, 4}, S2 = {2, 5, 7}, S3 = {6, 7}. S4 = {1, 8}
S5 = {1, 2, 3, 8}

At the beginning, S = ∅.

Then, the algorithm adds S1 or S5 to S; since the choice is
arbitrary, suppose that S1 is added.

The second set added to S can be S2 or S3, because each of
them has two newly-covered elements (e.g., 5, 7 for S2);
suppose that S2 is added.

The next set added can be S3,S4, or S5 (each of them has
one newly-covered element); suppose that S3 is added.

Still the next set added can be S4 or S5 (each having one
newly-covered element).

Now the algorithm terminates with S = {S1,S2,S3,S4}.
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It is trivial to implement the algorithm in time polynomial to
∑n

i=1 |Si |.
Next, we will prove

Theorem: |S| ≤ 1 + (ln |U|) · OPT .
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Denote by t = |S|.
Without loss of generality, suppose that S1,S2, ...,St are the sets in S,
chosen in the order shown.
Denote by zi (1 ≤ i ≤ t) the number of elements yet to be covered
after Si has been chosen.
Specially, define z0 = |U|.

Note: zt = 0 and zt−1 ≥ 1. Think: why?

Denote by S∗ an optimal solution, namely, OPT = |S∗|.
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Lemma: For i ∈ [1, t], it holds that

zi ≤ zi−1 ·
(

1− 1

OPT

)
.

Proof: Consider the moment after S1, ...,Si−1 have been chosen by the
algorithm. By definition, there are still zi−1 elements in U that have not
been covered by S1, ...,Si−1.

Claim: At this moment, there is at least a set that covers at least
zi−1/OPT newly-covered elements.

Proof: Follows immediately from the fact that the zi−1 elements must
be covered by the OPT sets in S∗.

Hence, Si covers at least zi−1/OPT newly-covered elements. The

number of elements that have not been covered by S1, ...,Si−1,Si is

therefore at most zi−1 · (1− 1
OPT ).
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It then follows from the lemma that

zt−1 ≤ zt−2 ·
(

1− 1

OPT

)
≤ zt−3 ·

(
1− 1

OPT

)2

...

≤ z0 ·
(

1− 1

OPT

)t−1

= |U| ·
(

1− 1

OPT

)t−1

≤ |U| · e−
t−1
OPT

where the last inequality used the fact that 1 + x ≤ ex for any real value
x .

As zt−1 ≥ 1, we have:

1 ≤ |U| · e−
t−1
OPT

which resolves to t ≤ 1 + (ln |U|) · OPT .
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