
CSCI3160: Regular Exercise Set 9

Prepared by Yufei Tao

Problem 1*. Let G = (V,E) be a weighted directed acyclic graph. Given a source vertex s ∈ V ,
design an algorithm to find the shortest path distances from s to the vertices in V . Your algorithm
should terminate in O(|V |+ |E|) time.

Solution. First run DFS on G to obtain a topological order of V . For each v ∈ V , initialize a value
dist(v) which equals 0 if v = s, and ∞ otherwise. Now, process the vertices of V according to the
topological order. Specifically, processing a vertex u means relaxing all the out-going edges (u, v) of
u. After every vertex has been processed, the final dist(v) is the shortest path distance from s to v,
for every v ∈ V .

To prove this is correct, recall that (as discussed earlier in the lecture) the shortest-path distances
spdist(s, v) from s to v ∈ V satisfy:

spdist(s, v) = min
u∈IN (v)

spdist(s, u) + w(u, v)

where w(u, v) denotes the weight of the edge (u, v), and IN (v) is the set of in-neighbors of v. The
correctness of our algorithm thus follows from:

Claim: At the moment right before v is processed, spdist(u) has already been computed
for every u ∈ IN (v).

The above claim can be easily established by induction on the number of edges in a shortest path.

Problem 2. Let G = (V,E) be a weighted directed graph where the weight of an edge (u, v)
is w(u, v). It is guaranteed that G has no negative cycles. Prove: the following is a correct
implementation of Bellman-Ford’s algorithm:

algorithm Bellman-Ford
1. pick an arbitrary vertex s ∈ V
2. set λ to the sum of all the positive edge weights in G
3. initialize dist(s) = 0 and dist(v) = λ for every other vertex v ∈ V
4. for i = 1 to |V | − 1
5. relax all the edges in E
6. return dist(v) for all v ∈ V

Remark: Compared to the description in our lecture notes, the key difference here is that, at
Line 3, we initialize dist(v) as λ, instead of ∞.

Solution. Follows directly from the fact that, to every vertex v ∈ V , s has a shortest path that is
a simple path. Notice that every simple path has a length at most λ.

Problem 3*. Let G = (V,E) be a weighted directed graph where the weight of an edge (u, v) is
w(u, v). Prove: the following algorithm correctly decides whether G has a negative cycle:

algorithm negative-cycle-detection
1. pick an arbitrary vertex s ∈ V
2. set λ to the sum of all the positive edge weights in G

1

3. initialize dist(s) = 0 and dist(v) = λ for every other vertex v ∈ V
4. for i = 1 to |V | − 1
5. relax all the edges in E
6. for each edge (u, v) ∈ E
7. if dist(v) > dist(u) + w(u, v) then
8. return “there is a negative cycle”
9. return “no negative cycles”

Solution. We will prove two directions.

Direction 1: If the inequality of Line 6 holds for any edge (u, v), then there must be a negative
cycle. In the lecture we proved that, in the absence of negative cycles, Bellman-Ford’s algorithm
correctly finds all shortest path distances (from s) after |V | − 1 rounds of edge relaxations. This
(together with the result of Problem 2) indicates that, if there are no cycles, when we come to Line
5 the value dist(v) must be the final shortest path distance for every v ∈ V . If Line 6 holds for
some edge (u, v), however, it means that an even shorter path from s to v has just been discovered.
Therefore, in such a case, G must contain a negative cycle.

Direction 2: If there is a negative cycle, then the inequality of Line 6 must hold for at least one
edge (u, v). Suppose that the negative cycle is v1 → v2 → ...→ v` → v1. Hence:

w(v`, v1) +
`−1∑
i=1

w(vi, vi+1) < 0. (1)

Assume that Line 6 does not hold on any edge in E. This indicates:

• for every i ∈ [1, n], dist(vi+1) ≤ dist(vi) + w(vi, vi+1);

• dist(v1) ≤ dist(vn) + w(vn, v1).

These two bullets lead to:

∑̀
i=1

dist(vi) ≤

(∑̀
i=1

dist(vi)

)
+ w(v`, v1) +

`−1∑
i=1

w(vi, vi+1)

⇒ 0 ≤ w(v`, v1) +
`−1∑
i=1

w(vi, vi+1)

which contradicts (1).

Problem 4. In our lecture about the Floyd-Warshall algorithm, we have given the following
recursive function:

spdist(i, j |≤ k) = min

{
spdist(i, j |≤ k − 1)
spdist(i, k |≤ k − 1) + spdist(k, j |≤ k − 1)

Give the details of computing spdist(i, j) for all i, j ∈ [1, n] in O(n3) time.

Solution.

algorithm Floyd-Warshall
1. for all i, j ∈ [1, n]

2

2. set spdist(i, j |≤ 0) = 0 if i = j or ∞ otherwise
3. for k = 1 to n
4. for all i, j ∈ [1, n]
5. set spdist(i, j |≤ k) according to the recursive function

Problem 5. Augment your algorithm for the previous problem to compute the shortest path
between vertex i and vertex j, for all i, j ∈ [1, n].

Solution.

algorithm Floyd-Warshall
1. for all i, j ∈ [1, n]
2. set spdist(i, j |≤ 0) = 0 if i = j or ∞ otherwise
3. set bestchoice(i, j) = nil
4. for k = 1 to n
5. for all i, j ∈ [1, n]
6. if spdist(i, j |≤ k − 1) ≤ spdist(i, k − 1 |≤ k − 1) + spdist(k − 1, j |≤ k − 1) then
7. spdist(i, j |≤ k) = spdist(i, j |≤ k − 1)

else
8. spdist(i, j |≤ k) = spdist(i, k − 1 |≤ k − 1) + spdist(k − 1, j |≤ k − 1)
9. bestchoice(i, j) = k

The function bestchoice(., .) computed by the above algorithm encodes all the shortest paths.
Specifically, for any i, j ∈ [1, n] such that i 6= j:

• if bestchoice(i, j) = nil , the shortest path from i to j consists of just the edge (i, j);

• if bestchoice(i, j) = k, the shortest path concatenates the shortest path from i to k and the
shortest path from k to j — note that the latter two shortest paths can be obtained recursively
in the same manner.

3

