CSCI3160: Regular Exercise Set 9

Prepared by Yufei Tao

Problem 1^{*}. Let $G = (V, E)$ be a weighted directed acyclic graph. Given a source vertex $s \in V$, design an algorithm to find the shortest path distances from s to the vertices in V . Your algorithm should terminate in $O(|V| + |E|)$ time.

Solution. First run DFS on G to obtain a topological order of V. For each $v \in V$, initialize a value $dist(v)$ which equals 0 if $v = s$, and ∞ otherwise. Now, process the vertices of V according to the topological order. Specifically, *processing* a vertex u means relaxing all the out-going edges (u, v) of u. After every vertex has been processed, the final $dist(v)$ is the shortest path distance from s to v, for every $v \in V$.

To prove this is correct, recall that (as discussed earlier in the lecture) the shortest-path distances $splits(s, v)$ from s to $v \in V$ satisfy:

$$
spdist(s,v) = \min_{u \in IN(v)} spdist(s,u) + w(u,v)
$$

where $w(u, v)$ denotes the weight of the edge (u, v) , and $IN(v)$ is the set of in-neighbors of v. The correctness of our algorithm thus follows from:

Claim: At the moment right before v is processed, $spdist(u)$ has already been computed for every $u \in IN(v)$.

The above claim can be easily established by induction on the number of edges in a shortest path.

Problem 2. Let $G = (V, E)$ be a weighted directed graph where the weight of an edge (u, v) is $w(u, v)$. It is guaranteed that G has no negative cycles. Prove: the following is a correct implementation of Bellman-Ford's algorithm:

algorithm Bellman-Ford

- 1. pick an arbitrary vertex $s \in V$
- 2. set λ to the sum of all the positive edge weights in G
- 3. initialize $dist(s) = 0$ and $dist(v) = \lambda$ for every other vertex $v \in V$
- 4. for $i = 1$ to $|V| 1$
- 5. relax all the edges in E
- 6. return $dist(v)$ for all $v \in V$

Remark: Compared to the description in our lecture notes, the key difference here is that, at Line 3, we initialize $dist(v)$ as λ , instead of ∞ .

Solution. Follows directly from the fact that, to every vertex $v \in V$, s has a shortest path that is a simple path. Notice that every simple path has a length at most λ .

Problem 3^{*}. Let $G = (V, E)$ be a weighted directed graph where the weight of an edge (u, v) is $w(u, v)$. Prove: the following algorithm correctly decides whether G has a negative cycle:

algorithm negative-cycle-detection

- 1. pick an arbitrary vertex $s \in V$
- 2. set λ to the sum of all the positive edge weights in G
- 3. initialize $dist(s) = 0$ and $dist(v) = \lambda$ for every other vertex $v \in V$
- 4. for $i = 1$ to $|V| 1$
- 5. relax all the edges in E
- 6. for each edge $(u, v) \in E$
- 7. if $dist(v) > dist(u) + w(u, v)$ then
- 8. return "there is a negative cycle"
- 9. return "no negative cycles"

Solution. We will prove two directions.

Direction 1: If the inequality of Line 6 holds for any edge (u, v) , then there must be a negative cycle. In the lecture we proved that, in the absence of negative cycles, Bellman-Ford's algorithm correctly finds all shortest path distances (from s) after $|V| - 1$ rounds of edge relaxations. This (together with the result of Problem 2) indicates that, if there are no cycles, when we come to Line 5 the value $dist(v)$ must be the final shortest path distance for every $v \in V$. If Line 6 holds for some edge (u, v) , however, it means that an even shorter path from s to v has just been discovered. Therefore, in such a case, G must contain a negative cycle.

Direction 2: If there is a negative cycle, then the inequality of Line 6 must hold for at least one edge (u, v) . Suppose that the negative cycle is $v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_{\ell} \rightarrow v_1$. Hence:

$$
w(v_{\ell}, v_1) + \sum_{i=1}^{\ell-1} w(v_i, v_{i+1}) < 0. \tag{1}
$$

Assume that Line 6 does not hold on any edge in E. This indicates:

- for every $i \in [1, n]$, $dist(v_{i+1}) \leq dist(v_i) + w(v_i, v_{i+1});$
- $dist(v_1) \leq dist(v_n) + w(v_n, v_1)$.

These two bullets lead to:

$$
\sum_{i=1}^{\ell} dist(v_i) \leq \left(\sum_{i=1}^{\ell} dist(v_i)\right) + w(v_{\ell}, v_1) + \sum_{i=1}^{\ell-1} w(v_i, v_{i+1})
$$

\n
$$
\Rightarrow 0 \leq w(v_{\ell}, v_1) + \sum_{i=1}^{\ell-1} w(v_i, v_{i+1})
$$

which contradicts (1).

Problem 4. In our lecture about the Floyd-Warshall algorithm, we have given the following recursive function:

$$
spdist(i, j \mid \leq k) = \min \begin{cases} spdist(i, j \mid \leq k - 1) \\ spdist(i, k \mid \leq k - 1) + spdist(k, j \mid \leq k - 1) \end{cases}
$$

Give the details of computing $splits(t, j)$ for all $i, j \in [1, n]$ in $O(n^3)$ time.

Solution.

algorithm Floyd-Warshall 1. for all $i, j \in [1, n]$

- 2. set $spdist(i, j \leq 0) = 0$ if $i = j$ or ∞ otherwise
- 3. for $k = 1$ to n
- 4. **for** all $i, j \in [1, n]$
- 5. set $spdist(i, j \leq k)$ according to the recursive function

Problem 5. Augment your algorithm for the previous problem to compute the shortest path between vertex i and vertex j, for all $i, j \in [1, n]$.

Solution.

algorithm Floyd-Warshall

1. for all $i, j \in [1, n]$ 2. set $spdist(i, j \leq 0) = 0$ if $i = j$ or ∞ otherwise 3. set bestchoice $(i, j) = nil$ 4. for $k = 1$ to n 5. for all $i, j \in [1, n]$ 6. if $spdist(i, j \leq k - 1) \leq spdist(i, k - 1 \leq k - 1) + spdist(k - 1, j \leq k - 1)$ then 7. $spdist(i, j \leq k) = spdist(i, j \leq k - 1)$ else 8. $splits(t, j \leq k) = splits(t, k - 1 \leq k - 1) + splits(t, k - 1, j \leq k - 1)$ 9. bestchoice $(i, j) = k$

The function $\text{bestchoice}(.,.)$ computed by the above algorithm encodes all the shortest paths. Specifically, for any $i, j \in [1, n]$ such that $i \neq j$:

- if $\text{bestchoice}(i, j) = \text{nil}$, the shortest path from i to j consists of just the edge (i, j) ;
- if $\text{bestchoice}(i, j) = k$, the shortest path concatenates the shortest path from i to k and the shortest path from k to j — note that the latter two shortest paths can be obtained recursively in the same manner.